1
|
Qi R, Chen Q, Liu L, Ma Z, Pan D, Wang H, Li Z, Wang C, Xu Z. Copper-catalyzed asymmetric C(sp 3)-H cyanoalkylation of glycine derivatives and peptides. Nat Commun 2023; 14:3295. [PMID: 37280209 DOI: 10.1038/s41467-023-38871-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
Alkylnitriles play important roles in many fields because of their unique electronic properties and structural characteristics. Incorporating cyanoalkyl with characteristic spectroscopy and reactivity properties into amino acids and peptides is of special interest for potential imaging and therapeutic purposes. Here, we report a copper-catalyzed asymmetric cyanoalkylation of C(sp3)-H. In the reactions, glycine derivatives can effectively couple with various cycloalkanone oxime esters with high enantioselectivities, and the reaction can be applied to the late-stage modification of peptides with good yields and excellent stereoselectivities, which is useful for modern peptide synthesis and drug discovery. The mechanistic studies show that the in situ formed copper complex by the coordination of glycine derivatives and chiral phosphine Cu catalyst can not only mediate the single electronic reduction of cycloalkanone oxime ester but also control the stereoselectivity of the cyanoalkylation reaction.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China
| | - Qiao Chen
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Liangyu Liu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zijian Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Da Pan
- School of Pharmacy, Lanzhou University, 730000, Lanzhou, China
| | - Hongying Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Zhixuan Li
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China
| | - Chao Wang
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| | - Zhaoqing Xu
- Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, 730000, Lanzhou, China.
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 730000, Lanzhou, China.
| |
Collapse
|
2
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
3
|
Engl S, Reiser O. Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chem Soc Rev 2022; 51:5287-5299. [PMID: 35703016 DOI: 10.1039/d2cs00303a] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atom transfer radical addition (ATRA) reactions are linchpin transformations in synthetic chemistry enabling the atom-economic difunctionalization of alkenes. Thereby a rich chemical space can be accessed through smart combinations of simple starting materials. Originally, these reactions required toxic and hazardous radical initiators or harsh thermal activation and thus, the recent resurgence and dramatic evolution of photocatalysis appeared as an attractive complement to catalyze such transformations in a mild and energy-efficient manner. Initially, this technique relied primarily on complexes of precious metals, such as ruthenium or iridium, to absorb the visible light. Hence, copper photocatalysis rapidly developed into a powerful alternative, not just from an economic point of view. Originally considered to be disadvantageous as a pathway for deactivation by quenching their excited state, the dynamic nature of Cu-complexes enables them to undergo facile ligand exchange and thus opens up special opportunities for transformations utilizing their inner-coordination sphere. Moreover, the ability of Cu(II), representing a persistent radical, to capture incipient radicals offers the possibility to access heretofore elusive two-component, but also three-component, ATRA reactions, not feasible with ruthenium or iridium catalysts. In this regard, the idea of using Cu(I)-substrate assemblies as active photocatalysts is an emerging field to achieve such 3-component coupling reactions even under enantioselective control, which is reflected by an increasing number of reports being covered in this review.
Collapse
Affiliation(s)
- Sebastian Engl
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Oliver Reiser
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
4
|
Tang S, Liu T, Liu J, He J, Hong Y, Zhou H, Liu YL. Recent Advances in Photoinduced Perfluoroalkylation Using Perfluoroalkyl Halides as the Radical Precursors. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1719900] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
AbstractPerfluoroalkylation is one of the most important methods for the introduction of multiple fluorine atoms into organic molecules in a single step. The use of photoinduced technology is a common strategy that uses the outstanding oxidation or reduction ability of a photoredox catalyst in its excited state to generate perfluoroalkyl radicals from perfluoroalkyl halides. The perfluoroalkyl radicals thus obtained can undergo various subsequent reactions under mild conditions, such as ATRA reaction of alkenes, alkynes, and 1,n-enynes; carbo/heteroperfluoroalkylation of alkenes and isocyanides; and C–H/F perfluoroalkylation. This allows the expedient incorporation of various perfluoroalkyl groups into the molecular motifs. Perfluorinated functional groups are still in demand in pharmaceutical and material sciences; this short review discusses recent advances in photoinduced perfluoroalkylation methodologies and technologies.1 Introduction2 Photocatalytic Perfluoroalkylation of Alkenes, Alkynes, and 1,n- Enynes3 Photocatalytic Carboperfluoroalkylation or Heteroperfluoroalkylation of Alkenes, Alkynes, Isocyanides, and Hydrazones4 Photocatalytic ATRE Reactions of Alkenes with Perfluoroalkyl Halides5 Photocatalytic C–X (X = H, F) Bond Perfluoroalkylation6 Continuous Flow Strategies in Photocatalytic Perfluoroalkylation7 Conclusions
Collapse
|
5
|
Zheng L, Wang Y, Cai L, Guo W. Progress in C—CF 3/C—N Bond Formation Reactions of Alkenes Involving in Free Radicals. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202208026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Tang K, Chen Y, Guan J, Wang Z, Chen K, Xiang H, Yang H. Visible-light-promoted olefinic trifluoromethylation of enamides with CF 3SO 2Na. Org Biomol Chem 2021; 19:7475-7479. [PMID: 34612366 DOI: 10.1039/d1ob01410b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light-promoted olefinic C-H trifluoromethylation of enamides was developed by employing cheap and stable Langlois' reagent as the CF3 source. A series of β-CF3 enamides were obtained in moderate to good yields with high E-isomer selectivity under mild conditions. Preliminary mechanistic studies suggest that molecular oxygen acts as the terminal oxidant for this net oxidative process, and the E isomer selectivity could be well explained by a base-assisted deprotonation of the cation intermediate.
Collapse
Affiliation(s)
- Kai Tang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| | | | | | | | | | | | | |
Collapse
|
7
|
Photoinduced copper-catalyzed dual decarboxylative coupling of α,β-unsaturated carboxylic acids with redox-active esters. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
8
|
Huang HG, Li W, Zhong D, Wang HC, Zhao J, Liu WB. Trifluoromethanesulfonyl azide as a bifunctional reagent for metal-free azidotrifluoromethylation of unactivated alkenes. Chem Sci 2021; 12:3210-3215. [PMID: 34164089 PMCID: PMC8179360 DOI: 10.1039/d0sc06473d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vicinal trifluoromethyl azides have widespread applications in organic synthesis and drug development. However, their preparation is generally limited to transition-metal-catalyzed three-component reactions. We report here a simple and metal-free method that rapidly provides these building blocks from abundant alkenes and trifluoromethanesulfonyl azide (N3SO2CF3). This unprecedented two-component reaction employs readily available N3SO2CF3 as a bifunctional reagent to concurrently incorporate both CF3 and N3 groups, which avoids the use of their expensive and low atom economic precursors. A wide range of functional groups, including bio-relevant heterocycles and amino acids, were tolerated. Application of this method was further demonstrated by scale-up synthesis (5 mmol), product derivatization to CF3-containing medicinal chemistry motifs, as well as late-stage modification of natural product and drug derivatives. A two-component and metal-free azidotrifluoromethylation of alkenes is realized using readily synthesized trifluoromethanesulfonyl azide (N3SO2CF3) as a bifunctional reagent for both CF3 and N3 groups.![]()
Collapse
Affiliation(s)
- Hong-Gui Huang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Weishuang Li
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Dayou Zhong
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Hu-Chong Wang
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Jing Zhao
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| | - Wen-Bo Liu
- Sauvage Center for Molecular Sciences, Engineering Research Center of Organosilicon Compounds & Materials (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University 299 Bayi Road Wuhan 430072 Hubei China
| |
Collapse
|
9
|
Lin L, Liang Q, Kong X, Chen Q, Xu B. Electrochemical Tandem Fluoroalkylation-Cyclization of Vinyl Azides: Access to Trifluoroethylated and Difluoroethylated N-Heterocycles. J Org Chem 2020; 85:15708-15716. [PMID: 33226809 DOI: 10.1021/acs.joc.0c02213] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal- and oxidant-free electrochemical strategy for radical fluoroalkylation of vinyl azides was developed. The reaction was carried out under mild conditions by using inexpensive and bench-stable RfSO2Na (Rf = CF3, CF2H) as fluorination reagents. Depending on the starting material, both the electrochemical radical cyclization and dearomatization products could be obtained. This method provides a green and safe approach to synthesize fluorinated nitrogen heterocycles.
Collapse
Affiliation(s)
- Long Lin
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Qi Liang
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianqiang Kong
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.,School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou 213032, China
| | - Qianjin Chen
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Bo Xu
- Key Lab of Science and Technology of Eco-Textile, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| |
Collapse
|
10
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
11
|
Israr M, Xiong H, Li Y, Bao H. Copper‐Catalyzed Enantioselective Cyano(Fluoro)Alkylation of Alkenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000230] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Muhammad Israr
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Haigen Xiong
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of MatterUniversity of Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou, Fujian 350002 People's Republic of China
- University of Chinese Academy of Sciences Beijing 100049 People's Republic of China
| |
Collapse
|
12
|
Wang P, Zhu S, Lu D, Gong Y. Intermolecular Trifluoromethyl-Hydrazination of Alkenes Enabled by Organic Photoredox Catalysis. Org Lett 2020; 22:1924-1928. [DOI: 10.1021/acs.orglett.0c00287] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Songsong Zhu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Dengfu Lu
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Yuefa Gong
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| |
Collapse
|
13
|
Zhang Y, Sun Y, Chen B, Xu M, Li C, Zhang D, Zhang G. Copper-Catalyzed Photoinduced Enantioselective Dual Carbofunctionalization of Alkenes. Org Lett 2020; 22:1490-1494. [DOI: 10.1021/acs.orglett.0c00071] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yajing Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Youwen Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Meichen Xu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Chen Li
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Dayong Zhang
- Institute of Pharmaceutical Science, China Pharmaceutical University, Nanjing 210009, China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| |
Collapse
|
14
|
Gao F, Meng FX, Du JY, Zhang S, Huang HL. One-Step Synthesis of Trifluoroethylated Chromones via Radical Cascade Cyclization-Coupling of 2-(Allyloxy)arylaldehydes. European J Org Chem 2019. [DOI: 10.1002/ejoc.201901636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fei Gao
- Institute of Molecular Medicine; Renji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Fan-Xiao Meng
- College of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng Shandong China
| | - Ji-Yuan Du
- College of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng Shandong China
| | - Shiyan Zhang
- Institute of Molecular Medicine; Renji Hospital, School of Medicine; Shanghai Jiao Tong University; 200127 Shanghai China
| | - Hong-Li Huang
- College of Chemistry and Chemical Engineering; Liaocheng University; 252059 Liaocheng Shandong China
| |
Collapse
|
15
|
Wu Y, Zhang Y, Yang Z, Jiao J, Zheng X, Feng W, Zhang M, Cheng H, Tang L. Dual Roles of tert-Butyl Nitrite in the Transition Metal- and External Oxidant-Free Trifluoromethyloximation of Alkenes. CHEMSUSCHEM 2019; 12:3960-3966. [PMID: 31359635 DOI: 10.1002/cssc.201901856] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/29/2019] [Indexed: 06/10/2023]
Abstract
By employing tert-butyl nitrite as both nitrogen source and oxidant, the trifluoromethyloximation of alkenes proceeds smoothly in a free-radical process. The developed difunctionalization reaction enables practical and efficient synthesis of a wide range of α-CF3 ketoximes in moderate yields with excellent regioselectivity. This method features the use of readily available and stable alkenes as substrates and inexpensive CF3 SO2 Na as a CF3 reagent, no involvement of transition metals or external oxidant, and room-temperature conditions. Moreover, a scale-up of the reaction, further transformation of the products into various valuable CF3 -containing compounds, and removal of the trifluoromethyl group are readily achieved.
Collapse
Affiliation(s)
- Ya Wu
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Yanli Zhang
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Jingchao Jiao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Xiaoke Zheng
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Weisheng Feng
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Mengsha Zhang
- School of Pharmacy &, Collaborative Innovation Center for Respiratory Disease Diagnosis and Treatment &, Chinese Medicine Development of Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P. R. China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| | - Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang, 464000, P. R. China
| |
Collapse
|
16
|
Xia ZH, Gao ZH, Dai L, Ye S. Visible-Light-Promoted Oxo-difluoroalkylation of Alkenes with DMSO as the Oxidant. J Org Chem 2019; 84:7388-7394. [PMID: 31083945 DOI: 10.1021/acs.joc.9b01077] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Visible-light-promoted oxo-difluoroalkylation (acetylation and acetamidation) of alkenes with dimethyl sulfoxide as both the solvent and the oxidant was developed, affording the corresponding α,α-difluoro-γ-ketoacetates and acetamides in modest yields. Both terminal and internal alkenes worked well for the reaction. This reaction features simple starting materials, a green oxidant, mild reaction conditions, and highly functional products.
Collapse
Affiliation(s)
- Zi-Hao Xia
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| | - Zhong-Hua Gao
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Lei Dai
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| | - Song Ye
- Beijing National Laboratory for Molecular Science, Key Laboratory of Molecular Recognition and Functional, CAS Research/Education Center for Excellence in Molecular Sciences , Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , P. R. China.,University of Chinese Academy of Science , Beijing 100049 , P. R. China
| |
Collapse
|
17
|
Li M, Zhu X, Qiu Y, Han Y, Xia Y, Wang C, Li X, Wei W, Liang Y. Metal‐Free Promoted CF
2
/CF
3
‐Difunctionalization of Unactivated Alkenes. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xin‐Yu Zhu
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yi‐Feng Qiu
- College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 People's Republic of China
| | - Ya‐Ping Han
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yu Xia
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Cui‐Tian Wang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Xue‐Song Li
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Wan‐Xu Wei
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| | - Yong‐Min Liang
- State Key Laboratory of Applied Organic Chemistry, School of Chemistry and Chemical EngineeringLanzhou University Lanzhou 730000 People's Republic of China
| |
Collapse
|
18
|
Guo Q, Wang M, Peng Q, Huo Y, Liu Q, Wang R, Xu Z. Dual-Functional Chiral Cu-Catalyst-Induced Photoredox Asymmetric Cyanofluoroalkylation of Alkenes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00209] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Quanping Guo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Mengran Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Qiang Peng
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Yumei Huo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, 222 South Tianshui Road, Lanzhou 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| | - Zhaoqing Xu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, 199 West Donggang Road, Lanzhou 730000, China
| |
Collapse
|
19
|
Wang C, Shang Q, Qi R, Chai H, Wang H, Guo M, Xu Z. Cu-Catalyzed cyanoalkylation of electron-deficient alkenes with unactivated alkyl bromides. Chem Commun (Camb) 2019; 55:9991-9994. [DOI: 10.1039/c9cc04432a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We here report the photoinduced Cu-catalyzed cyanoalkylation of electron-deficient alkenes by using alkyl bromides as alkylation reagents.
Collapse
Affiliation(s)
- Chao Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Qinyu Shang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Rupeng Qi
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Hongli Chai
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Hongying Wang
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Mengzhun Guo
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| | - Zhaoqing Xu
- The Institute of Pharmacology
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province
- School of Basic Medical Science
- Lanzhou University
- Lanzhou
| |
Collapse
|
20
|
Wu X, Qiao K, Qin H, Zhang D, Gao D, Yang Z, Fang Z, Guo K. Silver(i)-mediated oxidative C(sp3)–H amination of ethers with azole derivatives under mild conditions. Org Chem Front 2019. [DOI: 10.1039/c9qo00644c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A silver(i)-mediated oxidative N–H/C(sp3)–H coupling of NH-azoles with ethers has been developed.
Collapse
Affiliation(s)
- Xiaoyu Wu
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Hong Qin
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Di Gao
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zhao Yang
- School of Engineering
- China Pharmaceutical University
- Nanjing 211198
- China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- State Key Laboratory of Materials-Oriented Chemical Engineering
| |
Collapse
|
21
|
He J, Chen C, Fu GC, Peters JC. Visible-Light-Induced, Copper-Catalyzed Three-Component Coupling of Alkyl Halides, Olefins, and Trifluoromethylthiolate to Generate Trifluoromethyl Thioethers. ACS Catal 2018; 8:11741-11748. [PMID: 31396434 DOI: 10.1021/acscatal.8b04094] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinduced, copper-catalyzed coupling reactions are emerging as a powerful method for generating Csp3-Y (Y = C or heteroatom) bonds from alkyl electrophiles and nucleophiles. Corresponding three-component couplings of alkyl electrophiles, olefins, and nucleophiles have the potential to generate an additional Csp3-Y bond and to efficiently add functional groups to both carbons of an olefin, which serves as a readily available linchpin. In this report, we establish that a variety of electrophiles and a trifluoromethylthiolate nucleophile can add across an array of olefins (including styrenes and electron-poor olefins) in the presence of CuI/binap and blue-LED irradiation, thereby generating trifluoromethyl thioethers in good yield. The process tolerates a wide range of functional groups, and an initial survey of other nucleophiles (i.e., bromide, cyanide, and azide) suggests that this three-component coupling strategy is versatile. Mechanistic studies are consistent with a photoexcited Cu(I)/binap/SCF3 complex serving as a reductant to generate an alkyl radical from the electrophile, which likely reacts in turn with the olefin and a Cu(II)/SCF3 complex to afford the coupling product.
Collapse
Affiliation(s)
- Jian He
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Caiyou Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C. Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jonas C. Peters
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|