1
|
Emili M, Stagni F, Russo C, Angelozzi L, Guidi S, Bartesaghi R. Reversal of neurodevelopmental impairment and cognitive enhancement by pharmacological intervention with the polyphenol polydatin in a Down syndrome model. Neuropharmacology 2024; 261:110170. [PMID: 39341334 DOI: 10.1016/j.neuropharm.2024.110170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Intellectual disability (ID) is the unavoidable hallmark of Down syndrome (DS), a genetic condition due to triplication of chromosome 21. ID in DS is largely attributable to neurogenesis and dendritogenesis alterations taking place in the prenatal/neonatal period, the most critical time window for brain development. There are currently no treatments for ID in DS. Considering the timeline of brain development, treatment aimed at improving the neurological phenotypes of DS should be initiated as early as possible and use safe agents. The goal of this study was to establish whether it is possible to improve DS-linked neurodevelopmental defects through early treatment with polydatin, a natural polyphenol. We used the Ts65Dn mouse model of DS and focused on the hippocampus, a brain region fundamental for long-term memory. We found that in Ts65Dn mice of both sexes treated with polydatin from postnatal (P) day 3 to P15 there was full restoration of neurogenesis, neuron number, and dendritic development. These effects were accompanied by normalization of Cyclin D1 and DSCAM levels, which may account for the rescue of neurogenesis and dendritogenesis, respectively. Importantly, in Ts65Dn mice treated with polydatin from P3 to adolescence (∼P50) there was full restoration of hippocampus-dependent memory, indicating a pro-cognitive outcome of treatment. No adverse effects were observed on the body and brain weight. The efficacy and safety of polydatin in a model of DS prospect the possibility of its use during early life stages for amelioration of DS-linked neurodevelopmental alterations.
Collapse
Affiliation(s)
- Marco Emili
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Fiorenza Stagni
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Carla Russo
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Laura Angelozzi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Sandra Guidi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Renata Bartesaghi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Cherian S, Hacisayidli KM, Kurian R, Mathews A. Therapeutically important bioactive compounds of the genus Polygonum L. and their possible interventions in clinical medicine. J Pharm Pharmacol 2023; 75:301-327. [PMID: 36757388 DOI: 10.1093/jpp/rgac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/26/2022] [Indexed: 02/10/2023]
Abstract
OBJECTIVES Increasing literature data have suggested that the genus Polygonum L. possesses pharmacologically important plant secondary metabolites. These bioactive compounds are implicated as effective agents in preclinical and clinical practice due to their pharmacological effects such as anti-inflammatory, anticancer, antidiabetic, antiaging, neuroprotective or immunomodulatory properties among many others. However, elaborate pharmacological and clinical data concerning the bioavailability, tissue distribution pattern, dosage and pharmacokinetic profiles of these compounds are still scanty. KEY FINDINGS The major bioactive compounds implicated in the therapeutic effects of Polygonum genus include phenolic and flavonoid compounds, anthraquinones and stilbenes, such as quercetin, resveratrol, polydatin and others, and could serve as potential drug leads or as adjuvant agents. Data from in-silico network pharmacology and computational molecular docking studies are also highly helpful in identifying the possible drug target of pathogens or host cell machinery. SUMMARY We provide an up-to-date overview of the data from pharmacodynamic, pharmacokinetic profiles and preclinical (in-vitro and in-vivo) investigations and the available clinical data on some of the therapeutically important compounds of genus Polygonum L. and their medical interventions, including combating the outbreak of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Sam Cherian
- Indian Society for Plant Physiology, New Delhi, India
| | - Kushvar Mammadova Hacisayidli
- Department of Hygiene and Food Safety, Veterinary Medicine Faculty, Azerbaijan State Agricultural University, Ganja City, Azerbaijan
| | - Renju Kurian
- Department of Pathology, Manipal University College, Melaka, Malaysia
| | - Allan Mathews
- Faculty of Pharmacy, Quest International University Perak, Ipoh, Malaysia
| |
Collapse
|
3
|
Zhao J, Pan B, Zhou X, Wu C, Hao F, Zhang J, Liu L. Polygonum cuspidatum inhibits the growth of osteosarcoma cells via impeding Akt/ERK/EGFR signaling pathways. Bioengineered 2022; 13:2992-3006. [PMID: 35129428 PMCID: PMC8974113 DOI: 10.1080/21655979.2021.2017679] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
ABBREVIATIONS CC: Closeness centrality; OS: Osteosarcoma; TCM: Traditional Chinese medicine; NSCLC: Non-small cell lung cancer; DC: Degree centrality; CHM: Chinese herb medicine; BC: Betweenness centrality.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Bone & Soft Tissue Tumor, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Xinglu Zhou
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Chunnuan Wu
- Department of Pharmacy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Fengcheng Hao
- Department of General Surgery, People’s Hospital of Zoucheng City, Jining, Shandong, China
| | - Jie Zhang
- Department of Pharmacy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
4
|
Pan B, Wang Y, Wu C, Jia J, Huang C, Fang S, Liu L. A Mechanism of Action Study on Danggui Sini Decoction to Discover Its Therapeutic Effect on Gastric Cancer. Front Pharmacol 2021; 11:592903. [PMID: 33505310 PMCID: PMC7830678 DOI: 10.3389/fphar.2020.592903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Danggui Sini Decoction (DSD), a classic Chinese herb medicine (CHM) formula, has been used to treat various diseases in China for centuries. However, it remains challenging to reveal its mechanism of action through conventional pharmacological methods. Here, we first explored the mechanism of action of DSD with the assistance of network pharmacology and bioinformatic analysis tools, and found a potential therapeutic effect of DSD on cancer. Indeed, our in vivo experiment demonstrated that oral administration of DSD could significantly inhibit the growth of xenografted gastric cancer (GC) on mice. The subsequent enrichment analyses for 123 candidate core targets evacuated from the drug/disease-target protein-protein interaction network showed that DSD could affect the key biological processes involving the survival and growth of GC cells, such as apoptosis and cell cycle, and the disturbance of these biological processes is likely attributed to the simultaneous inhibition of multiple signaling pathways, including PI3K/Akt, MAPK, and p53 pathways. Notably, these in silico results were further validated by a series of cellular functional and molecular biological assays in vitro. Moreover, molecular docking analysis suggested an important role of MCM2 in delivering the pharmacological activity of DSD against GC. Together, these results indicate that our network pharmacology and bioinformatics-guided approach is feasible and useful in exploring not only the mechanism of action, but also the "new use" of the old CHM formula.
Collapse
Affiliation(s)
- Boyu Pan
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yun Wang
- Department of Integrated Traditional and Western Medicine, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunnuan Wu
- Department of Pharmacy, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Junrong Jia
- Public Laboratory, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chen Huang
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Senbiao Fang
- School of Information Science and Engineering, Central South University, Changsha, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
5
|
Ge H, Zhang B, Li T, Yu Y, Men F, Zhao S, Liu J, Zhang T. Potential targets and the action mechanism of food-derived dipeptides on colitis: network pharmacology and bioinformatics analysis. Food Funct 2021; 12:5989-6000. [DOI: 10.1039/d1fo00469g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The present study provides an efficient method for screening food-derived dipeptides to attenuate colitis based on the network pharmacology and bioinformatics analysis.
Collapse
Affiliation(s)
- Huifang Ge
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Biying Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Ting Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Yue Yu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Fangbing Men
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Songning Zhao
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food
- Jilin University
- Changchun
- People's Republic of China
- College of Food Science and Engineering
| |
Collapse
|
6
|
Tang KS. Protective Effects of Polydatin Against Dementia-Related Disorders. Curr Neuropharmacol 2021; 19:127-135. [PMID: 32525774 PMCID: PMC8033983 DOI: 10.2174/1570159x18666200611144825] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/27/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022] Open
Abstract
Dementia is a collection of symptoms affecting a person's cognition. Dementia is debilitating, and therefore, finding an effective treatment is of utmost importance. Resveratrol, which exhibits neuroprotective effects, has low bioavailability. However, its glucoside polydatin is more bioavailable. Here, the evidence that supports the protective role of polydatin against dementia- related diseases such as Alzheimer's disease, vascular dementia, alcohol-related dementia, and Lewy body dementias is presented. The beneficial effects of polydatin from a mechanistic perspective are specifically emphasized in this review. Future directions in this area of research are also discussed.
Collapse
Affiliation(s)
- Kim S. Tang
- Address correspondence to this author at the School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tel: +60 3 5514-4958; E-mail:
| |
Collapse
|
7
|
Pan B, Fang S, Zhang J, Pan Y, Liu H, Wang Y, Li M, Liu L. Chinese herbal compounds against SARS-CoV-2: Puerarin and quercetin impair the binding of viral S-protein to ACE2 receptor. Comput Struct Biotechnol J 2020; 18:3518-3527. [PMID: 33200026 PMCID: PMC7657012 DOI: 10.1016/j.csbj.2020.11.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
The outbreak of COVID-19 raises an urgent need for the therapeutics to contain the emerging pandemic. However, no effective treatment has been found for SARS-CoV-2 infection to date. Here, we identified puerarin (PubChem CID: 5281807), quercetin (PubChem CID: 5280343) and kaempferol (PubChem CID: 5280863) as potential compounds with binding activity to ACE2 by using Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP). Molecular docking analysis showed that puerarin and quercetin exhibit good binding affinity to ACE2, which was validated by surface plasmon resonance (SPR) assay. Furthermore, SPR-based competition assay revealed that puerarin and quercetin could significantly affect the binding of viral S-protein to ACE2 receptor. Notably, quercetin could also bind to the RBD domain of S-protein, suggesting not only a receptor blocking, but also a virus neutralizing effect of quercetin on SARS-CoV-2. The results from network pharmacology and bioinformatics analysis support a view that quercetin is involved in host immunomodulation, which further renders it a promising candidate against COVID-19. Moreover, given that puerarin is already an existing drug, results from this study not only provide insight into its action mechanism, but also propose a prompt application of it on COVID-19 patients for assessing its clinical feasibility.
Collapse
Affiliation(s)
- Boyu Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Senbiao Fang
- School of Computer Science and Engineering, Central South University, Changsha 410006, Hunan, China
| | - Ju Zhang
- Wuhan Yangene Biological Technology Co, LTD, Yuechuang Center of HuaZhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ya Pan
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Han Liu
- Wuhan Yangene Biological Technology Co, LTD, Yuechuang Center of HuaZhong Agricultural University, Wuhan 430070, Hubei, China
| | - Yun Wang
- Department of Integrated Traditional & Western Medicine, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Li
- School of Computer Science and Engineering, Central South University, Changsha 410006, Hunan, China
| | - Liren Liu
- Department of Gastrointestinal Cancer Biology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
8
|
Guo J, Liu T, Ma L, Hao W, Yan H, Li T, Yang Y, Cai J, Gao F, Xu Z, Liu H. Polydatin Attenuates 14.1 MeV Neutron-Induced Injuries via Regulating the Apoptosis and Antioxidative Pathways and Improving the Hematopoiesis of Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8905860. [PMID: 32934763 PMCID: PMC7479486 DOI: 10.1155/2020/8905860] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/01/2020] [Indexed: 11/17/2022]
Abstract
With more powerful penetrability and ionizing capability, high energetic neutron radiation (HENR) often poses greater threats than photon radiation, especially on such occasions as nuclear bomb exposure, nuclear accidents, aerospace conduction, and neutron-based radiotherapy. Therefore, there emerges an urgent unmet demand in exploring highly efficient radioprotectants against HENR. In the present study, high-throughput 14.1 MeV neutrons were generated by the high-intensity D-T fusion neutron generator (HINEG) and succeeded in establishing the acute radiation syndrome (ARS) mouse model induced by HENR. A series of preclinical studies, including morphopathological assessment, flow cytometry, peripheral complete blood, and bone marrow karyocyte counting, were applied showing much more serious detriments of HENR than the photon radiation. In specific, it was indicated that surviving fraction of polydatin- (PD-) treated mice could appreciably increase to up to 100% when they were exposed to HENR. Moreover, polydatin contributed much in alleviating the HENR-induced mouse body weight loss, spleen and testis indexes decrease, and the microstructure alterations of both the spleen and the bone marrow. Furthermore, we found that the HENR-damaged hematopoiesis was greatly prevented by PD treatment in such aspects as bone marrow hemocytogenesis, splenocytes balancing, or even the peripheral blood cellularity. The additional IHC investigations revealed that PD could exert potent hematopoiesis-promoting effects against HENR via suppressing apoptosis and promoting the antioxidative enzymes such as HO-1.
Collapse
Affiliation(s)
- Jiaming Guo
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Tingting Liu
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Long Ma
- Department of Reproductive Medicine Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Wei Hao
- Department of Endocrinology, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Hongli Yan
- Department of Reproductive Medicine Center, Changhai Hospital, Naval Medical University, Shanghai 200433, China
| | - Taosheng Li
- Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Yanyong Yang
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Jianming Cai
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Fu Gao
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| | - Zhao Xu
- Institute of Nuclear Energy Safety Technology, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Hu Liu
- Department of Radiation Medicine, College of Naval Medicine, Naval Medical University, Shanghai 200433, China
| |
Collapse
|
9
|
High-throughput screening suggests glutathione synthetase as an anti-tumor target of polydatin using human proteome chip. Int J Biol Macromol 2020; 161:1230-1239. [PMID: 32544581 DOI: 10.1016/j.ijbiomac.2020.06.061] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/26/2020] [Accepted: 06/07/2020] [Indexed: 12/23/2022]
Abstract
Polydatin (PD) is a bio-active ingredient with known anti-tumor effects. However, its specific protein targets yet have not been systematically screened, and the molecular anti-tumor mechanism is still unclear. Here, proteomic-chip was efficiently used to screen potential targets of PD. First, we investigated through animal experiment and proteomics studies, and found that polydatin play an important role in tumor cells. Then, the red-green fluorescent of polydatin was compared comprehensively to screen its targets on chip, followed by bioinformatics analysis. Glutathione synthetase (GSS) was selected as candidate research target. After a series of molecular biological experiments GSS was confirmed a target protein for PD in vitro. Moreover, we also found that PD can significantly inhibit the activity of GSS in vitro and live cells. Our findings reveal that PD could be a selective small-molecule GSS enzyme activity inhibitor and GSS could be a potential therapeutic target in cancer.
Collapse
|