1
|
Chen WL, Lee TW, Chen C. Polypyrrole-induced active-edge-S and high-valence-Mo reinforced composites with boosted electrochemical performance for the determination of 2,4,6-trichlorophenol in the aquatic environment. CHEMOSPHERE 2023:139003. [PMID: 37224980 DOI: 10.1016/j.chemosphere.2023.139003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/08/2023] [Accepted: 05/20/2023] [Indexed: 05/26/2023]
Abstract
With the extensive application of halogenated aromatic compounds, including 2,4,6-Trichlorophenol (2,4,6-TCP), improper treatment or discharge contribute to persistently harmful effects on humans and the ecosystem, rendering the identification and monitoring of 2,4,6-TCP in the aquatic environment urgently required. In this study, a highly sensitive electrochemical platform was developed using active-edge-S and high-valence-Mo rich MoS2/polypyrrole composites. MoS2/PPy illustrates superior electrochemical performance and catalytic activity and has not been explored for detecting chlorinated phenols previously. The local environment of polypyrrole induces the richness of active edge S and a high oxidation state of Mo species in the composites, both of which endorse a sensitive anodic current response due to the favored oxidation of 2,4,6-TCP through nucleophilic substitution. Also, the higher complementarity between pyrrole and 2,4,6-TCP with respective electron-rich and electron-poor features through π-π stacking interactions enhances the specific detection capability of 2,4,6-TCP by the MoS2/polypyrrole-modified electrode. The MoS2/polypyrrole-modified electrode achieved a linear range of 0.1-260 μM with an ultralow limit of detection of 0.009 μM. Additionally, the structural stability boosted by the linkage of polypyrrole and MoS2 results in good resistance and satisfactory recovery in real water samples. The compiled results demonstrate that the proposed MoS2/polypyrrole composite opens up a new potential to advance a sensitive, selective, facile fabrication, and low-cost platform for the on-site determination of 2,4,6-TCP in aquatic systems. The sensing of 2,4,6-TCP is important to monitor its occurrence and transport, and can also serve to track the effectiveness and adjust subsequent remediation treatments applied to contaminated sites.
Collapse
Affiliation(s)
- Wei-Ling Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Ting-Wei Lee
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan
| | - Chiaying Chen
- Department of Environmental Engineering, National Chung Hsing University, Taichung City, 402, Taiwan.
| |
Collapse
|
2
|
Bendrea AD, Cianga L, Göen Colak D, Constantinescu D, Cianga I. Thiophene End-Functionalized Oligo-(D,L-Lactide) as a New Electroactive Macromonomer for the "Hairy-Rod" Type Conjugated Polymers Synthesis. Polymers (Basel) 2023; 15:polym15051094. [PMID: 36904339 PMCID: PMC10006927 DOI: 10.3390/polym15051094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
The development of the modern society imposes a fast-growing demand for new advanced functional polymer materials. To this aim, one of the most plausible current methodologies is the end-group functionalization of existing conventional polymers. If the end functional group is able to polymerize, this method enables the synthesis of a molecularly complex, grafted architecture that opens the access to a wider range of material properties, as well as tailoring the special functions required for certain applications. In this context, the present paper reports on α-thienyl-ω-hydroxyl-end-groups functionalized oligo-(D,L-lactide) (Th-PDLLA), which was designed to combine the polymerizability and photophysical properties of thiophene with the biocompatibility and biodegradability of poly-(D,L-lactide). Th-PDLLA was synthesized using the path of "functional initiator" in the ring-opening polymerization (ROP) of (D,L)-lactide, assisted by stannous 2-ethyl hexanoate (Sn(oct)2). The results of NMR and FT-IR spectroscopic methods confirmed the Th-PDLLA's expected structure, while the oligomeric nature of Th-PDLLA, as resulting from the calculations based on 1H-NMR data, is supported by the findings from gel permeation chromatography (GPC) and by the results of the thermal analyses. The behavior of Th-PDLLA in different organic solvents, evaluated by UV-vis and fluorescence spectroscopy, but also by dynamic light scattering (DLS), suggested the presence of colloidal supramolecular structures, underlining the nature of the macromonomer Th-PDLLA as an "shape amphiphile". To test its functionality, the ability of Th-PDLLA to work as a building block for the synthesis of molecular composites was demonstrated by photoinduced oxidative homopolymerization in the presence of diphenyliodonium salt (DPI). The occurrence of a polymerization process, with the formation of a thiophene-conjugated oligomeric main chain grafted with oligomeric PDLLA, was proven, in addition to the visual changes, by the results of GPC, 1H-NMR, FT-IR, UV-vis and fluorescence measurements.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
| | - Luminita Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469 Istanbul, Turkey
| | | | - Ioan Cianga
- “PetruPoni” Institute of Macromolecular Chemistry, Centre of Advanced Research in Bionanoconjugates and Biopolymers, 41A, Grigore–GhicaVoda Alley, 700487 Iasi, Romania
- Correspondence: (L.C.); (I.C.); Tel.: +40-332-880-220 (L.C. & I.C.)
| |
Collapse
|
3
|
Bendrea AD, Cianga L, Ailiesei GL, Göen Colak D, Popescu I, Cianga I. Thiophene α-Chain-End-Functionalized Oligo(2-methyl-2-oxazoline) as Precursor Amphiphilic Macromonomer for Grafted Conjugated Oligomers/Polymers and as a Multifunctional Material with Relevant Properties for Biomedical Applications. Int J Mol Sci 2022; 23:7495. [PMID: 35886844 PMCID: PMC9317439 DOI: 10.3390/ijms23147495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/29/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Because the combination of π-conjugated polymers with biocompatible synthetic counterparts leads to the development of bio-relevant functional materials, this paper reports a new oligo(2-methyl-2-oxazoline) (OMeOx)-containing thiophene macromonomer, denoted Th-OMeOx. It can be used as a reactive precursor for synthesis of a polymerizable 2,2'-3-OMeOx-substituted bithiophene by Suzuki coupling. Also a grafted polythiophene amphiphile with OMeOx side chains was synthesized by its self-acid-assisted polymerization (SAAP) in bulk. The results showed that Th-OMeOx is not only a reactive intermediate but also a versatile functional material in itself. This is due to the presence of 2-bromo-substituted thiophene and ω-hydroxyl functional end-groups, and due to the multiple functionalities encoded in its structure (photosensitivity, water self-dispersibility, self-assembling capacity). Thus, analysis of its behavior in solvents of different selectivities revealed that Th-OMeOx forms self-assembled structures (micelles or vesicles) by "direct dissolution".Unexpectedly, by exciting the Th-OMeOx micelles formed in water with λabs of the OMeOx repeating units, the intensity of fluorescence emission varied in a concentration-dependent manner.These self-assembled structures showed excitation-dependent luminescence as well. Attributed to the clusteroluminescence phenomenon due to the aggregation and through space interactions of electron-rich groups in non-conjugated, non-aromatic OMeOx, this behavior certifies that polypeptides mimic the character of Th-OMeOx as a non-conventional intrinsic luminescent material.
Collapse
Affiliation(s)
- Anca-Dana Bendrea
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Luminita Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Gabriela-Liliana Ailiesei
- NMR Spectroscopy Department, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Demet Göen Colak
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey;
| | - Irina Popescu
- Department of Natural Polymers, Bioactive and Biocompatible Materials, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| | - Ioan Cianga
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “PetruPoni” Institute of Macromolecular Chemistry, 41 A, Grigore-GhicaVoda Alley, 700487 Iasi, Romania;
| |
Collapse
|
4
|
Wang L, Liu G, Hu Y, Gou S, He T, Feng Q, Cai K. Doxorubicin-loaded polypyrrole nanovesicles for suppressing tumor metastasis through combining photothermotherapy and lymphatic system-targeted chemotherapy. NANOSCALE 2022; 14:3097-3111. [PMID: 35141740 DOI: 10.1039/d2nr00186a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The lymphatic system provides a main route for the dissemination of most malignancies, which was related to high mortality in cancer patients. Traditional intravenous chemotherapy is of limited effectiveness on lymphatic metastasis due to the difficulty in accessing the lymphatic system. Herein, a novel lymphatic-targeting nanoplatform is prepared by loading doxorubicin (DOX) into sub-50 nm polypyrrole nanovesicles (PPy NVs). The PPy NVs possessed hollow spherical morphologies and a negative surface charge, leading to high drug loading capacity. These vesicles can also convert near-infrared (NIR) light into heat and thus can be used for tumor thermal ablation. DOX loaded PPy NVs (PPy@DOX NVs) along with NIR illumination are highly effective against 4T1 breast cancer cells in vitro. More importantly, following subcutaneous (SC) injection, a direct lymphatic migration of PPy@DOX NVs is confirmed through fluorescence observation of the isolated draining nodes. The acidic conditions in metastatic nodes might subsequently trigger the release of the encapsulated DOX NVs based on their pH-sensitive release profile. In a mouse model bearing 4T1 breast cancer, lymphatic metastases, as well as lung metastases, are significantly inhibited by nanocarrier-mediated trans-lymphatic drug delivery in combination with photothermal ablation. In conclusion, this platform holds great potential in impeding tumor growth and metastasis.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Genhua Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yunping Hu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University Fuzhou, Fujian 350007, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Tingting He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
5
|
Reddy GS, Kamaraj R, Hossain KA, Kumar JS, Thirupataiah B, Medishetti R, Sushma Sri N, Misra P, Pal M. Amberlyst-15 catalysed synthesis of novel indole derivatives under ultrasound irradiation: Their evaluation as serotonin 5-HT 2C receptor agonists. Bioorg Chem 2021; 116:105380. [PMID: 34670330 DOI: 10.1016/j.bioorg.2021.105380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/07/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022]
Abstract
A series of indole based novel Schiff bases was designed as potential agonists of 5-HT2C receptor that was supported by docking studies in silico. These compounds were synthesized via Amberlyst-15 catalysed condensation of an appropriate pyrazole based primary amine with the corresponding indole-3-aldehyde under ultrasound irradiation at ambient temperature. A number of target Schiff bases were obtained in good yields (77-87%) under mild conditions within 1 h. Notably, the methodology afforded the corresponding pyrazolo[4,3-d]pyrimidin-7(4H)-one derivatives when the primary amine was replaced by a secondary amine. Several Schiff bases showed agonist activity when tested against human 5-HT2C using luciferase assay in HEK293T cells in vitro. The SAR (Structure-Activity-Relationship) studies suggested that the imine moiety was more favorable over its cyclic form i.e. the corresponding pyrazolopyrimidinone ring. The Schiff bases 3b (EC50 1.8 nM) and 3i (EC50 5.7 nM) were identified as the most active compounds and were comparable with Lorcaserin (EC50 8.5 nM). Also like Lorcaserin, none of these compounds were found to be PAM of 5-HT2C. With ∼24 and ∼150 fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B respectively the compound 3i that reduced locomotor activity in zebrafish (Danio rerio) larvae model emerged as a promising hit molecule for further study.
Collapse
Affiliation(s)
- Gangireddy Sujeevan Reddy
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Rajamanikkam Kamaraj
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Kazi Amirul Hossain
- Department of Physical Chemistry, Gdansk University of Technology, ul. Narutowicza 11/12, 80-233 Gdansk, Poland
| | - Jetta Sandeep Kumar
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - B Thirupataiah
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - Raghavender Medishetti
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India; Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Madhav Nagar, Manipal 576 104, Karnataka, India
| | - N Sushma Sri
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Parimal Misra
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India
| | - Manojit Pal
- Dr Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad 500 046, India.
| |
Collapse
|
6
|
Li J, Jia X, Yin L. Hydrogel: Diversity of Structures and Applications in Food Science. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2020.1858313] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jinlong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing, P.R. China
- Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China
| | - Xin Jia
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| | - Lijun Yin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, P.R. China
| |
Collapse
|
7
|
Jarosz T, Ledwon P. Electrochemically Produced Copolymers of Pyrrole and Its Derivatives: A Plentitude of Material Properties Using "Simple" Heterocyclic Co-Monomers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E281. [PMID: 33430477 PMCID: PMC7826606 DOI: 10.3390/ma14020281] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/21/2020] [Accepted: 12/29/2020] [Indexed: 11/16/2022]
Abstract
Polypyrrole is a classical, well-known conjugated polymer that is produced from a simple heterocyclic system. Numerous pyrrole derivatives exhibit biological activity, and the repeat unit is a common building block present in the chemical structure of many polymeric materials, finding wide application, primarily in optoelectronics and sensing. In this work, we focus on the variety of copolymers and their material properties that can be produced electrochemically, even though all these systems are obtained from mixtures of the "simple" pyrrole monomer and its derivatives with different conjugated and non-conjugated species.
Collapse
Affiliation(s)
| | - Przemyslaw Ledwon
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland;
| |
Collapse
|
8
|
Martynovskaya SV, Shcherbakova VS, Ushakov IA, Borodina TN, Ivanov AV. Expedient synthesis of a new class of organic building blocks: N-allenylpyrrole-2-carbaldehydes. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.152666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
Molina BG, Bendrea AD, Lanzalaco S, Franco L, Cianga L, Del Valle LJ, Puiggali J, Turon P, Armelin E, Cianga I, Aleman C. Smart design for a flexible, functionalized and electroresponsive hybrid platform based on poly(3,4-ethylenedioxythiophene) derivatives to improve cell viability. J Mater Chem B 2020; 8:8864-8877. [PMID: 33026390 DOI: 10.1039/d0tb01259a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Development of smart functionalized materials for tissue engineering has attracted significant attention in recent years. In this work we have functionalized a free-standing film of isotactic polypropylene (i-PP), a synthetic polymer that is typically used for biomedical applications (e.g. fabrication of implants), for engineering a 3D all-polymer flexible interface that enhances cell proliferation by a factor of ca. three. A hierarchical construction process consisting of three steps was engineered as follows: (1) functionalization of i-PP by applying a plasma treatment, resulting in i-PPf; (2) i-PPf surface coating with a layer of polyhydroxymethy-3,4-ethylenedioxythiophene nanoparticles (PHMeEDOT NPs) by in situ chemical oxidative polymerization of HMeEDOT; and (3) deposition on the previously activated and PHMeEDOT NPs coated i-PP film (i-PPf/NP) of a graft conjugated copolymer, having a poly(3,4-ethylenedioxythiophene) (PEDOT) backbone, and randomly distributed short poly(ε-caprolactone) (PCL) side chains (PEDOT-g-PCL), as a coating layer of ∼9 μm in thickness. The properties of the resulting bioplatform, which can be defined as a robust macroscopic composite coated with a "molecular composite", were investigated in detail, and both adhesion and proliferation of two human cell lines have been evaluated, as well. The results demonstrate that the incorporation of the PEDOT-g-PCL layer significantly improves cell attachment and cell growth not only when compared to i-PP but also with respect to the same platform coated with only PEDOT, constructed in a similar manner, as a control.
Collapse
Affiliation(s)
- Brenda G Molina
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Lanzalaco S, Molina BG. Polymers and Plastics Modified Electrodes for Biosensors: A Review. Molecules 2020; 25:E2446. [PMID: 32456314 PMCID: PMC7287907 DOI: 10.3390/molecules25102446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023] Open
Abstract
Polymer materials offer several advantages as supports of biosensing platforms in terms of flexibility, weight, conformability, portability, cost, disposability and scope for integration. The present study reviews the field of electrochemical biosensors fabricated on modified plastics and polymers, focusing the attention, in the first part, on modified conducting polymers to improve sensitivity, selectivity, biocompatibility and mechanical properties, whereas the second part is dedicated to modified "environmentally friendly" polymers to improve the electrical properties. These ecofriendly polymers are divided into three main classes: bioplastics made from natural sources, biodegradable plastics made from traditional petrochemicals and eco/recycled plastics, which are made from recycled plastic materials rather than from raw petrochemicals. Finally, flexible and wearable lab-on-a-chip (LOC) biosensing devices, based on plastic supports, are also discussed. This review is timely due to the significant advances achieved over the last few years in the area of electrochemical biosensors based on modified polymers and aims to direct the readers to emerging trends in this field.
Collapse
Affiliation(s)
- Sonia Lanzalaco
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ d’Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/ d’Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain
| | - Brenda G. Molina
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/ d’Eduard Maristany, 10-14, Building I, E-08019 Barcelona, Spain
- Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, Campus Diagonal Besòs (EEBE), C/ d’Eduard Maristany 10-14, Edifici IS, 08019 Barcelona, Spain
| |
Collapse
|
11
|
Jarosz T, Stolarczyk A, Glosz K. Recent Advances in the Electrochemical Synthesis of Copolymers Bearing π-Conjugated Systems and Methods for the Identification of their Structure. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200221112907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The main goal of this review is to summarise the most recent progress in the electrochemical synthesis
of copolymers from conjugated co-monomers. The main approaches to electrochemical copolymerisation
are highlighted and various trends in the development of new copolymer materials and the intended directions
of their applications are explored. The article includes a discussion of various Authors’ approaches to investigate
the structure of the obtained products, indicating the key points of interest and the importance of comprehensive
identification of the products of electrochemical polymerisation.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| | - Karolina Glosz
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Gliwice, Poland
| |
Collapse
|
12
|
Maity N, Dawn A. Conducting Polymer Grafting: Recent and Key Developments. Polymers (Basel) 2020; 12:E709. [PMID: 32210062 PMCID: PMC7182814 DOI: 10.3390/polym12030709] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/13/2022] Open
Abstract
Since the discovery of conductive polyacetylene, conductive electroactive polymers are at the focal point of technology generation and biocommunication materials. The reasons why this research never stops growing, are twofold: first, the demands from the advanced technology towards more sophistication, precision, durability, processability and cost-effectiveness; and second, the shaping of conducting polymer research in accordance with the above demand. One of the major challenges in conducting polymer research is addressing the processability issue without sacrificing the electroactive properties. Therefore, new synthetic designs and use of post-modification techniques become crucial than ever. This quest is not only advancing the field but also giving birth of new hybrid materials integrating merits of multiple functional motifs. The present review article is an attempt to discuss the recent progress in conducting polymer grafting, which is not entirely new, but relatively lesser developed area for this class of polymers to fine-tune their physicochemical properties. Apart from conventional covalent grafting techniques, non-covalent approach, which is relatively new but has worth creation potential, will also be discussed. The aim is to bring together novel molecular designs and strategies to stimulate the existing conducting polymer synthesis methodologies in order to enrich its fascinating chemistry dedicated toward real-life applications.
Collapse
Affiliation(s)
- Nabasmita Maity
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel;
| | - Arnab Dawn
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267-514, USA
| |
Collapse
|
13
|
Ghane N, Beigi MH, Labbaf S, Nasr-Esfahani MH, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020; 8:10712-10738. [DOI: 10.1039/d0tb01842b] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydrogel-based scaffold design approaches for the treatment of spinal cord injuries.
Collapse
Affiliation(s)
- Nazanin Ghane
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Mohammad-Hossein Beigi
- Department of Cellular Biotechnology Cell Science Research Center
- Royan Institute for Biotechnology
- ACECR
- Isfahan
- Iran
| | - Sheyda Labbaf
- Biomaterials Research Group
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan
- Iran
| | | | - Amirkianoosh Kiani
- Silicon Hall: Micro/Nano Manufacturing Facility
- Faculty of Engineering and Applied Science
- Ontario Tech University
- Ontario
- Canada
| |
Collapse
|
14
|
Jarosz T, Gebka K, Stolarczyk A. Recent Advances in Conjugated Graft Copolymers: Approaches and Applications. Molecules 2019; 24:E3019. [PMID: 31434298 PMCID: PMC6721028 DOI: 10.3390/molecules24163019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
The main goal of this mini review is to summarise the most recent progress in the field of conjugated graft copolymers featuring conjugation across the main chain, across side chains or across both. The main approaches to the synthesis of conjugated graft copolymers are highlighted, and the various trends in the development of new copolymer materials and the intended directions of their applications are explored.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 6 Krzywoustego Street, 44-100 Gliwice, Poland.
| | - Karolina Gebka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| |
Collapse
|
15
|
Nezhad-Mokhtari P, Ghorbani M, Roshangar L, Soleimani Rad J. A review on the construction of hydrogel scaffolds by various chemically techniques for tissue engineering. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.05.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Moquin A, Hanna R, Liang T, Erguven H, Gran ER, Arndtsen BA, Maysinger D, Kakkar A. PEG-conjugated pyrrole-based polymers: one-pot multicomponent synthesis and self-assembly into soft nanoparticles for drug delivery. Chem Commun (Camb) 2019; 55:9829-9832. [DOI: 10.1039/c9cc04000e] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A simple one-pot methodology provides easy access to amphiphilic PEG–pyrrole backbone polymers, which self-assemble into soft nanoparticles enabling efficient drug loading/sustained release and can be detected inside cells.
Collapse
Affiliation(s)
- Alexandre Moquin
- Department of Chemistry
- McGill University
- Montreal
- Canada
- Department of Pharmacology and Therapeutics
| | - Ramez Hanna
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | - Tongyue Liang
- Department of Chemistry
- McGill University
- Montreal
- Canada
| | | | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics
- McGill University
- Montreal
- Canada
| | | | - Dusica Maysinger
- Department of Pharmacology and Therapeutics
- McGill University
- Montreal
- Canada
| | - Ashok Kakkar
- Department of Chemistry
- McGill University
- Montreal
- Canada
| |
Collapse
|
17
|
Molina BG, Cianga L, Bendrea AD, Cianga I, Alemán C, Armelin E. An amphiphilic, heterografted polythiophene copolymer containing biocompatible/biodegradable side chains for use as an (electro)active surface in biomedical applications. Polym Chem 2019. [DOI: 10.1039/c9py00926d] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Design of an amphiphilic heterografted block copolymer composed of a hydrophobic core backbone and both hydrophilic side chains, able to detect the redox reaction of NADH.
Collapse
Affiliation(s)
- Brenda G. Molina
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Luminita Cianga
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi
- Romania
| | | | - Ioan Cianga
- “Petru Poni” Institute of Macromolecular Chemistry
- Iasi
- Romania
| | - Carlos Alemán
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| | - Elaine Armelin
- Departament d'Enginyeria Química
- EEBE
- Universitat Politècnica de Catalunya
- Barcelona
- Spain
| |
Collapse
|
18
|
Molina BG, Domínguez E, Armelin E, Alemán C. Assembly of Conducting Polymer and Biohydrogel for the Release and Real-Time Monitoring of Vitamin K3. Gels 2018; 4:E86. [PMID: 30674862 PMCID: PMC6318643 DOI: 10.3390/gels4040086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 01/05/2023] Open
Abstract
In this work, we report the design and fabrication of a dual-function integrated system to monitor, in real time, the release of previously loaded 2-methyl-1,4-naphthoquinone (MeNQ), also named vitamin K3. The newly developed system consists of poly(3,4-ethylenedioxythiophene) (PEDOT) nanoparticles, which were embedded into a poly-γ-glutamic acid (γ-PGA) biohydrogel during the gelling reaction between the biopolymer chains and the cross-linker, cystamine. After this, agglomerates of PEDOT nanoparticles homogeneously dispersed inside the biohydrogel were used as polymerization nuclei for the in situ anodic synthesis of poly(hydroxymethyl-3,4-ethylenedioxythiophene) in aqueous solution. After characterization of the resulting flexible electrode composites, their ability to load and release MeNQ was proven and monitored. Specifically, loaded MeNQ molecules, which organized in shells around PEDOT nanoparticles agglomerates when the drug was simply added to the initial gelling solution, were progressively released to a physiological medium. The latter process was successfully monitored using an electrode composite through differential pulse voltammetry. The fabrication of electroactive flexible biohydrogels for real-time release monitoring opens new opportunities for theranostic therapeutic approaches.
Collapse
Affiliation(s)
- Brenda G Molina
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain.
| | - Eva Domínguez
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain.
| | - Elaine Armelin
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain.
| | - Carlos Alemán
- Departament d'Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I2, 08019, Barcelona, Spain.
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. C, 08019, Barcelona, Spain.
| |
Collapse
|