1
|
Ouedraogo S, Grosjean M, Brigaud I, Carneiro K, Luchnikov V, Mathieu N, Garric X, Nottelet B, Anselme K, Pieuchot L, Ponche A. Fabrication and characterization of thin self-rolling film for anti-inflammatory drug delivery. Colloids Surf B Biointerfaces 2024; 241:114039. [PMID: 38879896 DOI: 10.1016/j.colsurfb.2024.114039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
Thin films have been identified as an alternative approach for targeting sensitive site as drug delivery tool. In this work, the preparation of self-rolling thin films to form tubes for wound healing and easy placement (e.g. in the colon via colonoscopy) have been studied. We explored the use of thin films as a protective dressing combined to local release of an anti-inflammatory in order to improve drug efficacy and limit the side effects of the oral route. Non-cytotoxic poly(ethylene) glycol and poly(lactic acid) photo-crosslinkable star copolymers were used for rapid UV crosslinking of bilayered films loaded with prednisolone. The films, crosslinked under UV lamp without the need of photoinitiator, are optimized and compared in terms of water uptake, swelling ratio, final tube diameter and morphology, anti-inflammatory drug loading and release. Our studies showed the spontaneous rolling of bilayer constructs directly after immersion in water. Tubular geometry allows application of the patch through minimally invasive procedures such as colonoscopy. Moreover, the rolled-up bilayers highlighted efficient release of encapsulated drug following Fickian diffusion mechanism. We also confirmed the anti-inflammatory activity of the released anti-inflammatory drug that inhibits the pro-inflammatory cytokine IL-1β in RAW 264.7 macrophages stimulated by Escherichia coli (E. coli).
Collapse
Affiliation(s)
- Sidzigui Ouedraogo
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Mathilde Grosjean
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Isabelle Brigaud
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Katia Carneiro
- Graduate School in Pathological Anatomy and Morphological Sciences, Federal University of Rio de Janeiro, Brazil
| | - Valeriy Luchnikov
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Noëlle Mathieu
- Institute for Radioprotection and Nuclear Safety, (IRSN), PSE-SANTE/SERAMED/LRMed, Fontenay-aux-Roses F-92262, France
| | - Xavier Garric
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Benjamin Nottelet
- Polymer for Health and Biomaterials, IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France; Department of Pharmacy, Nîmes University Hospital, Nimes, France
| | - Karine Anselme
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Laurent Pieuchot
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France
| | - Arnaud Ponche
- Institut de Science des Matériaux de Mulhouse, Université de Haute-Alsace, CNRS/UHA UMR 7361, Mulhouse, France.
| |
Collapse
|
2
|
An C, Li H, Zhao Y, Zhang S, Zhao Y, Zhang Y, Yang J, Zhang L, Ren C, Zhang Y, Liu J, Wang H. Hyaluronic acid-based multifunctional carriers for applications in regenerative medicine: A review. Int J Biol Macromol 2023; 231:123307. [PMID: 36652984 DOI: 10.1016/j.ijbiomac.2023.123307] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Hyaluronic acid (HA) is an important type of naturally derived carbohydrate polymer with specific polysaccharide macromolecular structures and multifaceted biological functions, including biocompatibility, low immunogenicity, biodegradability, and bioactivity. Specifically, HA hydrogels in a microscopic scale have been widely used for biomedical applications, such as drug delivery, tissue engineering, and medical cosmetology, considering their superior properties outperforming the more conventional monolithic hydrogels in network homogeneity, degradation profile, permeability, and injectability. Herein, we reviewed the recent progress in the preparation and applications of HA microgels in biomedical fields. We first summarized the fabrication of HA microgels by focusing on the different crosslinking/polymerization schemes for HA gelation and the miniaturized fabrication techniques for producing HA-based microparticles. We then highlighted the use of HA-based microgels for different applications in regenerative medicine, including cartilage repair, bioactive delivery, diagnostic imaging, modular tissue engineering. Finally, we discussed the challenges and future perspectives in bridging the translational gap in the utilization of HA-based microgels in regenerative medicine.
Collapse
Affiliation(s)
- Chuanfeng An
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen 518060, PR China; State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China; Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Hanting Li
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yanqiu Zhao
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Shiying Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuan Zhao
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Yujie Zhang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China
| | - Jianhua Yang
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen
| | - Lijun Zhang
- Third People's Hospital of Dalian, Dalian Eye Hospital, Dalian, 116024, PR China
| | - Changle Ren
- Department of Joint Surgery, Dalian Municipal Central Hospital, Dalian 116044, PR China
| | - Yang Zhang
- School of Dentistry, Shenzhen University, Shenzhen 518060, PR China
| | - Jia Liu
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, PR China & Longgang District People's Hospital of Shenzhen.
| | - Huanan Wang
- State key laboratory of fine chemicals, Frontiers Science Center for Smart Materials Oriented Chemical Engineering, School of Bioengineering, Dalian University of Technology, Dalian 116023, PR China.
| |
Collapse
|
3
|
Jeong SH, Kim M, Kim TY, Choi H, Hahn SK. Biomimetic Supramolecular Drug Delivery Hydrogels for Accelerated Skin Tissue Regeneration. ACS Biomater Sci Eng 2021; 7:4581-4590. [PMID: 34254791 DOI: 10.1021/acsbiomaterials.1c00705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Skin tissue is regenerated by the combinational function of skin cells, extracellular matrix (ECM), and bioactive molecules. As an artificial ECM, supramolecular hydrogels exhibited outstanding capability to mimic the physical properties of ECM. However, the lack of biochemical function in supramolecular hydrogels has limited further tissue engineering applications. Here, we developed self-assembling supramolecular drug delivery hydrogels to mimic the skin tissue regeneration process. The supramolecular hydrogels were prepared to encapsulate fibroblasts by the host-guest interaction of cyclodextrin-modified gelatin (GE-CD) and adamantane-modified hyaluronate (Ad-HA) in conjugation with human growth hormone (hGH) for accelerated skin tissue regeneration. In vitro, GE-CD/Ad-HA-hGH hydrogels showed highly facilitated cell growth by the controlled hGH delivery. After a subcutaneous injection into the back of mice, IVIS imaging of bioengineered fibroblasts to express red fluorescence protein (RFP) revealed prolonged cell survival and proliferation in the supramolecular hydrogels for more than 21 days. We could also observe the improved skin tissue regeneration by the facilitated fibroblast proliferation with angiogenesis. Taken together, we could confirm the feasibility of biomimetic supramolecular drug delivery GE-CD/Ad-HA-hGH hydrogels for various tissue engineering applications.
Collapse
Affiliation(s)
- Sang Hoon Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Mungu Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Tae Yeon Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea
| | - Hyunsik Choi
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Kyungbuk 790-784, Korea.,PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| |
Collapse
|
4
|
Gaspar VM, Lavrador P, Borges J, Oliveira MB, Mano JF. Advanced Bottom-Up Engineering of Living Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903975. [PMID: 31823448 DOI: 10.1002/adma.201903975] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/30/2019] [Indexed: 05/08/2023]
Abstract
Bottom-up tissue engineering is a promising approach for designing modular biomimetic structures that aim to recapitulate the intricate hierarchy and biofunctionality of native human tissues. In recent years, this field has seen exciting progress driven by an increasing knowledge of biological systems and their rational deconstruction into key core components. Relevant advances in the bottom-up assembly of unitary living blocks toward the creation of higher order bioarchitectures based on multicellular-rich structures or multicomponent cell-biomaterial synergies are described. An up-to-date critical overview of long-term existing and rapidly emerging technologies for integrative bottom-up tissue engineering is provided, including discussion of their practical challenges and required advances. It is envisioned that a combination of cell-biomaterial constructs with bioadaptable features and biospecific 3D designs will contribute to the development of more robust and functional humanized tissues for therapies and disease models, as well as tools for fundamental biological studies.
Collapse
Affiliation(s)
- Vítor M Gaspar
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Pedro Lavrador
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João Borges
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| |
Collapse
|
5
|
Kim H, Shin M, Han S, Kwon W, Hahn SK. Hyaluronic Acid Derivatives for Translational Medicines. Biomacromolecules 2019; 20:2889-2903. [DOI: 10.1021/acs.biomac.9b00564] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Hyemin Kim
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
| | - Myeonghwan Shin
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Seulgi Han
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| | - Woosung Kwon
- Department of Chemical and Biological Engineering, Sookmyung Women’s University, 100 Cheongpa-ro-47-gil, Seoul 04310, South Korea
| | - Sei Kwang Hahn
- PHI Biomed Co., 175 Yeoksam-ro, Gangnam-gu, Seoul 06247, South Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk 37673, South Korea
| |
Collapse
|