1
|
Preux Y, Jiao W, Eyer LN, Waitaiki-Curry H, Cameron SA, Painter GF, Anderson RJ. Tandem Condensation-Cycloaddition of Propargylic Amines with α-Azido Ketones and β-Alkoxy-γ-Azido Enones. J Org Chem 2024; 89:11631-11640. [PMID: 39081027 DOI: 10.1021/acs.joc.4c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
α-Azido ketones and their vinylogous relatives β-alkoxy-γ-azido enones are versatile building blocks for constructing diverse heterocyclic products, but are prone to azide decomposition. Here, we report their condensation with propargylic amines and investigate the fate of the intermediate azido-enamine condensation products, both experimentally and theoretically. Efficient intramolecular cycloaddition was observed for electron-poor azide substrates, and a range of diversely substituted [1,2,3]triazolo[1,5-a]pyrazine products is reported. For electron-rich substrates, azide decomposition predominated. Computational modeling of possible pathways from the azido-enamine intermediates revealed two alternative mechanisms for azide decomposition, which were consistent with observed side products.
Collapse
Affiliation(s)
- Yoan Preux
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Wanting Jiao
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Lukas N Eyer
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Hemi Waitaiki-Curry
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Scott A Cameron
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Gavin F Painter
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| | - Regan J Anderson
- Ferrier Research Institute, Victoria University of Wellington, Lower Hutt, 5010, New Zealand
| |
Collapse
|
2
|
Mairhofer C, Naderer D, Waser M. Tetrabutylammonium iodide-catalyzed oxidative α-azidation of β-ketocarbonyl compounds using sodium azide. Beilstein J Org Chem 2024; 20:1510-1517. [PMID: 38978746 PMCID: PMC11228824 DOI: 10.3762/bjoc.20.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/10/2024] Open
Abstract
We herein report the oxidative α-azidation of carbonyl compounds by using NaN3 in the presence of dibenzoyl peroxide catalyzed by tetrabutylammonium iodide (TBAI). By utilizing these readily available bulk chemicals a variety of cyclic β-ketocarbonyl derivatives can be efficiently α-azidated under operationally simple conditions. Control experiments support a mechanistic scenario involving in situ formation of an ammonium hypoiodite species which first facilitates the α-iodination of the pronucleophile, followed by a phase-transfer-catalyzed nucleophilic substitution by the azide. Furthermore, we also show that an analogous α-nitration by using NaNO2 under otherwise identical conditions is possible as well.
Collapse
Affiliation(s)
- Christopher Mairhofer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - David Naderer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstrasse 69, 4040 Linz, Austria
| |
Collapse
|
3
|
Jiang LF, Wu SH, Jiang YX, Ma HX, He JJ, Bi YB, Kong DY, Cheng YF, Cheng X, Deng QH. Enantioselective copper-catalyzed azidation/click cascade reaction for access to chiral 1,2,3-triazoles. Nat Commun 2024; 15:4919. [PMID: 38858346 PMCID: PMC11164697 DOI: 10.1038/s41467-024-49313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/03/2024] [Indexed: 06/12/2024] Open
Abstract
Chiral 1,2,3-triazoles are highly attractive motifs in various fields. However, achieving catalytic asymmetric click reactions of azides and alkynes for chiral triazole synthesis remains a significant challenge, mainly due to the limited catalytic systems and substrate scope. Herein, we report an enantioselective azidation/click cascade reaction of N-propargyl-β-ketoamides with a readily available and potent azido transfer reagent via copper catalysis, which affords a variety of chiral 1,2,3-triazoles with up to 99% yield and 95% ee under mild conditions. Notably, chiral 1,5-disubstituted triazoles that have not been accessed by previous asymmetric click reactions are also prepared with good functional group tolerance.
Collapse
Affiliation(s)
- Ling-Feng Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Shao-Hua Wu
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yu-Xuan Jiang
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Hong-Xiang Ma
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Jia-Jun He
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yang-Bo Bi
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - De-Yi Kong
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Yi-Fei Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Xuan Cheng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China
| | - Qing-Hai Deng
- The Education Ministry Key Laboratory of Resource Chemistry, Joint International Research Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, and Shanghai Frontiers Science Center of Biomimetic Catalysis, Shanghai Normal University, 200234, Shanghai, China.
| |
Collapse
|
4
|
Jiang B, Fan TG, Ran YS, Shen YT, Zhang C, Jiang W, Li YM. Oxidative cascade cyclization of N-arylacrylamides with TMSN 3. Org Biomol Chem 2024; 22:1186-1193. [PMID: 38214570 DOI: 10.1039/d3ob01951a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
An azido-radical-triggered cyclization of N-(o-cyanobiaryl)acrylamides with TMSN3via a C(sp3)-N/C(sp2)-C(sp3)/C(sp2)-N bond formation cascade is described. This reaction features mild conditions and high bond-forming efficiency, making it an efficient method for the construction of azide-substituted pyridophenanthridines.
Collapse
Affiliation(s)
- Bo Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Yu-Song Ran
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Yun-Tao Shen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Cui Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Wei Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China.
| |
Collapse
|
5
|
Liang Y, Huang H, Huang N, Liao L, Zhao X. Catalytic Enantioselective Construction of Chiral γ-Azido Nitriles through Nitrile Group-Promoted Electrophilic Reaction of Alkenes. Org Lett 2023; 25:6757-6762. [PMID: 37656917 DOI: 10.1021/acs.orglett.3c02650] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023]
Abstract
An efficient approach for the construction of enantioenriched γ-azido nitriles through the chiral sulfide-catalyzed asymmetric electrophilic thioazidation of allylic nitriles is disclosed. A wide range of electron-deficient and -rich aryl, heterocyclic aryl, and alkyl substituents are suitable on the substrates of allylic nitriles. The regio-, enantio-, and diastereoselectivities of the reactions are excellent. As versatile platform molecules, the obtained chiral γ-azido nitriles can be easily converted into high-value-added chiral molecules that are not easily accessed by other methods. Control experiments revealed that the allylic nitrile group is important for control of the reactivity and enantioselectivity of the reaction leading to a broad substrate scope.
Collapse
Affiliation(s)
- Yaoyu Liang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Hongtai Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Nan Huang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
6
|
Pandey RP, Maheshwari M, Hussain N. Synthesis of chiral azides from C-2 substituted glycals and their transformation to C3-glycoconjugates and α-triazolo-naphthalene polyol. Chem Commun (Camb) 2023; 59:9900-9903. [PMID: 37498546 DOI: 10.1039/d3cc02423g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Lewis-acid-mediated highly regio- and stereoselective chiral azidation of C2-substituted glycals is reported. This strategy provides excellent, scalable, and mild reaction conditions for the stereoselective introduction of the azido group at the C3-position of various C2-substituted glycals. The reactivity of the various glycals reveals that the electron-withdrawing behavior of the C2-group is crucial for C3-selectivity. The newly installed azido group was used as a handle for the synthesis of various C3-glycoconjugates and α-chiral azido naphthalene polyols.
Collapse
Affiliation(s)
- Ram Pratap Pandey
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Mittali Maheshwari
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Nazar Hussain
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
7
|
Yu Y, Yuan Y, Ye KY. Electrochemical synthesis of vicinal azidoacetamides. Chem Commun (Camb) 2023; 59:422-425. [PMID: 36514900 DOI: 10.1039/d2cc06246a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vicinal diamines are an important structural motif in bioactive natural products and pharmaceutical intermediates. Herein, an environmentally friendly and efficient electrochemical approach to azidoacetamides, as one variant of vicinal diamines, has been developed. This reaction features mild conditions and broad substrate scope, without the use of any chemical oxidant or transition-metal catalysts. The obtained vicinal azidoacetamides could be conveniently converted into various other vicinal diamine derivatives.
Collapse
Affiliation(s)
- Yi Yu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Yaofeng Yuan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| | - Ke-Yin Ye
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
8
|
Li X, Song JN, Karmakar S, Lu Y, Lv Y, Liao P, Liu Z. Transition-metal-free azide insertion of N-triftosylhydrazones using a non-metallic azide source. Chem Commun (Camb) 2022; 58:13783-13786. [PMID: 36441144 DOI: 10.1039/d2cc05442f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Benzylic azides, an important class of active organic synthons, were synthesized in high yields from the easily accessible N-triftosylhydrazones with stable TMSN3 under mild conditions. The reaction features high efficiency and excellent functional group tolerance, as illustrated by gram-scale synthesis and the synthesis of drug-like molecules. Mechanistic studies reveal that azidation occurs at the electron-deficient diazo-carbon via the elimination of N2 by an azide ion.
Collapse
Affiliation(s)
- Xueyu Li
- Department of Chemistry Northeast Normal University, Changchun 130024, China.
| | - Jin-Na Song
- School of Life Science, Jilin University, Changchun 130012, China.
| | - Swastik Karmakar
- Basirhat College, A/w West Bengal State University, Basirhat 743412, West Bengal, India
| | - Ying Lu
- Department of Chemistry Northeast Normal University, Changchun 130024, China.
| | - Ye Lv
- Department of Chemistry Northeast Normal University, Changchun 130024, China.
| | - Peiqiu Liao
- Department of Chemistry Northeast Normal University, Changchun 130024, China.
| | - Zhaohong Liu
- Department of Chemistry Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
9
|
Cao M, Wang H, Ma Y, Tung CH, Liu L. Site- and Enantioselective Manganese-Catalyzed Benzylic C-H Azidation of Indolines. J Am Chem Soc 2022; 144:15383-15390. [PMID: 35951549 DOI: 10.1021/jacs.2c07089] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A manganese-catalyzed highly site- and enantioselective benzylic C-H azidation of indolines has been described. The practical method is applicable for azidation of a tertiary benzylic C-H bond with good functional group tolerance, allowing facile access to structurally diverse tertiary azide-containing indolines in high efficiency with excellent site-, chemo-, and enantioselectivity. The generality of the method was further demonstrated by site- and enantioselective azidation of the secondary benzylic C-H bond for a range of secondary azide-containing indolines. The benzylic C-H azidation method allows to straightforwardly and enantioselectively install a variety of nitrogen-based functional groups and diverse bioactive molecules at the C3 position of indoline frameworks through post-azidation manipulations. Gram-scale synthesis was also demonstrated, further highlighting the synthetic potential of the method. Mechanistic studies by combined experiments and computations elucidated the reaction mechanism and origins of stereoselectivity.
Collapse
Affiliation(s)
- Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Hongliang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Yingang Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
10
|
Smith SN, Trujillo C, Connon SJ. Catalytic, asymmetric azidations at carbonyls: achiral and meso-anhydride desymmetrisation affords enantioenriched γ-lactams. Org Biomol Chem 2022; 20:6384-6393. [PMID: 35861618 DOI: 10.1039/d2ob01040b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An unprecedented organocatalytic process involving the asymmetric addition of azide to meso-anhydrides has been developed, promoted by novel sulfamide-substituted Cinchona alkaloid-based catalysts. Readily available glutaric anhydrides can be smoothly converted to enantioenriched hemi-acyl azides and from there to either γ-amino acids or γ-lactams.
Collapse
Affiliation(s)
- Simon N Smith
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Cristina Trujillo
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| | - Stephen J Connon
- Trinity Biomedical Sciences Institute, School of Chemistry, The University of Dublin, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
11
|
Teloxa SF, Mellado‐Hidalgo M, Kennington SCD, Romea P, Urpí F, Aullón G, Font‐Bardia M. Direct and Asymmetric Aldol Reactions of
N
‐Azidoacetyl‐1,3‐thiazolidine‐2‐thione Catalyzed by Chiral Nickel(II) Complexes. A New Approach to the Synthesis of β‐Hydroxy‐α‐Amino Acids. Chemistry 2022; 28:e202200671. [PMID: 35504848 PMCID: PMC9401014 DOI: 10.1002/chem.202200671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 12/02/2022]
Abstract
A direct and asymmetric triisopropylsilyltrifluoromethanesulfonate (TIPSOTf) mediated aldol reaction of N‐azidoacetyl‐1,3‐thiazolidine‐2‐thione with aromatic aldehydes catalyzed by a chiral nickel(II)‐Tol‐BINAP complex has been developed (BINAP=2,2’‐bis(diphenylphosphino)‐1,1’‐binaphthyl). The catalytic protocol gives the corresponding anti α‐azido‐β‐silyloxy adducts with outstanding stereocontrol and in high yields. Theoretical calculations account for the stereochemical outcome of the reaction and lay the foundations for a mechanistic model. In turn, the easy removal of the thiazolidinethione yields a wide array of enantiomerically pure derivatives in a straightforward and efficient manner. Such a noteworthy character of the heterocyclic scaffold together with the appropriate manipulation of the azido group open a new route to the synthesis of di‐ and tripeptide blocks containing a β‐aryl‐β‐hydroxy‐α‐amino acid.
Collapse
Affiliation(s)
- Saul F. Teloxa
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Miguel Mellado‐Hidalgo
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Stuart C. D. Kennington
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Pedro Romea
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Fèlix Urpí
- Department of Inorganic and Organic Chemistry Section of Organic Chemistry and Institut de Biomedicina de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Gabriel Aullón
- Department of Inorganic and Organic Chemistry Section of Inorganic Chemistry and Institut de Química Teòrica i Computacional de la Universitat de Barcelona Universitat de Barcelona Carrer Martí i Franqués 1–11 08028 Barcelona (Catalonia Spain
| | - Mercè Font‐Bardia
- X-Ray Diffraction Unit. CCiTUB Universitat de Barcelona Carrer Solé i Sabarís 1–3 08028 Barcelona (Catalonia Spain
| |
Collapse
|
12
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022; 61:e202203673. [PMID: 35471589 PMCID: PMC9324837 DOI: 10.1002/anie.202203673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 11/09/2022]
Abstract
A highly regio- and diastereoselective nucleophilic substitution at the quaternary carbon stereocenter of cyclopropyl ketones and cyclopropyl carbinol derivatives using TMSBr, DMPSCl and TMSN3 as nucleophiles has been developed. A variety of acyclic tertiary alkyl bromides, chlorides and azides were therefore prepared with excellent diastereopurity. The substitution occurs at the most substituted quaternary carbon center in a stereoinvertive manner, which may be attributed to the existence of a bicyclobutonium species.
Collapse
Affiliation(s)
- Xu Chen
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| | - Ilan Marek
- Schulich Faculty of ChemistryTechnion-Israel Institute of TechnologyTechnion CityHaifa3200009Israel
| |
Collapse
|
13
|
Chen X, Marek I. Stereoinvertive Nucleophilic Substitution at Quaternary Carbon Stereocenters of Cyclopropyl Ketones and Ethers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xu Chen
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| | - Ilan Marek
- Schulich Faculty of Chemistry Technion-Israel Institute of Technology Technion City Haifa 3200009 Israel
| |
Collapse
|
14
|
Late‐Stage Dehydroxyazidation of Alcohols Promoted by Trifunctional Hypervalent Azido‐Iodine(III) Reagents. Chemistry 2022; 28:e202200272. [DOI: 10.1002/chem.202200272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Indexed: 11/10/2022]
|
15
|
Ye P, Feng A, Wang L, Cao M, Zhu R, Liu L. Kinetic resolution of cyclic benzylic azides enabled by site- and enantioselective C(sp 3)-H oxidation. Nat Commun 2022; 13:1621. [PMID: 35338143 PMCID: PMC8956603 DOI: 10.1038/s41467-022-29319-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 02/21/2022] [Indexed: 12/20/2022] Open
Abstract
Catalytic nonenzymatic kinetic resolution (KR) of racemates remains one of the most powerful tools to prepare enantiopure compounds, which dominantly relies on the manipulation of reactive functional groups. Moreover, catalytic KR of organic azides represents a formidable challenge due to the small size and instability of the azido group. Here, an effective KR of cyclic benzylic azides through site- and enantioselective C(sp3)-H oxidation is described. The manganese catalyzed oxidative KR reaction exhibits good functional group tolerance, and is applicable to a range of tetrahydroquinoline- and indoline-based organic azides with excellent site- and enantio-discrimination. Computational studies elucidate that the effective chiral recognition is derived from hydrogen bonding interaction between substrate and catalyst.
Collapse
Affiliation(s)
- Pengbo Ye
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Aili Feng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lin Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Min Cao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Rongxiu Zhu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lei Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China.
| |
Collapse
|
16
|
Wang J, Horwitz MA, Dürr AB, Ibba F, Pupo G, Gao Y, Ricci P, Christensen KE, Pathak TP, Claridge TDW, Lloyd-Jones GC, Paton RS, Gouverneur V. Asymmetric Azidation under Hydrogen Bonding Phase-Transfer Catalysis: A Combined Experimental and Computational Study. J Am Chem Soc 2022; 144:4572-4584. [PMID: 35230845 PMCID: PMC8931729 DOI: 10.1021/jacs.1c13434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
![]()
Asymmetric catalytic
azidation has increased in importance to access
enantioenriched nitrogen containing molecules, but methods that employ
inexpensive sodium azide remain scarce. This encouraged us to undertake
a detailed study on the application of hydrogen bonding phase-transfer
catalysis (HB-PTC) to enantioselective azidation with sodium azide.
So far, this phase-transfer manifold has been applied exclusively
to insoluble metal alkali fluorides for carbon–fluorine bond
formation. Herein, we disclose the asymmetric ring opening of meso aziridinium electrophiles derived from β-chloroamines
with sodium azide in the presence of a chiral bisurea catalyst. The
structure of novel hydrogen bonded azide complexes was analyzed computationally,
in the solid state by X-ray diffraction, and in solution phase by 1H and 14N/15N NMR spectroscopy. With N-isopropylated BINAM-derived bisurea, end-on binding of
azide in a tripodal fashion to all three NH bonds is energetically
favorable, an arrangement reminiscent of the corresponding dynamically
more rigid trifurcated hydrogen-bonded fluoride complex. Computational
analysis informs that the most stable transition state leading to
the major enantiomer displays attack from the hydrogen-bonded end
of the azide anion. All three H-bonds are retained in the transition
state; however, as seen in asymmetric HB-PTC fluorination, the H-bond
between the nucleophile and the monodentate urea lengthens most noticeably
along the reaction coordinate. Kinetic studies corroborate with the
turnover rate limiting event resulting in a chiral ion pair containing
an aziridinium cation and a catalyst-bound azide anion, along with
catalyst inhibition incurred by accumulation of NaCl. This study demonstrates
that HB-PTC can serve as an activation mode for inorganic salts other
than metal alkali fluorides for applications in asymmetric synthesis.
Collapse
Affiliation(s)
- Jimmy Wang
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Matthew A Horwitz
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Alexander B Dürr
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Francesco Ibba
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Gabriele Pupo
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Yuan Gao
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Paolo Ricci
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Kirsten E Christensen
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Tejas P Pathak
- Novartis Institutes for Biomedical Research, 22 Windsor Street, Cambridge, Massachusetts 02139, United States
| | - Timothy D W Claridge
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Guy C Lloyd-Jones
- School of Chemistry, University of Edinburgh, Edinburgh EH9 3FJ, U.K
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80528, United States
| | - Véronique Gouverneur
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
17
|
Guo W, Jiang F, Li S, Sun J. Organocatalytic asymmetric azidation of sulfoxonium ylides: mild synthesis of enantioenriched α-azido ketones bearing a labile tertiary stereocenter. Chem Sci 2022; 13:11648-11655. [PMID: 36320381 PMCID: PMC9555749 DOI: 10.1039/d2sc03552a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/06/2022] [Indexed: 12/19/2022] Open
Abstract
Disclosed here is a catalytic asymmetric azidation reaction for the efficient synthesis of α-azido ketones bearing a labile tertiary stereocenter. With a superb chiral squaramide catalyst, a mild asymmetric formal H–N3 insertion of α-carbonyl sulfoxonium ylides proceeded with excellent efficiency and enantioselectivity. This organocatalytic process not only complements the previous α-azidation approaches for the formation of quaternary stereocenters and mostly for 1,3-dicarbonyl compounds, but also has advantages over the well-known metal-catalyzed asymmetric carbene insertion chemistry using α-diazocarbonyl compounds. Detailed mechanistic studies via control reactions and NMR studies provided important insights into the reaction pathway, which features reversible protonation and dynamic kinetic resolution. The curiosity in mechanism also led to the development of a simplified alternative protocol with a cheaper HN3 source. An organocatalytic asymmetric H–N3 insertion of α-carbonyl sulfoxonium ylides has been developed, providing efficient access to α-azido ketones bearing labile tertiary stereocenters and complementing the metal carbene insertion chemistry.![]()
Collapse
Affiliation(s)
- Wengang Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Feng Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
| | - Shijia Li
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, China
- Department of Chemistry and the Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration & Reconstruction, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong SAR, China
- Shenzhen Research Institute, HKUST, No. 9 Yuexing 1st Rd, Shenzhen 518057, China
| |
Collapse
|
18
|
Abstract
The first iron-catalyzed asymmetric azidation of benzylic peresters has been reported with trimethylsilyl azide (TMSN3) as the azido source. Hydrocarbon radicals that lack of strong interactions were capable to be enantioselectively azidated. The reaction features good functional group tolerance, high yields, and mild conditions. The chiral benzylic azides can further be used in click reaction, phosphoramidation, and reductive amination, which demonstrate the synthetic values of this reaction.
Collapse
Affiliation(s)
- Kaikai Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China.,Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China
| | - Xiaoyan Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Daliang Li
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
19
|
Xu PW, Cui XY, Chen C, Zhou F, Yu JS, Ao YF, Zhou J. Enantioselective Synthesis of C α-Tetrasubstituted N-Hydroxyl-α-amino Nitriles via Cyanation of Ketonitrones Using Me 2(CH 2Cl)SiCN. Org Lett 2021; 23:8471-8476. [PMID: 34644098 DOI: 10.1021/acs.orglett.1c03176] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Here, we report an unprecedented catalytic enantioselective cyanation of ketonitrones enabled by the bifunctional cyanating reagent Me2(CH2Cl)SiCN. This approach allows facile access to optically active N-hydroxyl-α-amino nitriles that are of high synthetic value but difficult to acquire by other methods. The use of bifunctional cyanating reagent Me2(CH2Cl)SiCN not only achieves an enantioselectivity higher than that with TMSCN but also enables various diversification reactions of the resulting silylated adducts. This represents the first enantioselective catalytic nucleophilic addition reaction of unactivated ketone-derived nitrones, exhibiting the potential of such tetrasubstituted C═N bonds for asymmetric synthesis of N-hydroxy α-amino acids and other N-hydroxy tertiary amines.
Collapse
Affiliation(s)
- Peng-Wei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Xiao-Yuan Cui
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Chen Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Feng Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Jin-Sheng Yu
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China
| | - Yu-Fei Ao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Process and Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, Shanghai 200062, China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
20
|
Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Iron‐Catalyzed Radical Asymmetric Aminoazidation and Diazidation of Styrenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Qiao Sun
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Liang Ge
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yanjie Qu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Taian Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
21
|
Tu Y, Dong H, Wang H, Ao Y, Liu Y. Divergent functionalization of α,β-enones: catalyst-free access to β-azido ketones and β-amino α-diazo ketones. Chem Commun (Camb) 2021; 57:4524-4527. [PMID: 33956012 DOI: 10.1039/d1cc00985k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A simple and practical method for the azidation of β-fluoroalkyl α,β-unsaturated ketones to access a wide variety of fluorinated nitrogenous carbonyl compounds is developed. Different from existing precedents, neither a metallic nor an organic catalyst was involved in our strategy. Judicious choice of solvents allows for the modulation of the reaction outcomes, delivering β-azido ketones or β-amino α-diazo ketones. The reaction system features environmental friendliness, mild conditions, simplicity and excellent functional group tolerance.
Collapse
Affiliation(s)
- Youshao Tu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Honglin Dong
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Huamin Wang
- College of Chemistry and Chemical Engineering, University of South China, 28 N Changsheng West Road, Hengyang 421001, P. R. China.
| | - Yuhui Ao
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| | - Yu Liu
- College of Chemistry and Life Science, Advanced Institute of Materials Science, Changchun University of Technology, 2055 N. Yan'an Avenue, Changchun 130012, P. R. China.
| |
Collapse
|
22
|
Lv D, Sun Q, Zhou H, Ge L, Qu Y, Li T, Ma X, Li Y, Bao H. Iron‐Catalyzed Radical Asymmetric Aminoazidation and Diazidation of Styrenes. Angew Chem Int Ed Engl 2021; 60:12455-12460. [PMID: 33749966 DOI: 10.1002/anie.202017175] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Indexed: 12/28/2022]
Affiliation(s)
- Daqi Lv
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Qiao Sun
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Liang Ge
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yanjie Qu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Taian Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Xiaoxu Ma
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology State Key Laboratory of Structural Chemistry Center for Excellence in Molecular Synthesis Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences 155 Yangqiao Road West Fuzhou Fujian 350002 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
23
|
Affiliation(s)
- Paramasivam Sivaguru
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Yongquan Ning
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
24
|
Meyer TH, Samanta RC, Del Vecchio A, Ackermann L. Mangana(iii/iv)electro-catalyzed C(sp 3)-H azidation. Chem Sci 2020; 12:2890-2897. [PMID: 34164055 PMCID: PMC8179422 DOI: 10.1039/d0sc05924b] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/28/2020] [Indexed: 01/16/2023] Open
Abstract
Manganaelectro-catalyzed azidation of otherwise inert C(sp3)-H bonds was accomplished using most user-friendly sodium azide as the nitrogen-source. The operationally simple, resource-economic C-H azidation strategy was characterized by mild reaction conditions, no directing group, traceless electrons as the sole redox-reagent, Earth-abundant manganese as the catalyst, high functional-group compatibility and high chemoselectivity, setting the stage for late-stage azidation of bioactive compounds. Detailed mechanistic studies by experiment, spectrophotometry and cyclic voltammetry provided strong support for metal-catalyzed aliphatic radical formation, along with subsequent azidyl radical transfer within a manganese(iii/iv) manifold.
Collapse
Affiliation(s)
- Tjark H Meyer
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Ramesh C Samanta
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Antonio Del Vecchio
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
- Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstraße 2 37077 Göttingen Germany
| |
Collapse
|
25
|
|
26
|
Ge L, Chiou MF, Li Y, Bao H. Radical azidation as a means of constructing C(sp3)-N3 bonds. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.07.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
27
|
Ding PG, Hu XS, Yu JS, Zhou J. Diastereodivergent Synthesis of α-Chiral Tertiary Azides through Catalytic Asymmetric Michael Addition. Org Lett 2020; 22:8578-8583. [DOI: 10.1021/acs.orglett.0c03178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Xiao-Si Hu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou 571158, China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, East China Normal University, Shanghai 200062, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Uyanik M, Sahara N, Tsukahara M, Hattori Y, Ishihara K. Chemo‐ and Enantioselective Oxidative α‐Azidation of Carbonyl Compounds. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Naoto Sahara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Mayuko Tsukahara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Yuhei Hattori
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
29
|
Uyanik M, Sahara N, Tsukahara M, Hattori Y, Ishihara K. Chemo‐ and Enantioselective Oxidative α‐Azidation of Carbonyl Compounds. Angew Chem Int Ed Engl 2020; 59:17110-17117. [DOI: 10.1002/anie.202007552] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Indexed: 11/07/2022]
Affiliation(s)
- Muhammet Uyanik
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Naoto Sahara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Mayuko Tsukahara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Yuhei Hattori
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| | - Kazuaki Ishihara
- Graduate School of Engineering Nagoya University Chikusa Nagoya 464-8603 Japan
| |
Collapse
|
30
|
Ren J, Ban X, Zhang X, Tan SM, Lee R, Tan C. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium‐Catalyzed Phase‐Transfer Azidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jingyun Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xu Ban
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xin Zhang
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Siu Min Tan
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Richmond Lee
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
31
|
Ren J, Ban X, Zhang X, Tan SM, Lee R, Tan C. Kinetic and Dynamic Kinetic Resolution of Racemic Tertiary Bromides by Pentanidium‐Catalyzed Phase‐Transfer Azidation. Angew Chem Int Ed Engl 2020; 59:9055-9058. [DOI: 10.1002/anie.202000138] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Jingyun Ren
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an Shaanxi 710127 P. R. China
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xu Ban
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Xin Zhang
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| | - Siu Min Tan
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Richmond Lee
- Science and Mathematics Cluster Singapore University of Technology and Design 8 Somapah Road Singapore 487372 Singapore
| | - Choon‐Hong Tan
- Division of Chemistry and Biological Chemistry Nanyang Technological University 21 Nanyang Link 637371 Singapore Singapore
| |
Collapse
|
32
|
Ding PG, Zhou F, Wang X, Zhao QH, Yu JS, Zhou J. H-bond donor-directed switching of diastereoselectivity in the Michael addition of α-azido ketones to nitroolefins. Chem Sci 2020; 11:3852-3861. [PMID: 34122853 PMCID: PMC8152593 DOI: 10.1039/d0sc00475h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The development of catalyst-controlled stereodivergent asymmetric catalysis is important for providing facile access to all stereoisomers of chiral products with multiple stereocenters from the same starting materials. Despite progress, new design strategies for diastereodivergent asymmetric catalysis are still highly desirable. Here we report the potency of H-bond donors as the governing factor to tune diastereoselectivity in a highly diastereoselective switchable enantioselective Michael addition of α-azido ketones to nitroolefins. While a newly developed bifunctional tertiary amine, phosphoramide, preferentially afforded syn-adducts, an analogous squaramide catalyst selectively gave anti-adducts. The resulting multifunctional tertiary azides can be converted to spiro-pyrrolidines with four continuous stereocenters in a one-pot operation. Mechanistic studies cast light on the control of diastereoselectivity by H-bond donors. While the squaramide-catalyzed reaction proceeded with a transition state with both squaramide N–H bonds binding to an enolate intermediate, an unprecedented model was proposed for the phosphoramide-mediated reaction wherein an amide N–H bond and an alkylammonium ion formed in situ interact with nitroolefins, with the enolate stabilized by nonclassical C–H⋯O hydrogen-bonding interactions. We report the successful reversal of the diastereoselectivity in an unprecedented Michael addition of α-azido ketones to nitroolefins catalyzed by bifunctional tertiary amines, simply by varying the H-bond donor from phosphoramide to squaramide.![]()
Collapse
Affiliation(s)
- Pei-Gang Ding
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Feng Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Xin Wang
- College of Chemistry, Sichuan University Chengdu Sichuan 610064 China
| | - Qiu-Hua Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China
| | - Jin-Sheng Yu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University Haikou 571158 China
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University 3663N Zhongshan Road Shanghai 200062 China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences Shanghai 200032 China
| |
Collapse
|
33
|
Wang C, Zhu RY, Liao K, Zhou F, Zhou J. Enantioselective Cu(I)-Catalyzed Cycloaddition of Prochiral Diazides with Terminal or 1-Iodoalkynes. Org Lett 2020; 22:1270-1274. [PMID: 31999130 DOI: 10.1021/acs.orglett.9b04522] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an unprecedented highly enantioselective desymmetric Cu(I)-catalyzed 1,3-dipolar cycloaddition of diazides with terminal alkynes and 1-iodoalkynes, affording tertiary alcohols bearing a 1,2,3-triazole moiety in high yield and excellent ee value. PYBOX ligands with a C4 shielding group once again show the promising ability to achieve higher enantioselectivity.
Collapse
Affiliation(s)
| | | | | | | | - Jian Zhou
- State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry , Shanghai 200032 , China
| |
Collapse
|
34
|
Vallejos MM, Labadie GR. Insight into the factors controlling the equilibrium of allylic azides. RSC Adv 2020; 10:4404-4413. [PMID: 35495248 PMCID: PMC9049130 DOI: 10.1039/c9ra10093h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/26/2019] [Indexed: 12/19/2022] Open
Abstract
Several allylic azides with different double bond substitutions were studied to understand the factors, governing their equilibrium using density functional theory along with the quantum theory of atoms in molecules, non-covalent interactions and natural bond orbital approaches. The results showed that the hydroxyl group or heteroatoms in allylic azides interact with the molecule through an electrostatic weak interaction in each pair of regioisomers. The equilibrium shifts of substituted allylic azides, compared to non-substituted allylic azides, were not attributed to the presence of specific interactions, such as hydrogen bonds. The observed equilibrium shifts stemmed mainly from the strengthening and weakening of negative hyperconjugative interactions, which were affected by the weak interaction involving the proximal substituent in each regioisomer. A good linear correlation was obtained between the hyperconjugative energies of πC
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
C→σ*Zb interactions and the calculated percentages of the secondary azide and tertiary azide in the equilibrium mixture. Also, the effect of the aromatic ring substituent was analysed using such approaches. This study not only provides insights into the factors controlling the stabilities of the substituted allylic azides, but also settles the basis to predict the regioisomer predominance in the equilibrium mixture. The factors controlling the allyl azides equilibrium has been studied by different theoretical approaches setting the basis to predict the regioisomers predominance in the equilibrium mixture.![]()
Collapse
Affiliation(s)
- Margarita M Vallejos
- Laboratorio de Química Orgánica, IQUIBA-NEA, Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5460 Corrientes 3400 Argentina +54-379-4457996 ext. 104
| | - Guillermo R Labadie
- Instituto de Química Rosario, UNR, CONICET Suipacha 531 S2002LRK Rosario Argentina.,Departamento de Química Orgánica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina
| |
Collapse
|
35
|
Karahan S, Tanyeli C. Bifunctional squaramide catalyzed stereoselective Mannich reaction of α-azido ketones with isatin-derived ketimines. Org Biomol Chem 2020; 18:479-487. [DOI: 10.1039/c9ob02208b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bifunctional squaramide catalyzed asymmetric Mannich reaction of alpha-azido ketones and isatin derived ketiminines were established for the first time with high stereoselectivity. Adducts are valuable synthons for optically active heterocycles.
Collapse
Affiliation(s)
- Seda Karahan
- Department of Chemistry
- Middle East Technical University
- Ankara
- Turkey
| | - Cihangir Tanyeli
- Department of Chemistry
- Middle East Technical University
- Ankara
- Turkey
| |
Collapse
|
36
|
Ye X, Pan Y, Yang X. Direct enantioselective Mannich reactions of α-azido cyclic ketones: asymmetric construction of chiral azides possessing an α-quaternary stereocenter. Chem Commun (Camb) 2019; 56:98-101. [PMID: 31790111 DOI: 10.1039/c9cc08000g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Direct enantioselective Mannich reactions of α-azido cyclic ketones with aldimines are realized through chiral phosphoric acid catalysis, which generate chiral azides possessing an α-quanternary stereocenter with complete regioselectivities and high diastereoselectivities and enantioselectivities.
Collapse
Affiliation(s)
- Xueqian Ye
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | | | | |
Collapse
|
37
|
Humbrías‐Martín J, Pérez‐Aguilar MC, Mas‐Ballesté R, Dentoni Litta A, Lattanzi A, Della Sala G, Fernández‐Salas JA, Alemán J. Enantioselective Conjugate Azidation of
α,β
‐Unsaturated Ketones under Bifunctional Organocatalysis by Direct Activation of TMSN
3. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900831] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jorge Humbrías‐Martín
- Organic Chemistry Department, Módulo 1Universidad Autónoma de Madrid 28049 Madrid Spain
| | | | - Rubén Mas‐Ballesté
- Inorganic Chemistry Department, Módulo 7Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Antonella Dentoni Litta
- Dipartimento di Chimica e Biologia “A. Zambelli”Università degli Studi di Salerno 84084 Fisciano, SA Italy
| | - Alessandra Lattanzi
- Dipartimento di Chimica e Biologia “A. Zambelli”Università degli Studi di Salerno 84084 Fisciano, SA Italy
| | - Giorgio Della Sala
- Dipartimento di Chimica e Biologia “A. Zambelli”Università degli Studi di Salerno 84084 Fisciano, SA Italy
| | | | - José Alemán
- Organic Chemistry Department, Módulo 1Universidad Autónoma de Madrid 28049 Madrid Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem)Universidad Autónoma de Madrid 28049 Madrid Spain
| |
Collapse
|
38
|
Wang CJ, Sun J, Zhou W, Xue J, Ren BT, Zhang GY, Mei YL, Deng QH. Enantioselective Copper-Catalyzed Electrophilic Dearomative Azidation of β-Naphthols. Org Lett 2019; 21:7315-7319. [DOI: 10.1021/acs.orglett.9b02604] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chong-Ji Wang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jian Sun
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Jing Xue
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Bing-Tao Ren
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Guang-Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry and Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
39
|
Thirupathi N, Wei F, Tung CH, Xu Z. Divergent synthesis of chiral cyclic azides via asymmetric cycloaddition reactions of vinyl azides. Nat Commun 2019; 10:3158. [PMID: 31320649 PMCID: PMC6639305 DOI: 10.1038/s41467-019-11134-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
Abstract
Vinyl azides, bearing conjugated azide and alkene functional groups, have been recognized as versatile building blocks in organic synthesis. In general vinyl azides act as 3-atom (CCN) synthons through the fast release of molecular nitrogen and have been extensively utilized in the construction of structurally diverse N-heterocycles. Keeping the azide moiety intact in organic transformations to synthesis chiral azides is an important but challenging task. Herein, we report an enantioselective copper(II)/BOX-catalyzed cycloaddition of vinyl azides, generating diverse chiral cyclic azides. α-Aryl substituted vinyl azides react with unsaturated keto esters through an inverse-electron-demand hetero-Diels-Alder reaction to afford chiral azido dihydropyrans with excellent enatioselectivities. In contrast, cyclohexenyl azides undergo a diastereo- and enantio-selective Diels-Alder reaction giving important azido octahydronaphthalenes with three continuous stereogenic centers. Notable features of these reactions include a very broad scope, mild reaction conditions and 100% atom economy. Vinyl azides generally act as 3-atom synthon through the fast release of molecular nitrogen, whereas keeping the azide group intact is more challenging. Here, the authors show a copper-catalyzed enantioselective cycloaddition of two types of vinyl azides generating a diverse pool of valuable chiral cyclic azides.
Collapse
Affiliation(s)
- Nuligonda Thirupathi
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, 250100, Jinan, Shandong, China
| | - Fang Wei
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, 250100, Jinan, Shandong, China
| | - Chen-Ho Tung
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, 250100, Jinan, Shandong, China
| | - Zhenghu Xu
- Key Lab of Colloid and Interface Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, No. 27 South Shanda Road, 250100, Jinan, Shandong, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 200032, Shanghai, PR China.
| |
Collapse
|
40
|
Carlson AS, Topczewski JJ. Allylic azides: synthesis, reactivity, and the Winstein rearrangement. Org Biomol Chem 2019; 17:4406-4429. [PMID: 30969292 PMCID: PMC6530792 DOI: 10.1039/c8ob03178a] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Organic azides are useful synthetic intermediates, which demonstrate broad reactivity. Unlike most organic azides, allylic azides can spontaneously rearrange to form a mixture of isomers. This rearrangement has been named the Winstein rearrangement. Using allylic azides can result in low yields and azide racemization in some synthetic contexts due to the Winstein rearrangement. Effort has been made to understand the mechanism of the Winstein rearrangement and to take advantage of this process. Several guiding principles can be used to identify which azides will produce a mixture of isomers and which will resist rearrangement. Selective reaction conditions can be used to differentiate the azide isomers in a dynamic manner. This review covers all aspects of allylic azides including their synthesis, their reactivity, the mechanism of the Winstein rearrangement, and reactions that can selectively elaborate an azide isomer. This review covers the literature from Winstein's initial report to early 2019.
Collapse
Affiliation(s)
- Angela S Carlson
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
41
|
Zhou P, Liu X, Wu W, Xu C, Feng X. Catalytic Asymmetric Construction of β-Azido Amides and Esters via Haloazidation. Org Lett 2019; 21:1170-1175. [PMID: 30693781 DOI: 10.1021/acs.orglett.9b00110] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A catalytic regio- and enantioselective haloazidation reaction with a chiral iron(II) complex catalyst under mild reaction conditions was reported. By this approach, the stereoselective α-halo-β-azido difunctionalization of both α,β-unsaturated amides and α,β-unsaturated esters was achieved. This method enabled the construction of a broad spectrum of valuable functionalized amides and esters, including enantiomerically enriched β-azido amides, aziridine amides, α-amino amide derivatives, β-triazole amides, functionalized peptide derivatives, and α-halo-β-azido-substituted esters.
Collapse
Affiliation(s)
- Pengfei Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Wangbin Wu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Chaoran Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry , Sichuan University , Chengdu 610064 , China
| |
Collapse
|
42
|
Abstract
The first detailed description of the catalytic racemization of activated benzylic and allylic azides under mild conditions is reported. A kinetic analysis of the observed racemization indicates a first-order dependence on azide, a first-order dependence on catalyst, and that the rate of racemization correlates to σ+. A variety of azides with varying substitution patterns undergo facile racemization, and catalyst selection can tune this process.
Collapse
Affiliation(s)
- Amy A Ott
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| | - Joseph J Topczewski
- Department of Chemistry , University of Minnesota Twin Cities , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
43
|
Tiffner M, Stockhammer L, Schörgenhumer J, Röser K, Waser M. Towards an Asymmetric Organocatalytic α-Azidation of β-Ketoesters. Molecules 2018; 23:molecules23051142. [PMID: 29751597 PMCID: PMC6100502 DOI: 10.3390/molecules23051142] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/04/2018] [Accepted: 05/10/2018] [Indexed: 12/11/2022] Open
Abstract
Detailed investigations concerning the organocatalytic (asymmetric) α-azidation of prochiral β-ketoesters were carried out. It was shown that the racemic version of such a reaction can either be carried out under oxidative conditions using TMSN3 as the azide-source with quaternary ammonium iodides as the catalysts, or by using hypervalent iodine-based electrophilic azide-transfer reagents with different organocatalysts. In addition, the latter strategy could also be carried out with modest enantioselectivities when using simple cinchona alkaloid catalysts, albeit with relatively low yields.
Collapse
Affiliation(s)
- Maximilian Tiffner
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| | - Lotte Stockhammer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| | - Johannes Schörgenhumer
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| | - Katharina Röser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| | - Mario Waser
- Institute of Organic Chemistry, Johannes Kepler University Linz, Altenbergerstr. 69, 4040 Linz, Austria.
| |
Collapse
|