Wang X, Zhao Z, Zhang M, Liang Y, Liu Y. Polyurethanes Modified by Ionic Liquids and Their Applications.
Int J Mol Sci 2023;
24:11627. [PMID:
37511385 PMCID:
PMC10380480 DOI:
10.3390/ijms241411627]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Polyurethane (PU) refers to the polymer containing carbamate groups in its molecular structure, generally obtained by the reaction of isocyanate and alcohol. Because of its flexible formulation, diverse product forms, and excellent performance, it has been widely used in mechanical engineering, electronic equipment, biomedical applications, etc. Through physical or chemical methods, ionic groups are introduced into PU, which gives PU electrical conductivity, flame-retardant, and antistatic properties, thus expanding the application fields of PU, especially in flexible devices such as sensors, actuators, and functional membranes for batteries and gas absorption. In this review, we firstly introduced the characteristics of PU in chemical and microphase structures and their related physical and chemical performance. To improve the performance of PU, ionic liquids (ILs) were applied in the processing or synthesis of PU, resulting in a new type of PU called ionic PU. In the following part of this review, we mainly summarized the fabrication methods of IL-modified PUs via physical blending and the chemical copolymerization method. Then, we summarized the research progress of the applications for IL-modified PUs in different fields, including sensors, actuators, transistors, antistatic films, etc. Finally, we discussed the future development trends and challenges faced by IL-modified PUs.
Collapse