1
|
Maahs AC, Borg GC, Ghazzali M, Soldatov DV, Rouzières M, Clérac R, Preuss KE. Supramolecular Spin Chains via Radical-Radical Contacts Stabilizing Ferromagnetic Interactions Between Heisenberg or Ising-Like Spins. Chemistry 2024; 30:e202403220. [PMID: 39352681 DOI: 10.1002/chem.202403220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Indexed: 11/08/2024]
Abstract
A new paramagnetic ligand, 4-(2'-4-(2''-furyl)-pyrimidyl)-1,2,3,5-dithiadiazolyl (furylpymDTDA) and three transition metal coordination complexes, M(hfac)2(furylpymDTDA) M=Mn, Co, Ni; hfac=1,1,1,5,5,5-hexafluoroacetylacetonato-), are reported. The solid-state structures are influenced by the geometry of the coordination sphere of the M(II) centers: trigonal (Mn) vs. octahedral (Co and Ni). While the hs-Mn(II) complex exhibits pairwise multi-centre 2-electron bonds (i. e., pancake bonds) between the planar π radical DTDA moieties, the hs-Co(II) and Ni(II) complexes crystallize with close contacts between coordinated furylpymDTDA radical ligands that define linear 1D arrays of molecular units. The magnetic data for the hs-Co(II) and Ni(II) complexes indicate ferromagnetic (FM) interactions between molecular units, apparently mediated by radical-radical contacts along the supramolecular chains. Computational analysis suggests proximity between regions of large α- and β-spin density on neighbouring molecular sites enabling FM exchange, in accordance with the McConnell I mechanism. The magnetic data for the Ni(II) complex are consistent with a Heisenberg spin chain, whereas the hs-Co(II) complex exhibits Ising-like spin chain behaviour and a magnetic phase transition to an FM ordered state at 4.6 K.
Collapse
Affiliation(s)
- Adam C Maahs
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Genievieve C Borg
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Mohamed Ghazzali
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Dmitriy V Soldatov
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - Rodolphe Clérac
- Univ. Bordeaux, CNRS, CRPP, UMR 5031, F-33600, Pessac, France
| | - Kathryn E Preuss
- Department of Chemistry, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
2
|
Wang M, Han Z, Garcia Y, Cheng P. Six-Coordinated Co II Single-Molecule Magnets: Synthetic Strategy, Structure and Magnetic Properties. Chemphyschem 2024; 25:e202400396. [PMID: 38889310 DOI: 10.1002/cphc.202400396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
The pursuit of molecule-based magnetic memory materials contributes significantly to high-density information storage research in the frame of the ongoing information technologies revolution. Remarkable progress has been achieved in both transition metal (TM) and lanthanide based single-molecule magnets (SMMs). Notably, six-coordinated CoII SMMs hold particular research significance owing to the economic and abundant nature of 3d TM ions compared to lanthanide ions, the substantial spin-orbit coupling of CoII ions, the potential for precise control over coordination geometry, and the air-stability of coordination-saturated structures. In this review, we will summarize the progress made in six-coordinated CoII SMMs, organized by their coordination geometry and molecular structure similarity. Valuable insights, principles, and new mechanism gleaned from this research and remaining issues that need to be addressed will also be discussed to guide future optimization.
Collapse
Affiliation(s)
- Mengmeng Wang
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zongsu Han
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
- Department of Chemistry, Texas A&M University, College Station, Texas, 77843, United States
| | - Yann Garcia
- Institute of Condensed Matter and Nanosciences, Molecular Chemistry, Materials and Catalysis (IMCN/MOST), Université catholique de Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Peng Cheng
- Key Laboratory of Advanced Energy Materials Chemistry (MOE) and Frontiers Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
3
|
Li Y, Zeng Z, Guo Y, Liu X, Zhang YQ, Ouyang Z, Wang Z, Liu X, Zheng YZ. Synergy of Magnetic Anisotropy and Ferromagnetic Interaction Triggering a Dimeric Cr(II) Zero-Field Single-Molecule Magnet. Inorg Chem 2023; 62:6297-6305. [PMID: 37040590 DOI: 10.1021/acs.inorgchem.2c04359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
A novel CrII-dimeric complex, [CrIIN(SiiPr3)2(μ-Cl)(THF)]2 (1), has been successfully constructed using a bulky silyl-amide ligand. Single-crystal structure analysis reveals that complex 1 exhibits a binuclear motif, with a Cr2Cl2 rhombus core, where two equivalent tetra-coordinate CrII centers in the centrosymmetric unit display quasi-square planar geometry. The crystal structure has been well simulated and explored by density functional theory calculations. The axial zero-field splitting parameter (D < 0) with a small rhombic (E) value is unambiguously determined by systematic investigations of magnetic measurements, high-frequency electron paramagnetic resonance spectroscopy, and ab initio calculations. Remarkably, ac magnetic susceptibility data unveil that 1 features slow dynamic magnetic relaxation typical of single-molecule magnet behavior with Ueff = 22 K in the absence of a dc field. This increases up to 35 K under a corresponding static field. Moreover, magnetic studies and theoretical calculations point out that a non-negligible ferromagnetic coupling (FMC) exists in the dimeric Cr-Cr units of 1. The coexistence of magnetic anisotropy and FMC contributes to the first case of CrII-based single-molecule magnets (SMMs) under zero dc field.
Collapse
Affiliation(s)
- Yuzhu Li
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Zhaopeng Zeng
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xingman Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology, School of Chemistry and School of Physics, Xi'an Jiaotong University, Xi'an, Shaanxi 710054, China
| |
Collapse
|
4
|
The Role of the Bridge in Single-Ion Magnet Behaviour: Reinvestigation of Cobalt(II) Succinate and Fumarate Coordination Polymers with Nicotinamide. INORGANICS 2022. [DOI: 10.3390/inorganics10090128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two previously synthesized cobalt(II) coordination polymers; {[Co(μ2-suc)(nia)2(H2O)2]·2H2O}n (suc = succinate(2−), nia = nicotinamide) and [Co(μ2-fum)(nia)2(H2O)2]n (fum = fumarate(2−)) were prepared and thoroughly characterized. Both complexes form 1D coordination chains by bonding of Co(nia)2(H2O)2 units through succinate or fumarate ligands while these chains are further linked through hydrogen bonds to 3D supramolecular networks. The intermolecular interactions of both complexes are quantified using Hirshfeld surface analysis and their infrared spectra, electronic spectra and static magnetic properties are confronted with DFT and state-of-the-art ab-initio calculations. Dynamic magnetic measurements show that both complexes exhibit single-ion magnet behaviour induced by a magnetic field. Since they possess very similar chemical structure, differing only in the rigidity of the bridge between the magnetic centres, this chemical feature is put into context with changes in their magnetic relaxation.
Collapse
|
5
|
Mixed-ligated cobalt phosphonates showing slow magnetic relaxation and spin-flop behavior. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Milani JLS, da Mata ÁFA, Oliveira IS, Valdo AKSM, Martins FT, Rabelo R, Cangussu D, Cano J, Lloret F, Julve M, das Chagas RP. Single-molecule magnet behaviour and catalytic properties of tetrahedral Co(II) complexes bearing chloride and 1,2-disubstituted benzimidazole as ligands. Dalton Trans 2022; 51:12258-12270. [PMID: 35895288 DOI: 10.1039/d2dt01440h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Five cobalt(II) complexes of formula [CoCl2(Ln)2] [1 with L1 = 1-benzyl-2-phenyl-1H-benzimidazole, 2 with L2 = 2-(furan-2-yl)-1-(furan-2-ylmethyl)-1H-benzimidazole, 3 with L3 = 1-(4-chlorobenzyl)-2-(4-chlorophenyl)-1H-benzimidazole, 4 with L4 = 1-(2-methoxybenzyl)-2-(2-methoxyphenyl)-1H-benzimidazole and 5 with L5 = 2-(thiophen-2-yl)-1-(thiophen-2-ylmethyl)-1H-benzimidazole] have been synthesised, spectroscopically characterised and cryomagnetically investigated. The crystal structures of 1, 3, 4 and 5 have been determined by X-ray diffraction on single crystals. Each cobalt(II) ion is four-coordinate in a distorted tetrahedral environment built by two chloride anions and two benzimidazole ligands. The neutral molecules are well separated from each other, shortest intermolecular cobalt⋯cobalt distances being greater than 9.0 Å. Static (dc) magnetic susceptibility measurements in the temperature range 2.0-300 K of 1-5 reveal the occurrence of a Curie law behaviour of magnetically non-interacting spin quadruplets in the high-temperature domain with a downturn at low temperatures due to magnetic anisotropy. The values of the D and E/D parameters for these compounds vary in the ranges -8.75 to +8.96 cm-1 and 0.00140 to 0.23, respectively. Dynamic (ac) magnetic susceptibility measurements of 1-5 show slow magnetic relaxation in the lack (1) or under the presence (1-5) of applied dc magnetic fields, a feature which is typical of single-molecule magnet behaviour (SMM). The analysis of the ac data shows that a thermally activated Orbach relaxation mechanism dominates this behaviour. Complexes 1-5 also act as efficient and highly selective eco-friendly catalysts in the coupling reaction between CO2 and epoxides to produce cyclic carbonates under solvent-free conditions. Under optimized reaction conditions, different epoxides were converted to the respective cyclic carbonate, with excellent conversions, using catalyst 4.
Collapse
Affiliation(s)
- Jorge Luiz Sônego Milani
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Departamento de Química, Universidade Federal de Juiz de Fora - UFJF, Juiz de Fora, MG, Brazil.
| | | | | | - Ana Karoline Silva Mendanha Valdo
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil. .,Instituto Federal Goiano, IF Goiano, Iporá, GO, Brazil
| | | | - Renato Rabelo
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Danielle Cangussu
- Instituto de Química, Universidade Federal de Goiás - UFG, Goiânia, GO, Brazil.
| | - Joan Cano
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Francesc Lloret
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | - Miguel Julve
- Universitat de València, Departament de Química Inorgánica/Instituto de Ciencia Molecular (ICMol), Paterna, València, Spain.
| | | |
Collapse
|
7
|
Shao D, Moorthy S, Peng P, Tang WJ, Shi L, Wang ZJ, Wei XQ, Singh SK. A Single‐Ion Magnet Tape with Five‐Coordinate Cobalt(II) Centers. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Dong Shao
- Huanggang Normal University chemistry Xianggang Road 147 438000 Huanggang CHINA
| | - Shruti Moorthy
- Indian Institute of Technology Hyderabad Chemistry INDIA
| | - Peng Peng
- Huanggang Normal University Chemistry CHINA
| | | | - Le Shi
- Jagiellonian University in Krakow: Uniwersytet Jagiellonski w Krakowie Chemistry POLAND
| | | | | | | |
Collapse
|
8
|
Zheng LN, Xu LY, Yan YT, Ding T, Feng CC. Two Cu(II) coordination polymers based on isomeric N-heterocyclic multicarboxylate ligands: Construction and magnetic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Ghosh S, Kamilya S, Mehta S, Herchel R, Kiskin M, Veber S, Fedin M, Mondal A. Effect of Ligand Chain Length for Tuning of Molecular Dimensionality and Magnetic Relaxation in Redox Active Cobalt(II) EDOT Complexes (EDOT = 3,4-Ethylenedioxythiophene). Chem Asian J 2022; 17:e202200404. [PMID: 35617522 DOI: 10.1002/asia.202200404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/17/2022] [Indexed: 11/07/2022]
Abstract
Four cobalt(II) complexes, [Co(L1)2(NCX)2(MeOH)2] (X = S (1), Se (2)) and {[Co(L2)2(NCX)2]}n (X = S (3), Se (4)) (L1 = 2,5dipyridyl-3,4,-ethylenedioxylthiophene and L2 = 2,5diethynylpyridinyl-3,4-ethylenedioxythiophene), were synthesized by incorporating ethylenedioxythiophene based redox-active luminescence ligands. All these complexes have been well characterized using single-crystal X-ray diffraction analyses, spectroscopic and magnetic investigations. Magneto-structural studies showed that 1 and 2 adopt a mononuclear structure with CoN4O2 octahedral coordination geometry while 3 and 4 have a 2D [4 x 4] rhombic grid coordination networks (CNs) where each cobalt(II) center is in a CoN6 octahedral coordination environment. Static magnetic measurements reveal that all four complexes displayed a high spin (HS) (S = 3/2) state between 2 and 280 K which was further confirmed by X-band and Q-band EPR studies. Remarkably, along with the molecular dimensionality (0D and 2D) the modification in the axial coligands lead to a significant difference in the dynamic magnetic properties of the monomers and CNs at low temperatures. All complexes display slow magnetic relaxation behavior under an external dc magnetic field. For the complexes with NCS- as coligand observed higher energy barrier for spin reversal in comparison to the complexes with NCSe- as coligand, while mononuclear complex 1 exhibited a higher energy barrier than that of CN 3. Theoretical calculations at the DFT and CASSCF level of theory have been performed to get more insight into the electronic structure and magnetic properties of all four complexes.
Collapse
Affiliation(s)
- Subrata Ghosh
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sujit Kamilya
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Sakshi Mehta
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, CZ-771 46, Olomouc, Czech Republic
| | - Mikhail Kiskin
- N. S. Kurnakov Institute of General and Inorganic Chemistry of the Russian Academy of Sciences, Leninsky Prosp. 31, 119991, Moscow, Russia
| | - Sergey Veber
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Matvey Fedin
- International Tomography Center of the Siberian Branch of the Russian Academy of Sciences, Institutskaya Str. 3a, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova Str. 1, 630090, Novosibirsk, Russia
| | - Abhishake Mondal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Sir C. V. Raman Road, 560012, Bangalore, India
| |
Collapse
|
10
|
Hu B, Xi J, Cen P, Guo Y, Ding Y, Qin Y, Zhang YQ, Liu X. A mononuclear nine-coordinated Dy(iii) complex exhibiting field-induced single-ion magnetism behaviour. RSC Adv 2022; 12:13992-13998. [PMID: 35558827 PMCID: PMC9089352 DOI: 10.1039/d2ra02260e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
A new mononuclear Dy(iii) complex, with the formula [Dy(Hcpt)3]·2H2O (1), has been successfully prepared via self-assembly between Dy(iii) ions and 2-cyano-N′-(1-(pyridin-2-yl)amido)acetyl (Hcpt) ligand. X-ray diffraction study shows that the Dy(iii) ion is nine-coordinated by three Hcpt ligands with a tridentate chelating mode, leading to an approximately monocapped square-antiprismatic (C4v) geometry. Magnetic data analysis demonstrates that 1 performs field-induced slow magnetic relaxation with a relaxation barrier of 97.90 K, due to the quantum tunneling effect suppressed upon a static dc field of 2000 Oe. To deeply understand the magnetic behaviors, the relaxation mechanisms and magneto-structure relationship are rationally discussed using ab initio calculations as well. Reaction of Dy(iii) ion with tridentate acylhydrazone ligand leads to a field-induced Dy(iii) SIM, of which the magneto-structural correlation is elucidated by the magnetic and theoretical studies.![]()
Collapse
Affiliation(s)
- Biao Hu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Yan Guo
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi Ding
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yuanyuan Qin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University Nanjing 210023 China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| |
Collapse
|
11
|
Sanchis-Perucho A, Martínez-Lillo J. A new family of one-dimensional bromo-bridged Ir(IV)-Cu(II) complexes based on the hexabromoiridate(IV) metalloligand. Dalton Trans 2022; 51:3323-3330. [PMID: 35133370 DOI: 10.1039/d1dt04384f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By using the iridium(IV) complex (NBu4)2[IrBr6] (1) as a metalloligand towards a Cu(II) metal ion, three novel Ir(IV) one-dimensional (1D) compounds of formula {IrBr5(μ-Br)Cu(Meim)4}n (2), {IrBr5(μ-Br)Cu(Viim)4}n (3) and {IrBr5(μ-Br)Cu(Buim)4}n (4), [Meim = 1-methylimidazole; Viim = 1-vinylimidazole; Buim = 1-butylimidazole] have been prepared and structurally and magnetically characterised. Compounds 2, 3 and 4 crystallise in the triclinic, monoclinic and orthorhombic crystal systems with space groups P1̄, C2/c and Pccn, respectively. Each Ir(IV) ion in 1-4 is six-coordinate and bonded to six bromide ions in a quasi regular octahedral geometry. In compounds 2-4, the CuII ion shows an axially elongated octahedron with four N atoms, from four monodentate imidazole derivative ligands, that form the equatorial plane and two bromide ions that occupy the axial positions. Cu(II) and Ir(IV) ions are linked through bridging bromide anions generating Ir(IV)-Cu(II) chains [with intrachain Cu(II)⋯Ir(IV) distances covering the range of ca. 5.10-5.42 Å]. In the crystal lattice of 2 and 3 are observed significant intermolecular Ir-Br⋯Br-Ir contacts and π⋯Br interactions, which organize arrangements that contribute to stabilizing the crystal structure of these Ir(IV)-based compounds. DC magnetic susceptibility measurements reveal that 1 displays magnetic behaviour typical of noninteracting mononuclear centres with S = 1/2. Besides, antiferromagnetic behaviour (2 and 3) and ferromagnetic (4) exchange coupling occur between the Cu(II) and Ir(IV) metal ions in the one-dimensional bromo-bridged compounds 2-4. Moreover, the study of the AC magnetic susceptibility shows a field-induced slow relaxation of the magnetisation for 1, indicating the presence of the single-ion magnet (SIM) phenomenon for the magnetically isolated hexabromoiridate(IV) complex.
Collapse
Affiliation(s)
- Adrián Sanchis-Perucho
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, C/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| |
Collapse
|
12
|
Qin Y, Wu Y, Luo S, Xi J, Guo Y, Ding Y, Zhang J, Liu X. Modulation of the magnetic dynamics of pentagonal-bipyramidal Co( ii) complexes by fine-tuning the coordination microenvironment. Dalton Trans 2022; 51:17089-17096. [DOI: 10.1039/d2dt02345h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dynamic magnetic behaviours of a series of Co(ii) SIMs with pentagonal-bipyramidal geometry have been modulated by an alteration of the ligand field effect.
Collapse
Affiliation(s)
- Yuanyuan Qin
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuewei Wu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Jing Xi
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yan Guo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yi Ding
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
13
|
Li Y, Xi J, Ferrando-Soria J, Zhang YQ, Wang W, Song Y, Guo Y, Pardo E, Liu X. Slow magnetic relaxation in a trigonal-planar mononuclear Fe(II) complex. Dalton Trans 2022; 51:8266-8272. [DOI: 10.1039/d2dt00899h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on a β-diketiminate ligand, an iron(III) tetrahedral high-spin complex, [LFeIII(Cl)2] (1), and an iron(II) high-spin triangular planar complex, [LFeIICl] (2), have been synthesized and structurally characterized. Also, complex 1...
Collapse
|
14
|
Jiménez JR, Xu B, El Said H, Li Y, von Bardeleben J, Chamoreau LM, Lescouëzec R, Shova S, Visinescu D, Alexandru MG, Cano J, Julve M. Field-induced single ion magnet behaviour of discrete and one-dimensional complexes containing [bis(1-methylimidazol-2-yl)ketone]-cobalt(II) building units. Dalton Trans 2021; 50:16353-16363. [PMID: 34734603 DOI: 10.1039/d1dt02441h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe herein the first examples of six-coordinate CoII single-ion magnets (SIMs) based on the β-diimine Mebik ligand [Mebik = bis(1-methylimidazol-2-yl)ketone]: two mononuclear [CoII(Rbik)2L2] complexes and one mixed-valence {CoIII2CoII}n chain of formulas [CoII(Mebik)(H2O)(dmso)(μ-NC)2CoIII2(μ-2,5-dpp)(CN)6]n·1.4nH2O (3) [L = NCS (1), NCSe (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine (3)]. Two bidentate Mebik molecules plus two monodentate N-coordinated pseudohalide groups in cis positions build somewhat distorted octahedral surroundings around the high-spin cobalt(II) ions in 1 and 2. The diamagnetic [CoIII2(μ-2,5-dpp)(CN)8]2- metalloligand coordinates the paramagnetic [CoII(Mebik)(H2O)(dmso)]2+ complex cations in a bis-monodentate fashion to afford neutral zigzag heterobimetallic chains in 3. Ab initio calculations, and cryomagnetic dc (2.0-300 K) and ac (2.0-12 K) measurements as well as EPR spectroscopy for 1-3 show the existence of magnetically isolated high-spin cobalt(II) ions with D values of 59.84-89.90 (1), 66.32-93.90 (2) and 70.40-127.20 cm-1 (3) and field-induced slow relaxation of the magnetization, being thus new examples of SIMs with transversal magnetic anisotropy. The analysis of their relaxation dynamics reveals that the relaxation of the magnetization occurs by the Raman (with values of the n parameter covering the range 6.0-6.8) and direct spin-phonon processes.
Collapse
Affiliation(s)
- Juan-Ramón Jiménez
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Buqing Xu
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Hasnaa El Said
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Yanling Li
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Jurgen von Bardeleben
- Sorbonne Université, Institut des NanoSciences de Paris, UMR CNRS 7588, 4 place Jussieu, F-75252 Paris, France
| | - Lise-Marie Chamoreau
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Rodrigue Lescouëzec
- Sorbonne Université, Institut Parisien de Chimie Moléculaire, UMR CNRS 8232, 4 place Jussieu, F-75252 Paris, France.
| | - Sergiu Shova
- "Petru Poni" Institute of Macromolecular Chemistry, Romanian Academy, Aleea Grigore Ghica Vodă 41-A, RO-700487 Iasi, Romania
| | - Diana Visinescu
- Coordination and Supramolecular Chemistry Laboratory, "Ilie Murgulescu" Institute of Physical Chemistry, Romanian Academy, Splaiul Independentei 202, Bucharest 060021, Romania
| | - Maria-Gabriela Alexandru
- Department of Inorganic Chemistry, Physical Chemistry and Electrochemistry, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1-7 Gh. Polizu Street, 011061 Bucharest, Romania.
| | - Joan Cano
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46990 Paterna, Valencia, Spain.
| | - Miguel Julve
- Departament de Química Inorgànica/Instituto de Ciencia Molecular (ICMol), Universitat de València, C/Catedrático José Beltrán 2, 46990 Paterna, Valencia, Spain.
| |
Collapse
|
15
|
Ceglarska M, Böhme M, Neumann T, Plass W, Näther C, Rams M. Magnetic investigations of monocrystalline [Co(NCS) 2(L) 2] n: new insights into single-chain relaxations. Phys Chem Chem Phys 2021; 23:10281-10289. [PMID: 33903874 DOI: 10.1039/d1cp00719j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A large single crystal of a compound from the family of coordination polymer [Co(NCS)2(L)2]n chains was synthesized and its magnetic properties are reported. [Co(NCS)2(4-(3-phenylpropyl)pyridine)2]n is ferromagnetic with Tc = 3.39 K. Single-ion ab initio calculations predict an almost Ising-type magnetic anisotropy and the direction of the magnetic easy-axis nearly along the Co-Npy bond of the apical pyridine-based co-ligand. Both predictions are confirmed by single-crystal magnetic measurements. The magnetic relaxation of the single crystal sample significantly differs from the powder sample data, and clearly shows the presence of two separate relaxation processes. The process dominant below 3.2 K demonstrates a single chain magnet (SCM) behaviour, with a crossover between single-wall and two-wall processes, in spite of the fact that the system is ferromagnetically ordered. The faster process that dominates just below Tc is attributed to spin waves. Micromagnetic Monte Carlo simulations of the investigated compound show that the dipolar field cancels for some chains located at the border between 3-dimensional domains. Such chains are responsible for the measured ac signal, and demonstrate the SCM behaviour. The quantitative analysis of the SCM relaxation time is supported by preparing and examining a corresponding diamagnetically diluted compound, [CoxCd1-x(NCS)2(4-(3-phenylpropyl)pyridine)2]n (x = 0.013), which behaves as a field-induced single-ion magnet. The relaxation pathways for single Co(ii) spins are determined to be Raman, direct, and quantum tunneling processes, which were included in an improved approach to describe the magnetic relaxation in the Co(ii)-based SCM compound.
Collapse
Affiliation(s)
- Magdalena Ceglarska
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Tristan Neumann
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Christian Näther
- Institut für Anorganische Chemie, Christian-Albrechts-Universität, Max-Eyth-Straße 2, 24118 Kiel, Germany
| | - Michał Rams
- Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland.
| |
Collapse
|
16
|
Palacios-Corella M, García-López V, Sánchez-Sánchez C, Clemente-Juan JM, Clemente-León M, Coronado E. Insertion of single-ion magnets based on mononuclear Co(II) complexes into ferromagnetic oxalate-based networks. Dalton Trans 2021; 50:5931-5942. [PMID: 33949535 DOI: 10.1039/d1dt00595b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 1 : 2 and 1 : 1 Co(ii) complexes of the L ligand (L = 6-(3,5-diamino-2,4,6-triazinyl)2,2'-bipyridine) with formulas [CoII(L)2](ClO4)2·0.5MeCN·Et2O (1) and [CoII(L)(CH3CN)2(H2O)](ClO4)2·MeCN (2) have been prepared. The structural and magnetic characterization of the two compounds shows that they contain octahedral high-spin Co(ii) and present a field-induced slow relaxation of the magnetization. 1 has been inserted into a bimetallic oxalate-based network leading to a novel achiral 3D compound of formula [CoII(L)2][MnIICrIII(ox)3]2·(solvate) (3) exhibiting ferromagnetic ordering below 4.6 K. EPR measurements suggest a weak magnetic coupling between the two sublattices.
Collapse
Affiliation(s)
- M Palacios-Corella
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - V García-López
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - C Sánchez-Sánchez
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - J M Clemente-Juan
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - M Clemente-León
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| | - E Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Spain.
| |
Collapse
|
17
|
Kharwar AK, Mondal A, Konar S. Alignment of axial anisotropy of a mononuclear hexa-coordinated Co(ii) complex in a lattice shows improved single molecule magnetic behavior over a 2D coordination polymer having a similar ligand field. Dalton Trans 2021; 50:2832-2840. [DOI: 10.1039/d0dt04065g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The parallel orientation of the anisotropic axes minimizes the transverse component and slow down the relaxation process and results in a higher energy barrier in 0D complex as compared to 2D framework where anisotropic axes are randomly oriented.
Collapse
Affiliation(s)
- Ajit Kumar Kharwar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Arpan Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research Bhopal
- Bhouri
- India
| |
Collapse
|
18
|
Sanchis-Perucho A, Orts-Arroyo M, Camús-Hernández J, Rojas-Dotti C, Escrivà E, Lloret F, Martínez-Lillo J. Hexahalorhenate( iv) salts of protonated ciprofloxacin: antibiotic-based single-ion magnets. CrystEngComm 2021. [DOI: 10.1039/d1ce01337h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the crystal lattice of two novel ReIV compounds, the paramagnetic [ReCl6]2− and [ReBr6]2− anions are well separated from each other through two protonated forms of the antibiotic ciprofloxacin. These compounds behave as single-ion magnets (SIMs).
Collapse
Affiliation(s)
- Adrián Sanchis-Perucho
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Marta Orts-Arroyo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Javier Camús-Hernández
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Carlos Rojas-Dotti
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - Emilio Escrivà
- Departament de Química Inorgànica, Facultat de Química, Universitat de València, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, València, Spain
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica, Universitat de València, c/ Catedrático José Beltrán 2, 46980, Paterna, València, Spain
| |
Collapse
|
19
|
Wu Y, Xi J, Xiao T, Ferrando-Soria J, Ouyang Z, Wang Z, Luo S, Liu X, Pardo E. Switching of easy-axis to easy-plane anisotropy in cobalt( ii) complexes. Inorg Chem Front 2021. [DOI: 10.1039/d1qi01208h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In situ microcalorimetry monitored assembly and coligand induced switching of the magnetic anisotropy sign have been observed in a β-diketonate-Co(ii) system.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Tongtong Xiao
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Zhongwen Ouyang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhenxing Wang
- Wuhan National High Magnetic Field Center & School of Physics, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Shuchang Luo
- College of Chemical Engineering, Guizhou University of Engineering Science, Bijie 551700, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
- China State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| |
Collapse
|
20
|
Portolés-Gil N, Gómez-Coca S, Vallcorba O, Marbán G, Aliaga-Alcalde N, López-Periago A, Ayllón JA, Domingo C. Single molecule magnets of cobalt and zinc homo- and heterometallic coordination polymers prepared by a one-step synthetic procedure. RSC Adv 2020; 10:45090-45104. [PMID: 35516268 PMCID: PMC9058601 DOI: 10.1039/d0ra09132d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/07/2020] [Indexed: 11/28/2022] Open
Abstract
The synthesis of 1D cobalt and zinc monometallic and heterometallic coordination polymers (CPs) was carried out applying one-pot synthetic methods by using either supercritical carbon dioxide or ethanol as the solvent. A collection of four 1D CPs were thus obtained by the combination of a metal (or a mixture of metals) with the linker 1,4-bis(4-pyridylmethyl)benzene. The used metallic complexes were zinc and cobalt hexafluoroacetylacetonate, which can easily incorporate pyridine ligands in the coordination sphere of the metal centre. Independently of the used solvent, the precipitated phases involving Zn(ii), i.e., homometallic CP of Zn(ii) and bimetallic CP of Zn(ii)/Co(ii), were isostructural. Contrarily, homometallic CPs of Co(ii) were precipitated as an isostructural phase of Zn(ii) or with a different structure, depending on the used solvent. All the structures were resolved by XRD using synchrotron radiation. In addition, the magnetic properties of the new CPs involving Co(ii) were studied. Remarkably, at low temperatures with the application of an external field, they acted as field-induced single molecule magnets. One-pot synthesis of heterometallic (Zn(ii)/Co(ii)) nodes directing CP magnetic behaviour to single molecule magnets.![]()
Collapse
Affiliation(s)
- Núria Portolés-Gil
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| | - Silvia Gómez-Coca
- Departament de Química Inorgànica i Orgànica, Institut de Recerca de Química Teòrica i Computacional, Universitat de Barcelona Diagonal 645 08028 Barcelona Spain
| | - Oriol Vallcorba
- ALBA Synchrotron Light Source 08290 Cerdanyola del Vallés Spain
| | - Gregorio Marbán
- Instituto de Ciencia y Tecnología del Carbono (INCAR-CSIC) 33011 Oviedo Spain
| | - Núria Aliaga-Alcalde
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain .,ICREA, Institució Catalana de Recerca i Estudis Avançats Passeig Lluis Companys 23 08010 Barcelona Spain
| | - Ana López-Periago
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| | - José A Ayllón
- Universidad Autónoma de Barcelona, Dept. Química Campus UAB 08193 Bellaterra Spain
| | - Concepción Domingo
- Instituto de Ciencia de Materiales de Barcelona (CSIC) Campus UAB 08193 Bellaterra Spain
| |
Collapse
|
21
|
Wu CM, Tsai JE, Lee GH, Yang EC. Slow magnetization relaxation in a tetrahedrally coordinated mononuclear Co(II) complex exclusively ligated with phenanthroline ligands. Dalton Trans 2020; 49:16813-16820. [PMID: 33180075 DOI: 10.1039/d0dt03481a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper describes a tetrahedral mononuclear Co(ii) complex [CoL2](ClO4)2 (1) in which L = 2,9-diphenyl-1,10-phenanthroline. The structure of 1, which was determined by single crystal X-ray diffraction, indicates that it exists in the triclinic space group P1[combining macron]. Magnetic property studies were conducted by reduced magnetization measurements, ab initio calculations and X-band EPR experiments, the results of which revealed a large zero-field splitting, with D ∼ -45.9 cm-1. The Arrhenius equation indicates that the kinetic energy barrier of 1 is Ueff = 46.9 cm-1. This study describes a very rare case of a Co(ii) single ion magnet (SIM) that is purely tetrahedrally coordinated by pyridine like ligands.
Collapse
Affiliation(s)
- Chen-Ming Wu
- Department of Chemistry, Fu-Jen Catholic University, Hsinchuang, New Taipei City, 24205, Taiwan, Republic of China.
| | | | | | | |
Collapse
|
22
|
Highly selective and sensitive detection towards cationic Cu2+ and Fe3+ contaminants via an In-MOF based dual-responsive fluorescence probe. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108273] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Synthesis and characterization of four 2D-3D Zn/Cd/Pb coordination polymers assembled by diverse SBUs and based on isomeric N-heterocyclic multicarboxylate ligands. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
X-ray Structure and Magnetic Properties of Heterobimetallic Chains Based on the Use of an Octacyanidodicobalt(III) Complex as Metalloligand. MAGNETOCHEMISTRY 2020. [DOI: 10.3390/magnetochemistry6040066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The assembly of [Co2III(μ-2,5-dpp)(CN)8]2− anions and [MII(CH3OH)2(DMSO)2]2+ cations resulted into the formation of two heterobimetallic 1D coordination polymers of formula [MII(CH3OH)2(DMSO)2(μ-NC)2Co2III(μ-2,5-dpp)(CN)6]n·4nCH3OH [M = CoII (1)/FeII (2) and 2,5-dpp = 2,5-bis(2-pyridyl)pyrazine. The [Co2III(μ-2,5-dpp)(CN)8]2− metalloligand coordinates the paramagnetic [MII(CH3OH)2(DMSO)2]2+ complex cations, in a bis-monodentate fashion, to give rise to neutral heterobimetallic chains. Cryomagnetic dc (1.9–300 K) and ac (2.0–13 K) magnetic measurements for 1 and 2 show the presence of Co(II)HS (1) and Fe(II)HS (2) ions (HS – high-spin), respectively, with D values of +53.7(5) (1) and −5.1(3) cm−1 (2) and slow magnetic relaxation for 1, this compound being a new example of SIM with transversal magnetic anisotropy. Low-temperature Q-band EPR study of 1 confirms that D value is positive, which reveals the occurrence of a strong asymmetry in the g-tensors and allows a rough estimation of the E/D ratio, whereas 2 is EPR silent. Theoretical calculations by CASSCF/NEVPT2 on 1 and 2 support the results from magnetometry and EPR. The analysis of the ac magnetic measurements of 1 shows that the relaxation of M takes place in the ground state under external magnetic dc fields through dominant Raman and direct spin-phonon processes.
Collapse
|
25
|
Zhang C, Ma X, Cen P, Jin X, Yang J, Zhang YQ, Ferrando-Soria J, Pardo E, Liu X. A series of lanthanide(III) metal-organic frameworks derived from a pyridyl-dicarboxylate ligand: single-molecule magnet behaviour and luminescence properties. Dalton Trans 2020; 49:14123-14132. [PMID: 33020782 DOI: 10.1039/d0dt02736g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The reactions of LnIII ions with a versatile pyridyl-decorated dicarboxylic acid ligand lead to the formation of a series of novel three-dimensional (3D) Ln-MOFs, [Ln3(pta)4(Hpta)(H2O)]·xH2O (Ln = Dy (1), Eu (2), Gd (3), Tb (4), H2pta = 2-(4-pyridyl)-terephthalic acid, x = 6 for 1, 2.5 for 2, 1.5 for 3 and 2 for 4). The Ln3+ ions act as nine-coordinated muffin spheres, linking to each other to generate trinuclear {Ln3(OOC)6N2} SBUs, which are further extended to be interesting 3D topological architectures. To the best of our knowledge, the Dy-MOF exhibits zero-field single-molecule magnet (SMM) behaviour with the largest effective energy barrier among the previously reported 3D MOF-based Dy-SMMs. The combined analyses of a diluted sample (1@Y) and ab initio calculations demonstrate that the thermally assisted slow relaxation is mainly attributed to the single-ion magnetism. Furthermore, fluorescence measurements reveal that H2pta can sensitize EuIII and TbIII characteristic luminescence.
Collapse
Affiliation(s)
- Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China.
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Emilio Pardo
- Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMOL), Universidad de Valencia, Paterna 46980, Valencia, Spain
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Centre for Experimental Chemistry Education, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. and State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
26
|
Wu Y, Zhou Y, Cao S, Cen P, Zhang YQ, Yang J, Liu X. Lanthanide Metal-Organic Frameworks Assembled from Unexplored Imidazolylcarboxylic Acid: Structure and Field-Induced Two-Step Magnetic Relaxation. Inorg Chem 2020; 59:11930-11934. [PMID: 32805992 DOI: 10.1021/acs.inorgchem.0c01855] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of 3D homologous metal-organic frameworks, [M(H0.5L)2] [M = Dy (1), Ho (2), Yb (3), Sm (4), Gd (5), and Y (6); H2L = 5-(1H-imidazol-1-yl)isophthalic acid], were isolated. In these complexes, the metal centers behave as hexacoordinated environments with distorted octahedral geometries, which is unusual in the lanthanide series, linking to each other and producing a fascinating 3D architecture. Magnetically, 1 features a field-driven dual-magnetic relaxation, which is rarely observed in high-dimensional coordination polymers. Analysis on the dilution sample (1@Y) and ab initio calculation unveil that the thermally assisted slow relaxation is mostly caused by the single-ion magnetism of DyIII itself.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yuting Zhou
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Senni Cao
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University, Yinchuan 750021, China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for Numerical Simulation of Large Scale Complex Systems, School of Physical Science and Technology, Nanjing Normal University, Nanjing 210023, China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China
| |
Collapse
|
27
|
Paul A, Viciano-Chumillas M, Puschmann H, Cano J, Manna SC. Field-induced slow magnetic relaxation in mixed valence di- and tri-nuclear Co II-Co III complexes. Dalton Trans 2020; 49:9516-9528. [PMID: 32608402 DOI: 10.1039/d0dt00588f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel mixed valence CoII-CoIII complexes, namely [CoIICoIII(L1)(ab)(mb)2(H2O)]·dmf (1) and [CoCoII(L2)4(H2O)4]·2H2O (2) [H2L1 = (E)-2-((1-hydroxybutan-2-ylimino)methyl)-6-methoxyphenol, ab = 2-amino-butan-1-ol anion, mb = p-methyl benzoate, H2L2 = 3-((2-hydroxy-3-methoxy-benzylidene)-amino)-propionic acid, and dmf = N,N-dimethyl-formamide], were synthesized and characterized by single crystal X-ray diffraction and magnetic studies at low temperature. The structure determination reveals that both complexes belong to the monoclinic system with P21/c (1) and I2/a (2) space groups. Complex 1 is a dinuclear CoIIICoII compound with distorted octahedral cobalt centers showing different coordination environments. In 2, a bent trinuclear CoCoII complex, the coordination environments around the two terminal CoIII sites are alike, whereas they are different in the central CoII ion. Alternating current/direct current (ac/dc) magnetic studies revealed that both complexes show field-induced slow magnetic relaxation. The dc magnetic susceptibility and magnetization data were analyzed with the following Hamiltonianwhere D and E are the axial and rhombic zero-field splitting (zfs) parameters, respectively, and a good agreement between experimental and simulated results was found using the parameters g⊥ = 2.585, g∥ = 2.437, D = +98.1 cm-1, E/D = 0.008 and F = 8.2× 10-5 for 1 and g⊥ = 2.580, g∥ = 2.580, D = +55.4 cm-1, and E/D = 0.000 for 2.
Collapse
Affiliation(s)
- Aparup Paul
- Department of Chemistry, Vidyasagar University, Midnapore 721102, West Bengal, India.
| | | | | | | | | |
Collapse
|
28
|
Zhao Y, Xu Y, Xu B, Cen P, Song W, Duan L, Liu X. A dual-sensitized luminescent europium(iii) complex as a photoluminescent probe for selectively detecting Fe 3. RSC Adv 2020; 10:24244-24250. [PMID: 35516177 PMCID: PMC9055115 DOI: 10.1039/d0ra03821k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
A new luminescent EuIII complex, namely [Eu2(BTFA)4(OMe)2(dpq)2] (1), in which BTFA = 3-benzoyl-1,1,1-trifluoroacetone and dpq = dipyrido [3,2-d:2',3'-f] quinoxaline, has been designed and synthesized by employing two different ligands as sensitizers. Crystal structure analysis reveals that complex 1 is composed of dinuclear EuIII units crystallized in the monoclinic P1̄ space group. Notably, 1 exhibits high thermal stability up to 270 °C and excellent water stability. The photoluminescence property of the complex is investigated. Further studies show 1 can recognize Fe3+ ions with high selectivity from mixed metal ions in aqueous solution through the luminescence quenching phenomenon. Furthermore, the recyclability and stability of 1 after sensing experiments are observed to be adequate. By virtue of the superior stability, detection efficiency, applicability and reusability, the as-prepared EuIII complex can be a promising fluorescent material for practical sensing.
Collapse
Affiliation(s)
- Yafeng Zhao
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Yanhong Xu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Bing Xu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture & Technology Xi'an 710055 China
| | - Peipei Cen
- College of Public Health and Management, Ningxia Medical University Yinchuan 750021 China
| | - Weiming Song
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Lijuan Duan
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
| | - Xiangyu Liu
- College of Agriculture, College of Chemistry and Chemical Engineering, Ningxia University Yinchuan 750021 China
- State Key Laboratory of Coordination Chemistry, Nanjing University Nanjing 210023 China
| |
Collapse
|
29
|
Three new cobalt(II) coordination polymers based on 1,3-bis(4-pyridyl)propane: Syntheses, structures and magnetic properties. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.107912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Modak R, Mondal B, Sikdar Y, Banerjee J, Colacio E, Oyarzabal I, Cano J, Goswami S. Slow magnetic relaxation and water oxidation activity of dinuclear Co IICo III and unique triangular Co IICo IICo III mixed-valence complexes. Dalton Trans 2020; 49:6328-6340. [PMID: 32342075 DOI: 10.1039/d0dt00036a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Construction of efficient multifunctional materials is one of the greatest challenges of our time. We herein report the magnetic and catalytic characterization of dinuclear [CoIIICoII(HL1)2(EtOH)(H2O)]Cl·2H2O (1) and trinuclear [CoIIICoII2(HL2)2(L2)Cl2]·3H2O (2) mixed valence complexes. Relevant structural features of the complexes have been mentioned to correlate with their magnetic and catalytic properties. Unique structural features, especially in terms of significant distortions around the CoII centre(s), prompted us to test both spin-orbit coupling (SOC) and zero field splitting (ZFS) methodologies for the systems. The positive sign of D values has been established from X-band EPR spectra recorded in the 5-40 K temperature range and reaffirmed by CAS/NEVPT2 calculations. ZFS tensors are also extracted for the compounds along with CoIIGaIII and CoIIZnIICoIII model species. Interestingly, 1 shows slow relaxation of magnetization below 6.5 K in the presence of a 1000 Oe external dc field with two relaxation processes (Ueff = 37.0 K with τ0 = 1.57 × 10-8 s for the SR process and Ueff = 7 K with τ0 = 1.66 × 10-6 s for the FR process). As mixed valence cobalt complexes with various nuclearities are central to the quest for water oxidation catalysts, we were prompted to explore their features and to our surprise, water oxidation ability has been realized for both 1 and 2 with significant nuclearity control.
Collapse
Affiliation(s)
- Ritwik Modak
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Biswajit Mondal
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Yeasin Sikdar
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Jayisha Banerjee
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| | - Enrique Colacio
- Department of Inorganic Chemistry, Faculty of Sciences, University of Granada, 18071 Granada, Spain.
| | - Itziar Oyarzabal
- Departamento de Química Aplicada, Facultad de Química, UPV/EHU, Paseo Manuel Lardizabal, n° 3, 20018, Donostia-San Sebastián, Spain
| | - Joan Cano
- Fundació General de la Universitat de València (FGUV), Universitat de València, 46980 Paterna, València, Spain.
| | - Sanchita Goswami
- Department of Chemistry, University of Calcutta, 92, A. P. C. Road, Kolkata 700009, India.
| |
Collapse
|
31
|
Huang XC, Li JX, Chen YZ, Wang WY, Xu R, Tao JX, Shao D, Zhang YQ. Tuning Magnetic Anisotropy in a Class of Co(II) Bis(hexafluoroacetylacetonate) Complexes. Chem Asian J 2020; 15:1469-1477. [PMID: 32202396 DOI: 10.1002/asia.201901625] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/21/2020] [Indexed: 11/10/2022]
Abstract
Tuning the magnetic anisotropy of metal ions remains highly interesting in the design of improved single-molecule magnets (SMMs). We herein report synthetic, structural, magnetic, and computational studies of four mononuclear CoII complexes, namely [Co(hfac)2 (MeCN)2 ] (1), [Co(hfac)2 (Spy)2 ] (2), [Co(hfac)2 (MBIm)2 ] (3), and [Co(hfac)2 (DMF)2 ] (4) (MeCN=acetonitrile, hfac=hexafluoroacetylacetone, Spy=4-styrylpyridine, MbIm=5,6-dimethylbenzimidazole, DMF=N,N-dimethylformamide), with distorted octahedral geometry constructed from hexafluoroacetylacetone (hfac) and various axial ligands. By a building block approach, complexes 2-4 were synthesized by recrystallization of the starting material of 1 from various ligands containing solution. Magnetic and theoretical studies reveal that 1-4 possess large positive D values and relative small E parameters, indicating easy-plane magnetic anisotropy with significant rhombic anisotropy in 1-4. Dynamic alternative current (ac) magnetic susceptibility measurements indicate that these complexes exhibit slow magnetic relaxation under external fields, suggesting field-induced single-ion magnets (SIMs) of 1-4. These results provide a promising platform to achieve fine tuning of magnetic anisotropy through varying the axial ligands based on Co(II) bis(hexafluoroacetylacetonate) complexes.
Collapse
Affiliation(s)
- Xing-Cai Huang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Jia-Xin Li
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| | - Yong-Zhi Chen
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Wen-Yan Wang
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Rui Xu
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Jin-Xia Tao
- School of Chemistry and Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| | - Dong Shao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Yi-Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
32
|
Cen P, Liang C, Duan L, Wang M, Tian D, Liu X. A robust 3D In–MOF with an imidazole acid ligand as a fluorescent sensor for sensitive and selective detection of Fe 3+ ions. NEW J CHEM 2020. [DOI: 10.1039/d0nj03793a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A stable In(iii)-MOF with a versatile 5-(1H-imidazol-1-yl)isophthalic acid ligand can be used as a fluorescent sensor for Fe3+ detection.
Collapse
Affiliation(s)
- Peipei Cen
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Chen Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Lijuan Duan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Meilin Wang
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Danian Tian
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
33
|
Duan L, Zhang C, Cen P, Jin X, Liang C, Yang J, Liu X. Stable Ln-MOFs as multi-responsive photoluminescence sensors for the sensitive sensing of Fe3+, Cr2O72−, and nitrofuran. CrystEngComm 2020. [DOI: 10.1039/c9ce01995b] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Stable Ln(iii)-MOFs with a versatile 2-(4-pyridyl)-terephthalic acid ligand can be used as a multifunctional sensing platform for Fe3+, Cr2O72−, and nitrofuran detection.
Collapse
Affiliation(s)
- Lijuan Duan
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Chengcheng Zhang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Peipei Cen
- College of Public Health and Management
- Ningxia Medical University
- Yinchuan 750021
- China
| | - Xiaoyong Jin
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Chen Liang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- Ningxia University
- Yinchuan 750021
- China
| |
Collapse
|
34
|
Wu Y, Xi J, Yang J, Song W, Luo S, Wang Z, Liu X. Coligand effects on the architectures and magnetic properties of octahedral cobalt( ii) complexes with easy-axis magnetic anisotropy. CrystEngComm 2020. [DOI: 10.1039/c9ce01871a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coligand effects lead to two mononuclear octahedral Co(ii) complexes exhibiting easy-axis magnetic anisotropies and distinct magnetic properties.
Collapse
Affiliation(s)
- Yuewei Wu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jing Xi
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Weiming Song
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuchang Luo
- School of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
35
|
Palacios MA, Díaz-Ortega IF, Nojiri H, Suturina EA, Ozerov M, Krzystek J, Colacio E. Tuning magnetic anisotropy by the π-bonding features of the axial ligands and the electronic effects of gold( i) atoms in 2D {Co(L) 2[Au(CN) 2] 2} n metal–organic frameworks with field-induced single-ion magnet behaviour. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00996b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
AuI atoms play an important role in determining the anisotropy of CoII nodes in 2D AuI–CoII field-induced SIMs.
Collapse
Affiliation(s)
- María A. Palacios
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Ismael F. Díaz-Ortega
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| | - Hiroyuki Nojiri
- Institute for Materials Research
- Tohoku University
- Sendai
- Japan
| | - Elizaveta A. Suturina
- Department of Chemistry
- University of Bath
- Wessex House 1.28
- University of Bath
- Bath BA2 7AY
| | - Mykhaylo Ozerov
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - J. Krzystek
- National High Magnetic Field Laboratory
- Florida State University
- Tallahassee
- USA
| | - Enrique Colacio
- Departamento de Química Inorgánica
- Facultad de Ciencias
- Universidad de Granada
- 18071 Granada
- Spain
| |
Collapse
|
36
|
Zhang SL, Li SS, Li XC, Hou XH, Wang ZC, Ji XY, Chen L. An aromatic selenite bridged Mn( iii) chain compound showing the coexistence of single chain magnet and metamagnet behaviour. NEW J CHEM 2020. [DOI: 10.1039/d0nj04763e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new chain compound consisting of Mn2(salen)2 building blocks bridged by aromatic selenite was synthesized and characterized.
Collapse
Affiliation(s)
- Shao-Liang Zhang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Shan-Shan Li
- School of Environment and Planning
- Liaocheng University
- Liaocheng
- China
| | - Xin-Chao Li
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Xian-Hui Hou
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Zhi-Cheng Wang
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Xiao-Ying Ji
- Institution of Functional Organic Molecules and Materials
- School of Chemistry and Chemical Engineering
- Liaocheng University
- Liaocheng
- China
| | - Lei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| |
Collapse
|
37
|
Saber MR, Singh MK, Dunbar KR. Geometrical control of the magnetic anisotropy in six coordinate cobalt complexes. Chem Commun (Camb) 2020; 56:8492-8495. [DOI: 10.1039/d0cc03238g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Combined experimental and ab initio calculations attribute the suppression of quantum tunneling and zero-field SMM behavior in the trigonal prismatic [CoTppy]PF6 (2), evidenced by hysteresis up to 3 K, to the enforced rigidity and axial geometry.
Collapse
Affiliation(s)
- Mohamed R. Saber
- Department of Chemistry
- Texas A&M University
- College Station
- USA
- Chemistry Department
| | - Mukesh K. Singh
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| | - Kim R. Dunbar
- Department of Chemistry
- Texas A&M University
- College Station
- USA
| |
Collapse
|
38
|
Cen P, Liu X, Zhang YQ, Ferrando-Soria J, Xie G, Chen S, Pardo E. Modulating magnetic dynamics through tailoring the terminal ligands in Dy2 single-molecule magnets. Dalton Trans 2020; 49:808-816. [DOI: 10.1039/c9dt03993g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The alternation of terminal ligands leads to distinct arrangements of anisotropy axes and magnetic interactions in two Dy2 complexes which present different dynamic magnetic behaviors.
Collapse
Affiliation(s)
- Peipei Cen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980
- Spain
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- China
| | - Emilio Pardo
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980
- Spain
| |
Collapse
|
39
|
Massoud SS, Perez ZE, Courson JR, Fischer RC, Mautner FA, Vančo J, Čajan M, Trávníček Z. Slow magnetic relaxation in penta-coordinate cobalt(ii) field-induced single-ion magnets (SIMs) with easy-axis magnetic anisotropy. Dalton Trans 2020; 49:11715-11726. [DOI: 10.1039/d0dt02338h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two penta-coordinate [Co(Ln)(NCS)]ClO4 with substituted pyridyl based bispyrazolyl ligands have been structurally characterized. The complexes show an easy-axis magnetic anisotropy, large rhombicity and slow relaxation of magnetization.
Collapse
Affiliation(s)
- Salah S. Massoud
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
- Department of Chemistry
| | - Zoe E. Perez
- Department of Chemistry
- University of Louisiana at Lafayette
- Lafayette
- USA
| | | | - Roland C. Fischer
- Institut für Anorganische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Franz A. Mautner
- Institut für Physikalische and Theoretische Chemie
- Technische Universität Graz
- A-8010 Graz
- Austria
| | - Ján Vančo
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Michal Čajan
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| | - Zdeněk Trávníček
- Regional Centre of Advanced Technologies and Materials
- Division of Biologically Active Complexes and Molecular Magnets
- Palacký University in Olomouc
- CZ-783 71 Olomouc
- Czech Republic
| |
Collapse
|
40
|
Tian D, Ding R, Chen B, Cen P. A new Co(II) coordination polymer with the 2-(4-pyridyl)-terephthalate ligand: synthesis, crystal structure and magnetic properties. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2019. [DOI: 10.1515/znb-2019-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
A new Co(II) complex, [Co(pta)(H2O)2]
n
(1), with the 2-(4-pyridyl)-terephthalate ligand (pta2−) has been synthesized and structurally and magnetically characterized. Single crystal X-ray analysis indicates that the unique Co(II) ion in the asymmetric unit of 1 displays stretched octahedral geometry. Compound 1 presents a bimetallic layer structure which is further expanded to a 3D supramolecular network through hydrogen bonding interactions. Magnetic measurements have revealed the temperature-dependent existence of antiferromagnetic and ferromagnetic interactions in compound 1.
Collapse
Affiliation(s)
- Danian Tian
- College of Public Health and Management, College of Basic Medical Sciences , Ningxia Medical University , Yinchuan 750021 , P.R. China
| | - Runmei Ding
- College of Public Health and Management, College of Basic Medical Sciences , Ningxia Medical University , Yinchuan 750021 , P.R. China
| | - Bingbing Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering , Ningxia University , Yinchuan 750021 , P.R. China
| | - Peipei Cen
- College of Public Health and Management, College of Basic Medical Sciences , Ningxia Medical University , Yinchuan 750021 , P.R. China
| |
Collapse
|
41
|
Ma X, Chen B, Zhang YQ, Yang J, Shi Q, Ma Y, Liu X. Enhancing single-molecule magnet behaviour through decorating terminal ligands in Dy2 compounds. Dalton Trans 2019; 48:12622-12631. [DOI: 10.1039/c9dt02758k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The alternation of terminal substituents on ligands results in different dynamic magnetic behaviors in two Dy2 single-molecule magnets.
Collapse
Affiliation(s)
- Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Bingbing Chen
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- China
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Quan Shi
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| |
Collapse
|
42
|
Sanchis-Perucho A, Martínez-Lillo J. Ferromagnetic exchange interaction in a new Ir(iv)–Cu(ii) chain based on the hexachloroiridate(iv) anion. Dalton Trans 2019; 48:13925-13930. [DOI: 10.1039/c9dt02884f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The new chloro-bridged heterobimetallic IrIVCuII chain of formula {IrCl5(μ-Cl)Cu(viim)4}n [viim = 1-vinylimidazole] is the first reported compound based on the CuII and IrIV metal ions.
Collapse
Affiliation(s)
- Adrián Sanchis-Perucho
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica
- Universitat de València
- Paterna
- Spain
| | - José Martínez-Lillo
- Instituto de Ciencia Molecular (ICMol)/Departament de Química Inorgànica
- Universitat de València
- Paterna
- Spain
| |
Collapse
|
43
|
Liu X, Ma X, Yang J, Luo S, Wang Z, Ferrando-Soria J, Ma Y, Shi Q, Pardo E. Solvent-induced single-crystal-to-single-crystal transformation and tunable magnetic properties of 1D azido-Cu(ii) chains with a carboxylate bridge. Dalton Trans 2019; 48:11268-11277. [DOI: 10.1039/c9dt02031d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The solvent effect leads to structural transformation and tunable magnetism of chain-like azido-copper coordination polymers.
Collapse
Affiliation(s)
- Xiangyu Liu
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Xiufang Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jinhui Yang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Shuchang Luo
- School of Chemical Engineering
- Guizhou University of Engineering Science
- Bijie
- China
| | - Zheng Wang
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Jesús Ferrando-Soria
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980, Valencia
- Spain
| | - Yulong Ma
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering
- National Demonstration Center for Experimental Chemistry Education
- College of Chemistry and Chemical Engineering
- Ningxia University
- Yinchuan 750021
| | - Quan Shi
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- China
| | - Emilio Pardo
- Departamento de Química Inorgánica
- Instituto de Ciencia Molecular (ICMOL)
- Universidad de Valencia
- Paterna 46980, Valencia
- Spain
| |
Collapse
|