1
|
Jung HJ, Park HS, Park HS, Kim HJ, Yoon D, Park Y, Chun P, Chung HY, Moon HR. Exploration of Compounds with 2-Phenylbenzo[ d]oxazole Scaffold as Potential Skin-Lightening Agents through Inhibition of Melanin Biosynthesis and Tyrosinase Activity. Molecules 2024; 29:4162. [PMID: 39275009 PMCID: PMC11396935 DOI: 10.3390/molecules29174162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/16/2024] Open
Abstract
Inspired by the potent tyrosinase inhibitory activity of phenolic compounds with a 2-phenylbenzo[d]thiazole scaffold, we explored phenolic compounds 1-15 with 2-phenylbenzo[d]oxazole, which is isosterically related to 2-phenylbenzo[d]thiazole, as novel tyrosinase inhibitors. Among these, compounds 3, 8, and 13, featuring a resorcinol structure, exhibited significantly stronger mushroom tyrosinase inhibition than kojic acid, with compound 3 showing a nanomolar IC50 value of 0.51 μM. These results suggest that resorcinol plays an important role in tyrosinase inhibition. Kinetic studies using Lineweaver-Burk plots demonstrated the inhibition mechanisms of compounds 3, 8, and 13, while docking simulation results indicated that the resorcinol structure contributed to tyrosinase binding through hydrophobic and hydrogen bonding interactions. Additionally, these compounds effectively inhibited tyrosinase activity and melanin production in B16F10 cells and inhibited B16F10 tyrosinase activity in situ in a concentration-dependent manner. As these compounds showed no cytotoxicity to epidermal cells, melanocytes, or keratinocytes, they are appropriate for skin applications. Compounds 8 and 13 demonstrated substantially higher depigmentation effects on zebrafish larvae than kojic acid, even at 800- and 400-times lower concentrations than kojic acid, respectively. These findings suggest that 2-phenylbenzo[d]oxazole is a promising candidate for tyrosinase inhibition.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| | - Dahye Yoon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea;
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae 50834, Republic of Korea;
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea;
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea; (H.J.J.); (H.S.P.); (H.S.P.); (H.J.K.)
| |
Collapse
|
2
|
Soni S, Sahiba N, Teli S, Teli P, Agarwal LK, Agarwal S. Advances in the synthetic strategies of benzoxazoles using 2-aminophenol as a precursor: an up-to-date review. RSC Adv 2023; 13:24093-24111. [PMID: 37577091 PMCID: PMC10416314 DOI: 10.1039/d3ra03871h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023] Open
Abstract
Benzoxazole is a resourceful and important member of the heteroarenes that connects synthetic organic chemistry to medicinal, pharmaceutical, and industrial areas. It is a bicyclic planar molecule and is the most favorable moiety for researchers because it has been extensively used as a starting material for different mechanistic approaches in drug discovery. The motif exhibits a high possibility of broad substrate scope and functionalization to offer several biological activities like anti-microbial, anti-fungal, anti-cancer, anti-oxidant, anti-inflammatory effects, and so on. There has been a large upsurge in the synthesis of benzoxazole via different pathways. The present article presents recent advances in synthetic strategies for benzoxazole derivatives since 2018. A variety of well-organized synthetic methodologies for benzoxazole using 2-aminophenol with aldehydes, ketones, acids, alcohols, isothiocyanates, ortho-esters, and alkynones under different reaction conditions and catalysts, viz. nanocatalysts, metal catalysts, and ionic liquid catalysts, with other miscellaneous techniques has been summarized.
Collapse
Affiliation(s)
- Shivani Soni
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Nusrat Sahiba
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Sunita Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Pankaj Teli
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Lokesh Kumar Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| | - Shikha Agarwal
- Synthetic Organic Chemistry Laboratory, Department of Chemistry, MLSU Udaipur-313001 Rajasthan India
| |
Collapse
|
3
|
Continuous flow synthesis of HMF from glucose using gadolinium (III) trifluoromethanesulfonate in Brønsted acidic ionic liquid as a catalytic system. J Flow Chem 2022. [DOI: 10.1007/s41981-022-00250-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
4
|
Rapid and Simple Microwave-Assisted Synthesis of Benzoxazoles Catalyzed by [CholineCl][Oxalic Acid]. Catalysts 2022. [DOI: 10.3390/catal12111394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microwave irradiation has been used to enhance the reaction yields and selectivities for organic transformation. In this paper, microwave irradiation (MW) was investigated for the environmentally benign synthesis of benzoxazoles through the cyclization of 2-aminophenols and benzaldehydes using deep eutectic solvent (DES) as a catalyst. The [CholineCl][oxalic acid] was easily synthesized from choline chloride with oxalic acid and used without further purification. [CholineCl][oxalic acid] catalyzed the synthesis of benzoxazoles to produce the desired product in a good to excellent conversion and selectivity under MW irradiation. The presence of [CholineCl][oxalic acid] helps to promote the rapid heating transfer from microwave irradiation into the reaction mixture. The [CholineCl][oxalic acid] can be recovered and reused several times without a considerable degradation in catalytic activity.
Collapse
|
5
|
Dhameliya TM, Nagar PR, Bhakhar KA, Jivani HR, Shah BJ, Patel KM, Patel VS, Soni AH, Joshi LP, Gajjar ND. Recent advancements in applications of ionic liquids in synthetic construction of heterocyclic scaffolds: A spotlight. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118329] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Jalali-Mola S, Torabi M, Yarie M, Zolfigol MA. Acidic tributyl phosphonium-based ionic liquid: an efficient catalyst for preparation of diverse pyridine systems via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2022; 12:34730-34739. [DOI: 10.1039/d2ra04631h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
Experimental procedure for the synthesis of triaryl pyridines, indolyl pyridines and nicotinonitriles.
Collapse
Affiliation(s)
- Sepideh Jalali-Mola
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Meysam Yarie
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
7
|
Li Y, Wu P, Yang Z. Synthesis of 2-Aryl Benzoxazoles from Benzoxazoles and α-Ketoic Acids by Photoredox Catalysis. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Nguyen HT, Ngo DKT, Chau KDN, Tran PH. Imidazolium Triflate Ionic Liquid Improves the Activity of ZnCl 2 in the Synthesis of Pyrroles and Ketones. ORG PREP PROCED INT 2021. [DOI: 10.1080/00304948.2020.1868910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | | | - Khiem Duy Nguyen Chau
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City, Vietnam
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
9
|
Shashni S, Singh V, Toor AP. High-efficacy glycerol acetalization with silica gel immobilized Brønsted acid ionic liquid catalysts—preparation and comprehending the counter-anion effect on the catalytic activity. NEW J CHEM 2021. [DOI: 10.1039/d1nj03508h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Imidazolium sulfonate zwitterions (ZIs) with unconventional counter-anions were used to fabricate a series of mesoporous silica-gel-immobilized Brønsted acid ionic liquid (SG@BAIL) nanocatalysts.
Collapse
Affiliation(s)
- Shalini Shashni
- Energy Research Centre, Panjab University, Chandigarh, India
| | - Vasundhara Singh
- Department of Applied Science, PEC University of Technology, Chandigarh, India
| | - Amrit Pal Toor
- Energy Research Centre, Panjab University, Chandigarh, India
- Dr.SSBUICET, Panjab University, Chandigarh, India
| |
Collapse
|
10
|
Le HAN, Nguyen LH, Nguyen QNB, Nguyen HT, Nguyen KQ, Tran PH. Straightforward synthesis of benzoxazoles and benzothiazoles via photocatalytic radical cyclization of 2-substituted anilines with aldehydes. CATAL COMMUN 2020. [DOI: 10.1016/j.catcom.2020.106120] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
11
|
Bano K, Jain A, Sarkar R, Panda TK. Economically Viable and Efficient Catalysts for Esterification and Cross Aldol Condensation Reactions under Mild Conditions. ChemistrySelect 2020. [DOI: 10.1002/slct.202000252] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kulsum Bano
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Archana Jain
- Department of Physics and ChemistryMahatma Gandhi Institute of Technology, Gandipet Hyderabad 500075, Telangana India
| | - Ratan Sarkar
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| | - Tarun K. Panda
- Department of ChemistryIndian Institute of Technology Hyderabad Kandi 502 285, Sangareddy, Telangana India
| |
Collapse
|
12
|
Khazalpour S, Yarie M, Kianpour E, Amani A, Asadabadi S, Seyf JY, Rezaeivala M, Azizian S, Zolfigol MA. Applications of phosphonium-based ionic liquids in chemical processes. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01901-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
13
|
Layek S, Agrahari B, Kumar A, Dege N, Pathak DD. Synthesis and X-ray crystal structures of three new nickel(II) complexes of benzoylhydrazones: Catalytic applications in the synthesis of 2-arylbenzoxazoles. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
14
|
Ge B, Peng Y, Liu J, Wen S, Peng C, Cheng G. Acid-promoted cleavage of the C–C double bond of N-(2-Hydroxylphenyl)enaminones for the synthesis of benzoxazoles. Tetrahedron 2020. [DOI: 10.1016/j.tet.2019.130818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Najari S, Jafarzadeh M, Bahrami K. Copper(II) Oxide Nanoparticles Impregnated on Melamine‐Modified UiO‐66‐NH
2
Metal–Organic Framework for C–N Cross‐Coupling Reaction and Synthesis of 2‐Substituted Benzimidazoles. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3675] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Susan Najari
- Faculty of ChemistryRazi University Kermanshah 67149‐67346 Iran
| | | | - Kiumars Bahrami
- Faculty of ChemistryRazi University Kermanshah 67149‐67346 Iran
| |
Collapse
|
16
|
Luo Z, Wu H, Li Y, Chen Y, Nie J, Lu S, Zhu Y, Zeng Z. Cesium Fluoride and Copper‐Catalyzed One‐Pot Synthesis of Benzoxazoles
via
a Site‐Selective Amide C−N Bond Cleavage. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201900485] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Zhongfeng Luo
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Hongxiang Wu
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Yue Li
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Yuwen Chen
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Jingyi Nie
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Siqi Lu
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Yulin Zhu
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
| | - Zhuo Zeng
- College of Chemistry and Environment South China Normal University Guangzhou 510006 People's Republic of China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry Chinese Academy of Science 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
17
|
Zhang J, Qiao M, Chen L, Dong Y, Jiao C, Liao S, Wu Y. Thiol substrate-promoted dehydrogenative cyclization of arylmethyl thiols with ortho-substituted amines: a universal approach to heteroaromatic compounds. Org Chem Front 2019. [DOI: 10.1039/c9qo00554d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thiol substrate-promoted one-pot synthesis of a library of heteroaromatic compounds was developed.
Collapse
Affiliation(s)
- Jinli Zhang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
- College of Chemistry and Molecular Engineering
| | - Mengjun Qiao
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Ling Chen
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Yibo Dong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
| | - Chengkang Jiao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Shengqi Liao
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou
- P.R. China
- College of Chemistry and Molecular Engineering
| |
Collapse
|
18
|
Tran PH, Thi Bui TP, Bach Lam XQ, Thi Nguyen XT. Synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones under metal-free and solvent-free conditions for minimizing waste generation. RSC Adv 2018; 8:36392-36399. [PMID: 35558474 PMCID: PMC9088831 DOI: 10.1039/c8ra07256f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022] Open
Abstract
Brønsted acidic ionic liquid was found to be an efficient and recyclable catalyst for the synthesis of benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones. The reactions proceeded smoothly with a broad scope of substrates providing the expected products in good to excellent yields under an atom-economical pathway. The low-cost recyclable catalyst, metal- and solvent-free conditions, and the ease of product isolation are the highlighted advantages in solving the issue of trace metal contamination in synthesized pharmaceuticals. A facile, efficient, and atom-economic method for preparing benzo[4,5]imidazo[1,2-a]pyrimidines and 2,3-dihydroquinazolin-4(1H)-ones under metal- and solvent-free condition has been developed.![]()
Collapse
Affiliation(s)
- Phuong Hoang Tran
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Thanh-Phuong Thi Bui
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Xuan-Quynh Bach Lam
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| | - Xuan-Trang Thi Nguyen
- Department of Organic Chemistry
- Faculty of Chemistry
- University of Science
- Viet Nam National University
- Ho Chi Minh City 721337
| |
Collapse
|