1
|
Zhang G, Chong R, Zhou X, Yang J, Bai Y, Zhang ZH, Lin J. Positional Isomerism: A Novel Paradigm for Enhancing Iodine Adsorption in Functionalized Metal-Organic Frameworks. Inorg Chem 2024. [PMID: 39506398 DOI: 10.1021/acs.inorgchem.4c04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Porous metal-organic frameworks (MOFs) have shown great potential as adsorbents for capturing radioiodine, a major fission product generated during the reprocessing of nuclear fuel. However, studies exploring the correlation between the structure of MOFs and iodine uptake capacity remain notably rare. In this study, we introduce a new strategy for enhancing the iodine adsorption efficiency of MOFs by strategically varying the position of functional groups on the organic linkers. Employing ligand-functionalized UiO-67 MOFs, our findings reveal that ortho-amino substitution of UiO-67-o-NH2, proximal to the node of the dicarboxylate linker, markedly accelerates adsorption kinetics of iodine vapor in comparison to meta-amino substitution of UiO-67-m-NH2, where the amino groups are oriented away from the node. In contrast, UiO-67-m-NH2 exhibits a higher adsorption capacity of 2.19 g/g, compared to 1.91 g/g for UiO-67-o-NH2, attributable to its higher porosity. Furthermore, a competitive I2/H2O vapor adsorption study demonstrated that UiO-67-o-NH2 exhibits faster adsorption kinetics and higher selectivity for iodine in the presence of water vapor compared to UiO-67-m-NH2. Additionally, the crucial influence of positional isomerism on enhancing iodine adsorption has been corroborated through Raman spectroscopy, X-ray photoelectron spectroscopy, and density functional theory calculations. These analyses reveal that the nitrogen atom positioned at the ortho site demonstrates a stronger affinity for iodine molecules compared to the nitrogen atom at the meta site, thereby improving adsorption kinetics.
Collapse
Affiliation(s)
- Guangtao Zhang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Ran Chong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Xiaoyuan Zhou
- Radioactive Waste Technology and Radiochemistry Research Department, China Nuclear Power Technology Research Institute Co., Ltd., Shenzhen 518000, P. R. China
| | - Junpu Yang
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yaoyao Bai
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Zhi-Hui Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, P. R. China
| | - Jian Lin
- School of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
2
|
Xie J, Lei J, Zhang L, Liang J, Mei S, Chen L, Wang X, Liu W, Wang Y, Hu B. AIEgen-functionalized metal-organic gel as a bifunctional platform for efficient adsorption and portable sensing of gaseous iodine. Chem Commun (Camb) 2024; 60:12409-12412. [PMID: 39373597 DOI: 10.1039/d4cc04040f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Herein, we proposed a novel metal-organic gel (YTU-G-1) for efficient adsorption and portable sensing of gaseous iodine. YTU-G-1 exhibits an unprecedentedly high detection sensitivity (KSV = 2.21 × 106 L mol-1) and an extremely low limit of detection (LOD) down to the pmol level (481 pmol L-1). YTU-G-1 also shows a marked iodine adsorption capacity of 1.398 g g-1. A wearable membrane was successfully fabricated via the electrospinning technique, which exhibits excellent skin-compatibility and serves as a portable tool for sensitive response to potential on-site nuclear emergencies.
Collapse
Affiliation(s)
- Jian Xie
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Ji Lei
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Lilin Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jinpeng Liang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| | - Sen Mei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lixi Chen
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xia Wang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Baowei Hu
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
3
|
Ran Y, Wang Y, Yang M, Li J, Zhang Y, Li Z. Constructing covalent organic frameworks with dense thiophene S sites for effective iodine capture. RSC Adv 2024; 14:32451-32459. [PMID: 39411249 PMCID: PMC11477706 DOI: 10.1039/d4ra06333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
Developing versatile sorption materials for radionuclides (e.g. iodine) capture has been a critical goal in nuclear energy and environmental science. At the same time, covalent organic frameworks (COFs), on account of their high porosity and functional scaffolds, have opened up a new way to develop adsorbents in recent years. Herein, two kinds of COF materials containing thiophene (TAPT-COF and TAB-COF), as iodine sorbents, are designed and synthesized by Schiff base reaction. Among them, TAB-COF has a higher surface area (TAPT-COF: 1141 m2 g-1, TAB-COF: 1378 m2 g-1), which is helpful for the physical iodine adsorption. More importantly, the COF backbone is rich in both N and S sites, which is advantageous to the chemical adsorption of iodine. These two features make the two COFs ideal iodine sorption materials. For example, TAB-COF has an excellent gaseous iodine adsorption capacity (2.81 g g-1) and is one of the most efficient iodine adsorption materials. Meanwhile, TAB-COF has an excellent adsorption effect on iodine in the cyclohexane system, which can reach 200 mg g-1. In addition, the DFT calculations proved that both imine N and thiophene S serve as active sites during the iodine adsorption. TAB-COF exposes more active sites on the premise of having a higher surface area, thereby leading to a higher iodine adsorption capacity. The results here indicate improved sorption efficacy by introducing thiophene in COFs for sorption applications in general and especially pave the way for developing stable and effective COF sorbents for iodine capture from various environments.
Collapse
Affiliation(s)
- Yiling Ran
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
- School of Life Science and Engineering, Southwest Jiaotong University Chengdu Sichuan 610031 China
- State Key Laboratory of NBC Protection for Civilian 102205 Beijing China
| | - Yi Wang
- State Key Laboratory of NBC Protection for Civilian 102205 Beijing China
| | - Man Yang
- State Key Laboratory of NBC Protection for Civilian 102205 Beijing China
| | - Jian Li
- State Key Laboratory of NBC Protection for Civilian 102205 Beijing China
| | - Yan Zhang
- School of Chemistry, Southwest Jiaotong University Chengdu Sichuan 610031 China
| | - Zhanguo Li
- State Key Laboratory of NBC Protection for Civilian 102205 Beijing China
| |
Collapse
|
4
|
Peng L, Duan J, Liang Y, Zhang H, Duan C, Liu S. Recent Advances in Metal-Organic Frameworks and Their Derivatives for Adsorption of Radioactive Iodine. Molecules 2024; 29:4170. [PMID: 39275018 PMCID: PMC11397681 DOI: 10.3390/molecules29174170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 09/16/2024] Open
Abstract
Radioactive iodine (131I) with a short half-life of ~8.02 days is one of the most commonly used nuclides in nuclear medicine. However, 131I easily poses a significant risk to human health and ecological environment. Therefore, there is an urgent need to develop a secure and efficient strategy to capture and store radioactive iodine. Metal-organic frameworks (MOFs) are a new generation of sorbents with outstanding physical and chemical properties, rendering them attractive candidates for the adsorption and immobilization of iodine. This review focuses on recent research advancements in mechanisms underlying iodine adsorption over MOFs and their derivatives, including van der Waals interactions, complexing interactions, and chemical precipitation. Furthermore, this review concludes by outlining the challenges and opportunities for the safe disposal of radioactive iodine from the perspective of the material design and system evaluation based on our knowledge. Thus, this paper aims to offer necessary information regarding the large-scale production of MOFs for iodine adsorption.
Collapse
Affiliation(s)
- Li Peng
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| | - Jiali Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Yu Liang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Haiqi Zhang
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
- School of Materials Science & Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Chongxiong Duan
- School of Materials Science and Hydrogen Engineering, Foshan University, Foshan 528231, China
| | - Sibin Liu
- Department of Radiology, School of Medicine, Yangtze University, Jingzhou 434023, China
| |
Collapse
|
5
|
Kumar P, Maji B. Formation to Transportation: En-Route Fission-Facilitated Formation of Spheres in a Phosphorus-Based Porous Organic Polymer for Transportation of Iodine. Chemistry 2024:e202402559. [PMID: 39225335 DOI: 10.1002/chem.202402559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024]
Abstract
Despite its potential as a clean power source to meet rising electricity demands, nuclear energy generates radioactive waste, including isotopes of iodine, that pose significant environmental and health risks. There is a growing demand to capture radioactive iodine and repurpose it effectively. However, achieving this dual functionality with a single material remains a significant challenge. This study explores phosphorus-based porous organic polymers (P-POPs) as probes for these dual functionalities. By employing 4-formyl(triphenyl)phosphine (BB1) and phenyl-1,4-diacetonitrile (BB2) under the Knoevenagel polycondensation method, P-POPs (PKPOPs) have been synthesized that exhibit a smooth spherical morphology, which efficiently capture and release iodine under ambient conditions, facilitating efficient transportation of molecular iodine. This novel approach aims to potentially transform nuclear waste into valuable organic feedstock via an iodination reaction. The innovative application of PKPOP has also been demonstrated for iodination reactions using ball mills and under continuous flow conditions, showcasing its potential for safer waste management and utilization.
Collapse
Affiliation(s)
- Pramod Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Biplab Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
6
|
Dalapati M, Das A, Maity P, Singha R, Ghosh S, Samanta D. N-Heteroatom Engineered Nonporous Amorphous Self-Assembled Coordination Cages for Capture and Storage of Iodine. Inorg Chem 2024; 63:15973-15983. [PMID: 39140114 DOI: 10.1021/acs.inorgchem.4c02343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Radioactive iodine isotopes from nuclear-related activities, present substantial risks to human health and the environment. Developing effective materials for the capture and storage of these hazardous molecules is paramount. Traditionally, nonporous solids were historically considered ineffective for adsorbing target species. In this study, we investigate the potential of four nonporous, amorphous, self-assembled coordination cages (C1, C2, C3, and C4) featuring varying numbers of nitrogen atoms within the core (pyridyl/triazine unit) and specific cavity sizes for iodine adsorption. These coordination cages demonstrate remarkable adsorption abilities for iodine in both vapor and solution phases, facilitated by enhanced electron-pair interactions. The cages exhibit high uptake capacities of up to 3.16 g g-1 at 75 °C, the highest among metal-organic cages and up to 434.29 mg g-1 in solution, highlighting the efficiency of these materials across different phases. Even at ambient temperature, they show significant iodine capture efficiency, with a maximum value of 1.5 g g-1. Furthermore, these robust materials can be recycled, enduring at least five reusable cycles without apparent fatigue. Overall, our findings present a "N-heteroatom engineering" approach for the development of recyclable amorphous containers for the capture and storage of iodine, contributing to the mitigation of nuclear-related risks.
Collapse
Affiliation(s)
- Monotosh Dalapati
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Asesh Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Pankaj Maity
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Raghunath Singha
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| | - Dipak Samanta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Bhubaneswar, Odisha 752050, India
| |
Collapse
|
7
|
Matthys G, Laemont A, De Geyter N, Morent R, Lavendomme R, Van Der Voort P. Robust Imidazopyridinium Covalent Organic Framework as Efficient Iodine Capturing Materials in Gaseous and Aqueous Environment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404994. [PMID: 39169707 DOI: 10.1002/smll.202404994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/01/2024] [Indexed: 08/23/2024]
Abstract
The development of a high-performing adsorbent that can capture both iodine vapor from volatile nuclear waste and traces of iodine species from water is an important challenge, especially in industrially relevant process conditions. This study introduces novel imidazopyridinium-based covalent organic frameworks (COFs) through post-modification of a picolinaldehyde-based imine COF. These COFs demonstrate excellent iodine adsorption capacity, adsorption kinetics, and a high stability/recyclability in both vapor and water phases. Notably, one imidazopyridinium COF exhibits gaseous iodine uptake of 21 wt.% under dynamic adsorption conditions at 150 °C and a relative humidity of 50%, surpassing the performance of the currently used silver-based zeolite adsorbents (Ag@MOR (17wt.%)). Additionally, the same imidazopyridinium COFs can efficiently remove iodine species at a low concentration from aqueous solution. Seawater containing triiodide ions treated under dynamic flow-through conditions resulted in decreased concentrations down to the ppb level. The adsorption mechanisms for iodine and polyiodide species are elucidated for the imine COF and imidazopyridinium COFs; involving halogen bonding, hydrogen bonding, and charge-transfer complexes.
Collapse
Affiliation(s)
- Gilles Matthys
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Andreas Laemont
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41, B4, Ghent, 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
- Laboratoire de Chimie Organique, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels, B-1050, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281- S3, Ghent, 9000, Belgium
| |
Collapse
|
8
|
He W, Wang S, Hu H, Yang J, Huang T, Su X, Xiao S, Wang J, Gao Y. Exploration of iodine adsorption performance of pyrene-based two-dimensional covalent organic frameworks. RSC Adv 2024; 14:25695-25702. [PMID: 39148755 PMCID: PMC11325339 DOI: 10.1039/d4ra04994b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024] Open
Abstract
Radioiodine (mainly 129I and 131I) is known to be dangerous nuclear waste due to its high toxicity, fast mobility and long radioactive half-life. As an emerging class of novel porous organic polymers, covalent organic frameworks (COFs) have demonstrated tremendous application potential in the field of radioactive iodine capture because of their high specific surface area and tunable pore structure. Herein, three π-conjugated pyrene-based COFs, namely PyTTA-BPDA-COF, PyTTA-BPY-COF, and PyTTA-BT-COF, have been successfully prepared and used as highly efficient adsorbents for iodine capture. The experimental results show that the three COFs displayed excellent adsorption performance, with adsorption capacity of 5.03, 4.46, and 3.97 g g-1 for PyTTA-BPDA-COF, PyTTA-BPY-COF, and PyTTA-BT-COF, respectively. Additionally, the release rate of iodine-loaded COFs in methanol solution and recyclability were also impressive, demonstrating their potential for practical applications. The mechanism investigation reveals that both imine linkage and π-conjugated structure of the COFs may contribute to their high iodine adsorption capability. This work is instructive as a guide for designing and synthesizing COFs as a solid-phase adsorbent for iodine uptake.
Collapse
Affiliation(s)
- Weican He
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Jiaxin Yang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Tiao Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Songtao Xiao
- China Institute of Atomic Energy Beijing 102413 China
| | - Jianyi Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University No 58, Renmin Avenue Haikou 570228 China
| |
Collapse
|
9
|
Muhire C, Zhang D, Chang C, Zhang X, Li D, Zhiren G, Zhang Z, Zhang F, Hou J, Li J, Xu X. Highly radioiodine gas capture by 2-mercaptobenzimidazole-functionalized Bi/Mg oxide and effective iodine waste immobilization by etidronic-Bi 2O 3 complex. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134688. [PMID: 38805823 DOI: 10.1016/j.jhazmat.2024.134688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/11/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
The present work prepared a novel BiMgO-2MBD (X = 0.42) material for iodine vapor capture in temperature conditions related to spent nuclear fuel reprocessing and nuclear accidents. BiMgO-2MBD (X = 0.42) was synthesized by a solvothermal process and exhibited an exceptional ultrafast and high iodine uptake with a capacity of 4352.12 mg/g and 5147.08 mg/g after 5 h at 75 °C and 150 °C, respectively. The TGA analysis shows that Bi/Mg oxide substrate highly contributed to improving the thermal stability of the functionalized BiMgO-2MB (X = 0.42) as indicated by the weight losses of the material components of 3.77 wt%, 29.32 wt%, and 97.72 wt%, respectively for Bi/Mg oxide, BiMgO-2MBD, and 2-MBD. The material characterization and DFT calculations indicate that 2-MBD played a significant role towards improving iodine capture capacity. For long-term and safe waste disposal, a chemically durable waste form was made from etidronic acid and Bi2O3, and successfully immobilized the iodine-loaded wastes (I2 @BiMgO-2MBD) which exhibited a low normalized leaching rate of 1.098 × 10-6 g.m2/day for 7 days under the PCT-A method. In addition, BiMgO-2MBD (X = 0.42) showed an ability to be reused after several regeneration cycles. The comparison with previously reported materials shows that the current BiMgO-2MBD (X = 0.42) is the first functionalized metal oxide comparable to metal-organic and covalent organic frameworks for iodine uptake. BiMgO-2MBD (X = 0.42) shows promising results for practical applications in the gas phase capture of radioactive iodine.
Collapse
Affiliation(s)
- Constantin Muhire
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Dongxiang Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China; Department of Chemistry, MSU-BIT University, Shenzhen 517182, PR China.
| | - Cui Chang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Xu Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Dagang Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Guo Zhiren
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Zilei Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Fengqi Zhang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Jinzheng Hou
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China
| | - Jinying Li
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China; China National Nuclear Corporation, Beijing 100822, China
| | - Xiyan Xu
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, PR China.
| |
Collapse
|
10
|
Chen KW, Zhou XY, Dai XJ, Chen YT, Li SX, Gong CH, Wang P, Mao P, Jiao Y, Chen K, Yang Y. Sulfur vacancy-rich bismuth sulfide nanowire derived from CAU-17 for radioactive iodine capture in complex environments: Performance and intrinsic mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134584. [PMID: 38761762 DOI: 10.1016/j.jhazmat.2024.134584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
Effective capture and immobilization of volatile radioiodine from the off-gas of post-treatment plants is crucial for nuclear safety and public health, considering its long half-life, high toxicity, and environmental mobility. Herein, sulfur vacancy-rich Vs-Bi2S3@C nanocomposites were systematically synthesized via a one-step solvothermal vulcanization of CAU-17 precursor. Batch adsorption experiments demonstrated that the as-synthesized materials exhibited superior iodine adsorption capacity (1505.8 mg g-1 at 200 °C), fast equilibrium time (60 min), and high chemisorption ratio (91.7%), which might benefit from the nanowire structure and abundant sulfur vacancies of Bi2S3. Furthermore, Vs-Bi2S3@C composites exhibited excellent iodine capture performance in complex environments (high temperatures, high humidity and radiation exposure). Mechanistic investigations revealed that the I2 capture by fabricated materials primarily involved the chemical adsorption between Bi2S3 and I2 to form BiI3, and the interaction of I2 with electrons provided by sulfur vacancies to form polyiodide anions (I3-). The post-adsorbed iodine samples were successfully immobilized into commercial glass fractions in a stable form (BixOyI), exhibiting a normalized iodine leaching rate of 3.81 × 10-5 g m-2 d-1. Overall, our work offers a novel strategy for the design of adsorbent materials tailed for efficient capture and immobilization of volatile radioiodine.
Collapse
Affiliation(s)
- Kai-Wei Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xin-Yu Zhou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiao-Jun Dai
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yi-Ting Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shu-Xuan Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chun-Hui Gong
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Peng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ping Mao
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yan Jiao
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Kai Chen
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Yi Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
11
|
Elmekawy A, Quach Q, Abdel-Fattah TM. Synthesis and Characterization of Silver-Modified Nanoporous Silica Materials for Enhanced Iodine Removal. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1143. [PMID: 38998748 PMCID: PMC11243725 DOI: 10.3390/nano14131143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024]
Abstract
In aquatic environments, the presence of iodine species, including radioactive isotopes like 129I and I2, poses significant environmental and health concerns. Iodine can enter water resources from various sources, including nuclear accidents, medical procedures, and natural occurrences. To address this issue, the use of natural occurring nanoporous minerals, such as zeolitic materials, for iodine removal will be explored. This study focuses on the adsorption of iodine by silver-modified zeolites (13X-Ag, 5A-Ag, Chabazite-Ag, and Clinoptilolite-Ag) and evaluates their performance under different conditions. All materials were characterized using scanning electron microscopey (SEM), energy-dispersive X-ray spectroscopy (EDS), powdered X-ray diffraction (P-XRD), Fourier-transform infrared spectrometry (FTIR), and nitrogen adsorption studies. The results indicate that Chabazite-Ag exhibited the highest iodine adsorption capacity, with an impressive 769 mg/g, making it a viable option for iodine removal applications. 13X-Ag and 5A-Ag also demonstrated substantial adsorption capacities of 714 mg/g and 556 mg/g, respectively, though their behavior varied according to different models. In contrast, Clinoptilolite-Ag exhibited strong pH-dependent behavior, rendering it less suitable for neutral to slightly acidic conditions. Furthermore, this study explored the impact of ionic strength on iodine adsorption, revealing that Chabazite-Ag is efficient in low-salinity environments with an iodine adsorption capacity of 51.80 mg/g but less effective in saline conditions. 5A-Ag proved to be a versatile option for various water treatments, maintaining its iodine adsorption capacity across different salinity levels. In contrast, Clinoptilolite-Ag exhibited high sensitivity to ionic competition, virtually losing its iodine adsorption ability at a NaCl concentration of 0.1 M. Kinetic studies indicated that the pseudo-second-order model best describes the adsorption process, suggesting chemisorption mechanisms dominate iodine removal. Chabazite-Ag exhibited the highest initial adsorption rate with a k2 value of 0.002 mg g-1 h-1, emphasizing its superior adsorption capabilities. Chabazite and Clinoptilolite, naturally occurring minerals, provide eco-friendly solutions for iodine adsorption. Chabazite superior iodine removal highlights its value in critical applications and its potential for addressing pressing environmental challenges.
Collapse
Affiliation(s)
- Ahmed Elmekawy
- Department of Physics, Tanta University, Tanta 31527, Egypt
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Qui Quach
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| | - Tarek M Abdel-Fattah
- Applied Research Center, Thomas Jefferson National Accelerator Facility, Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA 23606, USA
| |
Collapse
|
12
|
Banerjee F, Bera S, Nath T, Samanta SK. Spirobifluorene-BINOL-based microporous polymer nanoreactor for efficient 1 H-tetrazole synthesis and iodine adsorption with facile charge transfer. NANOSCALE 2024; 16:11999-12006. [PMID: 38775142 DOI: 10.1039/d4nr00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Porous polymeric nanoreactors capable of multitasking are attractive and require a judicious design strategy. Herein, we describe an unusual approach for the synthesis of a porous polymer SBF-BINOL-6 by in situ formation of the BINOL entity taking substituted naphthols and spirobifluorene as co-monomers with high yield (81%). The as-synthesized polymer exhibited nanotube and nanosphere-like morphology, thermal endurance up to 372 °C and a BET surface area as high as 590 m2 g-1. The polymer endowed efficient loading of silver nanoparticles to generate Ag@SBF6, as confirmed from X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy. Ag@SBF6 was effectively used as a heterogeneous catalyst towards the [3 + 2] dipolar cycloaddition reaction for the synthesis of biologically important 5-substituted 1H-tetrazoles with yields in the range of 75-99% and recyclability for at least seven times without a significant decline in its catalytic efficiency. Additionally, a superior host-guest interaction by the polymer offered iodine adsorption in the vapour phase with a high uptake capacity of up to 4.0 g g-1. Interestingly, the iodine-loaded polymer, I2@SBF6, demonstrated iodine-promoted increased conductivity (1.3 × 10-3 S cm-1) through facile charge transfer interactions.
Collapse
Affiliation(s)
- Flora Banerjee
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Sudharanjan Bera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Tanushree Nath
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Suman Kalyan Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
13
|
Shi M, Cheng K, Cheng X, Zhou X, Jiang G, Du J. Iodine capture of a two-dimensional layered uranyl-organic framework: a combined DFT and AIMD study. Phys Chem Chem Phys 2024; 26:17132-17140. [PMID: 38845547 DOI: 10.1039/d4cp01898b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
To develop nuclear energy sustainably, it is important to effectively capture radioiodine in nuclear waste. In this study, we used density functional theory (DFT) and ab initio molecular dynamics (AIMD) calculations to investigate how well the uranyl-organic framework (UOF) could capture radioiodine. We found that the uranyl center and C-N ring sites in both cluster and periodic UOF models are very attractive to the I2 molecule. The adsorption energies of the I2 molecule in the periodic UOF models are as high as -1.10 eV, which is much higher than in the cluster model. The interaction characteristics between the I2 molecule and the UOF were revealed by electronic density topological analyses. Our AIMD simulations at 300 and 600 K have confirmed that the UOF has high adsorption kinetics for I2 molecules and can effectively capture them. The UOF has a high adsorption capacity and good adsorption stability for the I2 molecule, making it a promising option for the environmentally friendly removal of radioiodine.
Collapse
Affiliation(s)
- Mingyang Shi
- College of Physics, Sichuan University, Chengdu 610064, China.
| | - Kunyang Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xiujuan Cheng
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Xuying Zhou
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Gang Jiang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
| | - Jiguang Du
- College of Physics, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
14
|
Tang Z, Xie D, Li S. Synergistic enhancement of iodine capture from humid streams by microporosity and hydrophobicity of activated carbon fiber. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134369. [PMID: 38678709 DOI: 10.1016/j.jhazmat.2024.134369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Activated carbon fibers (ACF) are widely used to remove gaseous radioiodine produced during spent fuel reprocessing owing to their excellent adsorption properties. However, ACF's strong affinity for moisture tends to dominate, significantly reducing its ability to capture iodine in humid environments. The study used a one-step facile modification method of spray-deposited poly(divinylbenzene) (PDVB) nanoparticles on ACF to prepare hydrophobic activated carbon fiber (ACF-PDVB1.5). Compared to the initial ACF, the ACF-PDVB1.5 enhances the specific surface area to 1571 m2/g while maintaining abundant active sites, overcoming the disadvantage of pore reduction caused by traditional modification methods. More importantly, they also have excellent acid and alkali resistance and hydrophobicity (water contact angle 131.1°), with a preference for I2 pores (97 % microporosity). The iodine capture capacity of ACF PDVB 1.5 showed a significant increase compared to the initial ACF, as indicated by both static and dynamic adsorption tests. Notably, the dynamic iodine adsorption capacity of ACF-PDVB1.5 in a mixed iodine-water vapor stream at actual temperature (75 °C) and humid (50 % RH) conditions was 1847.69 mg/g, an increase of 55.47 % over the capacity of initial ACF (1188.71 mg/g). This work improves the overall I2 adsorption performance through hydrophobicity and pore size coordination.
Collapse
Affiliation(s)
- Zengming Tang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| | - Dong Xie
- National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China; School of Civil Engineering, University of South China, Hengyang 421001, PR China.
| | - Suzhe Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; National and Local Joint Engineering Research Center of Airborne Pollutants Treatment and Radioactive Protection in Building Environment, Hengyang 421001, PR China
| |
Collapse
|
15
|
Wan H, Liu D, Shao L, Sheng Z, Liu N, Wu Z, Luo W, Zhan P, Zhang L. Simple and scalable preparation of lignin based porous carbon coated nano-clay composites and their efficient removal for the diversified iodine. Int J Biol Macromol 2024; 270:132091. [PMID: 38718990 DOI: 10.1016/j.ijbiomac.2024.132091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/14/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
Here, lignin and nano-clay were used to prepare novel composite adsorbents by one-step carbonization without adding activators for radioactive iodine capture. Specially, 1D nano-clay such as halloysite (Hal), palygorskite (Pal) and sepiolite (Sep) were selected as skeleton components, respectively, enzymatic hydrolysis lignin (EHL) as carbon source, lignin based porous carbon/nano-clay composites (ELC-X) were prepared through ultrasonic impregnation, freeze drying, and carbonization. Characterization results indicated lignin based porous carbon (ELC) well coated on the surface of nano-clay, and made its surface areas increase to 252 m2/g. These composites appeared the micro-mesoporous hierarchical structure, considerable N doping and good chemical stability. Results of adsorption experiments showed that the introduction of ELC could well promote iodine vapor uptake of nano-clay, and up to 435.0 mg/g. Meanwhile, the synergistic effect between lignin based carbon and nano-clay was very significant for the adsorption of iodine/n-hexane and iodine ions, their capacity were far exceed those of a single material, respectively. The relevant adsorption kinetic and thermodynamics, and mechanism of ELC-X composites were clarified. This work provided a class of low-cost and environmentally friendly adsorbents for radioactive iodine capture, and opened up ideas for the comprehensive utilization of waste lignin and natural clay minerals.
Collapse
Affiliation(s)
- Huan'ai Wan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dandan Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lishu Shao
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Zhiyuan Sheng
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Na Liu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiping Wu
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weihua Luo
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peng Zhan
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| | - Lin Zhang
- Ministry of Forestry Bioethanol Research Center, School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan International Joint Laboratory of Woody Biomass Conversion, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
16
|
Liang X, Chen G, Zhang H, Zhang L, Duan T, Zhu L. Co-adsorption performance of iodine and NO X in iodine exhaust gas by NH 2-MIL-125. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134237. [PMID: 38593662 DOI: 10.1016/j.jhazmat.2024.134237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/06/2024] [Indexed: 04/11/2024]
Abstract
Ti-based MOFs exhibit ultra-high stability in radioactive waste gases containing nitrogen oxides (NOX) and are effective in capturing radioactive iodine. In this study, NH2-MIL-125 was synthesized via a one-pot solvothermal method and its adsorption performance for iodine was investigated using batch adsorption experiments, the stability of materials was tested by simulating post-processing conditions. The results indicated that NH2-MIL-125 had a maximum iodine adsorption capacity of 1.61 g/g at 75 ℃ and reached adsorption equilibrium within 60 min, and the adsorption capacity of methyl iodine reached 776.9 mg/g. The material also exhibited excellent stability and iodine adsorption performance in the presence of NOX. After soaking in NO2 for 24 h, its structure remained stable and the adsorption capacity for iodine remained at 231.5 mg/g. The excellent co-adsorption performance of NH2-MIL-125 on iodine and NOX was attributed to the synergistic effects of Ti-OH groups and amino functional groups. These findings provide a reference for the capture of radioactive iodine and also demonstrate the potential of NH2-MIL-125 for iodine capture during spent fuel reprocessing.
Collapse
Affiliation(s)
- Xuanhao Liang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Hao Zhang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Ling Zhang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China.
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China; State Key Laboratory of Environment-Friendly Energy Materials, Key Laboratory of Solid Waste Treatment and Resource Recycle, Ministry of Education, Southwest University of Science and Technology, Mianyang 621010, China; Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu 610299, China.
| |
Collapse
|
17
|
Tian Z, Hao Y, Chee TS, Cai H, Zhu L, Duan T, Xiao C. Hollow Core-Shell Bismuth Based Al-Doped Silica Materials for Powerful Co-Sequestration of Radioactive I 2 and CH 3I. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308451. [PMID: 38059738 DOI: 10.1002/smll.202308451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/30/2023] [Indexed: 12/08/2023]
Abstract
Developing pure inorganic materials capable of efficiently co-removing radioactive I2 and CH3I has always been a major challenge. Bismuth-based materials (BBMs) have garnered considerable attention due to their impressive I2 sorption capacity at high-temperature and cost-effectiveness. However, solely relying on bismuth components falls short in effectively removing CH3I and has not been systematically studied. Herein, a series of hollow mesoporous core-shell bifunctional materials with adjustable shell thickness and Si/Al ratio by using silica-coated Bi2O3 as a hard template and through simple alkaline-etching and CTAB-assisted surface coassembly methods (Bi@Al/SiO2) is successfully synthesized. By meticulously controlling the thickness of the shell layer and precisely tuning of the Si/Al ratio composition, the synthesis of BBMs capable of co-removing radioactive I2 and CH3I for the first time, demonstrating remarkable sorption capacities of 533.1 and 421.5 mg g-1, respectively is achieved. Both experimental and theoretical calculations indicate that the incorporation of acid sites within the shell layer is a key factor in achieving effective CH3I sorption. This innovative structural design of sorbent enables exceptional co-removal capabilities for both I2 and CH3I. Furthermore, the core-shell structure enhances the retention of captured iodine within the sorbents, which may further prevent potential leakage.
Collapse
Affiliation(s)
- Zhenjiang Tian
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yuxun Hao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Tien-Shee Chee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, South Korea
| | - He Cai
- Department of Earth and Environmental Sciences, The University of Manchester, 176 Oxford Rd, Manchester, M13 9QQ, UK
| | - Lin Zhu
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Tao Duan
- School of National Defense Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, P. R. China
| | - Chengliang Xiao
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Nuclear Science and Technology, Zhejiang University, Hangzhou, 310058, P. R. China
| |
Collapse
|
18
|
Lu Y, Yu Z, Zhang T, Pan D, Dai J, Li Q, Tao Z, Xiao X. A Cucurbit[8]uril-Based Supramolecular Framework Material for Reversible Iodine Capture in the Vapor Phase and Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308175. [PMID: 38032163 DOI: 10.1002/smll.202308175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The safe and efficient management of hazardous radioactive iodine is significant for nuclear waste reprocessing and environmental industries. A novel supramolecular framework compound based on cucurbit[8]uril (Q[8]) and 4-aminopyridine (4-AP) is reported in this paper. In the single crystal structure of Q[8]-(4-AP), two 4-AP molecules interact with the outer surface of Q[8] and the two other 4-AP molecules are encapsulated into the Q[8] cavity to form the self-assembly Q[8]-(4-AP). Iodine adsorption experiments show that the as-prepared Q[8]-(4-AP) not only has a high adsorption capacity (1.74 g· g-1) for iodine vapor but also can remove the iodine in the organic solvent and the aqueous solution with the removal efficiencies of 95% and 91%, respectively. The presence of a large number of hydrogen bonds between the iodine molecule and the absorbent, as seen in the single crystal structure of iodine-loaded Q[8]-(4-AP) (I2@Q[8]-(4-AP)), is thought to be responsible for the exceptional iodine adsorption capacity of the material. In addition, the adsorption-desorption tests reveal that the self-assembly material has no significant loss of iodine capture capacity after five cycles, indicating that it has sufficient reusability.
Collapse
Affiliation(s)
- Yun Lu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhichao Yu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Tingting Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Dingwu Pan
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jingjing Dai
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qing Li
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhu Tao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
19
|
Yang XL, Zhu QH, Zhang GH, Fu J, Wang SL, Ma L, Qin S, Tao GH, He L. On-site portable detection of gaseous methyl iodide using an electrochemical method. Chem Commun (Camb) 2024; 60:1168-1171. [PMID: 38193242 DOI: 10.1039/d3cc05876j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We report an electrochemical device for portable on-site detection of gaseous CH3I based on PVIm-F for the first time. The device achieves detection of gaseous CH3I with a significant selectivity and a low detection limit (0.474 ppb) in 20 min at 50 °C and 50% relative humidity, which is of great significance for achieving real-time on-site monitoring of radioactive hazardous environments.
Collapse
Affiliation(s)
- Xiao-Lan Yang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Shuang-Long Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Song Qin
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
20
|
Tao Q, Zhang X, Jing L, Sun L, Dang P. Construction of Ketoenamine-Based Covalent Organic Frameworks with Electron-Rich Sites for Efficient and Rapid Removal of Iodine from Solution. Molecules 2023; 28:8151. [PMID: 38138639 PMCID: PMC10745408 DOI: 10.3390/molecules28248151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Porous covalent organic frameworks (COFs) have been widely used for the efficient removal of iodine from solution due to their abundance of electron-rich sites. In this study, two kinds of ketoenamine-based COFs, TpBD-(OMe)2 and TpBD-Me2, are successfully synthesized via Schiff base reaction under solvothermal conditions using 1, 3, 5-triformylphoroglucinol as aldehyde monomer, o-tolidine and o-dianisidine as amino monomers. The ability of TpBD-(OMe)2 and TpBD-Me2 to adsorb iodine in cyclohexane or aqueous solutions has been quantitatively analyzed and interpreted in terms of adsorption sites. TpBD-Me2 possesses two adsorption sites, -NH- and -C=O, and exhibits an adsorption capacity of 681.67 mg/g in cyclohexane, with an initial adsorption rate of 0.6 g/mol/min with respect to COF unit cell. The adsorption capacity of TpBD-(OMe)2 can be as high as 728.77 mg/g, and the initial adsorption rate of TpBD-(OMe)2 can reach 1.2 g/mol/min in the presence of oxygen atoms between the methyl group and the benzene ring. Compared with TpBD-Me2, the higher adsorption capacity and adsorption rate of TpBD-(OMe)2 towards iodine are not only reflected in organic solvents, but also in aqueous solutions. It is proven through X-ray photoelectron spectroscopy and Raman spectroscopy that iodine exists in the form of I2, I3-, and I5- within TpBD-(OMe)2 and TpBD-Me2 after adsorption. This work not only expands the application of COFs in the field of iodine adsorption, but also provides research ideas and important an experimental basis for the optimization of iodine adsorption sites.
Collapse
Affiliation(s)
- Qi Tao
- College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China
| | - Xiao Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education (MOE), School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Liping Jing
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Lu Sun
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Peipei Dang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
21
|
Yaqoob T, Ahmad M, Faiz Y, Ali F, Farooq A, Faiz F, Shah A, Irshad MA, Irfan N, Ali N, Mehmood S. Retention of methyl iodide on metal and TEDA impregnated activated carbon using indigenously developed setup. ENVIRONMENTAL RESEARCH 2023; 238:117133. [PMID: 37729960 DOI: 10.1016/j.envres.2023.117133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/25/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
Removal of methyl iodide (CH3I) from the air present within nuclear facilities is a critical issue. In case of any nuclear accident, there is a great need to mitigate the radioactive organic iodide immediately as it accumulates in human bodies, causing severe consequences. Current research focuses on removing organic iodides, for which the surface of activated carbon (AC) was modified by impregnating it with different metals individually, i.e. Ag, Ni, Zn, Cu and with the novel combination of these four metals (AZNC). After the impregnation of metals, triethylenediamine (TEDA) was coated on metal impregnated activated carbon (IAC) surface. The adsorption capacity of the combination of four metals IAC was found to be 276 mg/g as the maximum for the trapping of CH3I. Whereas TEDA-metal impregnation on ACs enhanced the removal efficiency of CH3I up to 352 mg/g. After impregnation, adsorption capacity of AZNC and AZNCT is significantly higher as compared to AC. According to the finding, t5% of AZNCT IAC is 46 min, which is considerably higher than the t5% of other tested adsorbents. According to isotherm fitting data, Langmuir isotherm was found superior for describing CH3I sorption onto AC and IACs. Kinetics study shows that pseudo second order model represented the sorption of CH3I more accurately than the pseudo first order. Thermodynamic studies gave negative value of ΔG which shows that the reaction is spontaneous in nature. Based on the findings, AZNCT IAC appears to have a great potential for air purification applications in order to obtain clean environment.
Collapse
Affiliation(s)
- Talhat Yaqoob
- Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan; Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Masroor Ahmad
- Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Yasir Faiz
- Chemistry Division, Directorate of Science, Pakistan Institute of Nuclear Science & Technology (PINSTECH), Islamabad, Pakistan
| | - Farman Ali
- Department of Chemistry, Hazara University, Mansehra, Pakistan
| | - Amjad Farooq
- Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Faisal Faiz
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, China
| | - Attaullah Shah
- National Institute of Lasers and Optronics College, Pakistan Institute of Engineering and Applied Sciences, Nilore, Islamabad, 45650, Pakistan
| | - Muhammad Asim Irshad
- Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Naseem Irfan
- Hazardous Air Pollutants Laboratory, Pakistan Institute of Engineering & Applied Sciences, Islamabad, Pakistan
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, PR China
| | - Sahid Mehmood
- Department of Chemistry, Hazara University, Mansehra, Pakistan.
| |
Collapse
|
22
|
Kim MB, Yu J, Ra Shin SH, Johnson HM, Motkuri RK, Thallapally PK. Enhanced Iodine Capture Using a Postsynthetically Modified Thione-Silver Zeolitic Imidazole Framework. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54702-54710. [PMID: 37963227 DOI: 10.1021/acsami.3c13800] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Efficient management of radionuclides that are released from various processes in the nuclear fuel cycle is of significant importance. Among these nuclides, radioactive iodine (mainly 129I and 131I) is a major concern due to the risk it poses to the environment and to human health; thus, the development of materials that can capture and safely store radioactive iodine is crucial. Herein, a novel silver-thione-functionalized zeolitic imidazole framework (ZIF) was synthesized via postsynthetic modification and assessed for its iodine uptake capabilities alongside the parent ZIF-8 and intermediate materials. A solvent-assisted ligand exchange procedure was used to replace the 2-methylimidazole linkers in ZIF-8 with 2-mercaptoimidazole, forming intermediate compound ZIF-8 = S, which was reacted with AgNO3 to yield the ZIF-8 = S-Ag+ composite for iodine uptake. Despite possessing the lowest BET surface area of the derivatives, the Ag-functionalized material demonstrated superior I2 adsorption in terms of both maximum capacity (550 g I2/mol) and rapid kinetics (50% loading achieved in 5 h, saturation in 50 h) compared to that of our pristine ZIF-8, which reached 450 g I2/mol after 150 h and 50% loading in 25 h. This improvement is attributed to the presence of the Ag+ ions, which provide a strong chemical driving force to form a stable Ag-I species. The results of this study contribute to a broader understanding of the strategies that can be employed to engineer adsorbents with robust iodine uptake behavior.
Collapse
Affiliation(s)
- Min-Bum Kim
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jierui Yu
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Sun Hae Ra Shin
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Radha Kishan Motkuri
- Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | | |
Collapse
|
23
|
Maji S, Natarajan R. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302902. [PMID: 37394720 DOI: 10.1002/smll.202302902] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/04/2023]
Abstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g-1 at 75 °C and 1.40 g g-1 at rt), organic solvents (2.1 g g-1 ), and aqueous solutions (1.8 g g-1 in the pH range of 3-8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
24
|
Li G, Liang J, Lin J, Li H, Liu Y, Xu G, Yu C, Guo Z, Tang C, Huang Y. Boron nitride aerogels incorporated with metal nanoparticles: Multifunctional platforms for iodine capture and detection. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132481. [PMID: 37690206 DOI: 10.1016/j.jhazmat.2023.132481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/21/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Radioactive iodine vapors produced by nuclear fission can pose a significant risk to human health and the environment. Effective monitoring of iodine vapor leakage, capture and storage of radioactive iodine vapor are of great importance for the safety of the nuclear industry. Herein, we report a novel structure-function integrated solid iodine vapor adsorbent based on metal-modified boron nitride (BN) aerogel. Metal-modified BN aerogels incorporated with Cu/Ag nanoparticles (named as BN-Cu and BN-Ag, respectively) are successfully prepared by a metal-induced, ultrasonic-assisted, and in-situ transformation method. The metal-modified BN aerogels show improved mechanical properties in both of the maximum stress and residual deformation. Remarkably, due to the greatly enhanced "host-guest" and "guest-guest" effects by the introduction of metal nanoparticles, the BN-Cu and BN-Ag aerogels exhibit record-breaking iodine vapor adsorption capacities among inorganic adsorbents (1739.8 and 2234.13 wt% respectively), which are even higher than that of most organic adsorbents. Furthermore, an integrated iodine adsorption detection device based on metal-modified aerogels is constructed to realize real-time detection of the electrical properties of aerogels during iodine adsorption. This work provides a foundation for the development of BN aerogels as multifunctional platforms for effective iodine capture and detection. It also introduces new ideas for the use of structural-functional integrated materials in the prevention and control of radioactive iodine pollution.
Collapse
Affiliation(s)
- Gen Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jianli Liang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Jing Lin
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| | - Hongyu Li
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yan Liu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Guoyang Xu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chao Yu
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Zhonglu Guo
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Chengchun Tang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China
| | - Yang Huang
- School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130, PR China; Hebei Key Laboratory of Boron Nitride Micro and Nano Materials, Hebei University of Technology, Tianjin 300130, PR China.
| |
Collapse
|
25
|
Zhour K, Daouli A, Postnikov A, Hasnaoui A, Badawi M. Potential of nanostructured carbon materials for iodine detection in realistic environments revealed by first-principles calculations. Phys Chem Chem Phys 2023; 25:26461-26474. [PMID: 37752811 DOI: 10.1039/d3cp02205f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In the context of effective detection of iodine species (I2, CH3I) formed in nuclear power plants and nuclear fuel reprocessing facilities, we perform a comparative study of the potential sensing performance of four expectedly promising 2D materials (8-Pmmn borophene, BC3, C3N, and BC6N) towards the iodine-containing gases and, with the view of checking selectivity, towards common inhibiting gases in the containment atmosphere (H2O and CO), applying methods of dispersion-corrected density functional theory with periodic boundary conditions. A covalent bond is formed between the CO molecule and boron in BC3 or in 8-Pmmn borophene, compromising the anticipated applicability of these materials for iodine detection. The presence of nitrogen atoms in BC6N-2 prevents the formation of a covalent bond with CO; however, the closeness of adsorption energies for all the four gases studied does not distinguish this material as specifically sensitive to iodine species. Finally, the energies of adsorption on C3N yield a significant and promising discrimination between the adsorption energies of (I2, CH3I) vs. (CO, H2O), revealing possibilities for this material's use as an iodine sensor. The conclusions are supported by simulations at finite temperature; underlying electronic structures are also discussed.
Collapse
Affiliation(s)
- Kazem Zhour
- LCPT, Université de Lorraine, F-54000 Nancy, France.
| | - Ayoub Daouli
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | | - Abdellatif Hasnaoui
- LS2ME, Sultan Moulay Slimane University of Beni Mellal, FP-Khouribga, Morocco
| | | |
Collapse
|
26
|
Zhou ZH, Li XJ, Huang ZW, Mei L, Ma FQ, Yu JP, Zhang Q, Chai ZF, Hu KQ, Shi WQ. Th 6-Based Multicomponent Heterometallic Metal-Organic Frameworks Featuring 6,12-Connected Topology for Iodine Adsorption. Inorg Chem 2023; 62:15346-15351. [PMID: 37682658 DOI: 10.1021/acs.inorgchem.3c02202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Its high coordination number and tendency to cluster make Th4+ suitable for constructing metal-organic frameworks (MOFs) with novel topologies. In this work, two novel thorium-based heterometallic MOF isomers (IHEP-17 and IHEP-18) were assembled from a Th6 cluster, a multifunctional organic ligand [4-(1H-pyrazol-4-yl)benzoic acid (HPyba)], and Cu2+/Ni2+ cations via the one-pot solvothermal synthesis strategy. The framework features a 6,12-connected new topology net and contains two kinds of supramolecular cage structures, Th36M4 and Th24M2, suitable for guest exchange. Both MOF materials can efficiently adsorb I2. X-ray photoelectron spectroscopy, Raman spectroscopy, and single-crystal X-ray diffraction indicate that the adsorbed iodine is uniformly distributed within the Th36M4 cage but not the Th24M2 cage in the form of I3-.
Collapse
Affiliation(s)
- Zhi-Heng Zhou
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Xing-Jun Li
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Wei Huang
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Mei
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Qiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, Shandong, China
| | - Ji-Pan Yu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Zhang
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zhi-Fang Chai
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Kong-Qiu Hu
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Qun Shi
- Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Benkhaled BT, Chaix A, Gomri C, Buys S, Namar N, Sehoulia N, Jadhav R, Richard J, Lichon L, Nguyen C, Gary-Bobo M, Semsarilar M. Novel Biocompatible Trianglamine Networks for Efficient Iodine Capture. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42942-42953. [PMID: 37647569 DOI: 10.1021/acsami.3c08061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Herein, we report for the first time a biocompatible cross-linked trianglamine (Δ) network for the efficient iodine removal from the vapor phase, water, and seawater. In the vapor phase, the cross-linked network could capture 6 g g-1 of iodine, ranking among the most performant materials for iodine vapor capture. In the liquid phase, this cross-linked network is also capable of capturing iodine at high rates from aqueous media (water and seawater). This network displayed fast adsorption kinetics, and they are fully recyclable. This study reveals the high affinity of iodine for the intrinsic cavity of the trianglamine. The synthesized materials are extremely interesting since they are environmentally friendly and inexpensive and the synthesis could easily be scaled up to be used as the material of choice in response to accidents in the nuclear industry.
Collapse
Affiliation(s)
| | - Arnaud Chaix
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Chaimaa Gomri
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Sébastien Buys
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nabil Namar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Nadine Sehoulia
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Rohitkumar Jadhav
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Jason Richard
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| | - Laure Lichon
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Christophe Nguyen
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Magali Gary-Bobo
- IBMM, Univ Montpellier, CNRS, ENSCM, Institut des Biomolécules Max Mousseron, Montpellier 34095, France
| | - Mona Semsarilar
- IEM, Univ Montpellier, CNRS, ENSCM, Institut Européen des Membranes, Montpellier 34095, France
| |
Collapse
|
28
|
Cao J, Duan S, Zhao Q, Chen G, Wang Z, Liu R, Zhu L, Duan T. Three-Dimensional-Network-Structured Bismuth-Based Silica Aerogel Fiber Felt for Highly Efficient Immobilization of Iodine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12910-12919. [PMID: 37649325 DOI: 10.1021/acs.langmuir.3c02041] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The effective capture and deposition of radioactive iodine in the spent fuel reprocessing process is of great importance for nuclear safety and environmental protection. Three-dimensional (3D) fiber felt with structural diversity and tunability is applied as an efficient adsorbent with easy separation for iodine capture. Here, a bismuth-based silica aerogel fiber felt (Bi@SNF) was synthesized using a facile hydrothermal method. Abundant and homogeneous Bi nanoparticles greatly enhanced the adsorption and immobilization of iodine. Notably, Bi@SNF demonstrated a high capture capacity of 982.9 mg/g by forming stable BiI3 and Bi5O7I phases, which was about 14 times higher than that of the unloaded material. Fast uptake kinetics and excellent resistance to nitric acid and radiation were exhibited as a result of the 3D porous interconnected network and silica aerogel fiber substrate. Adjustable size and easy separation and recovery give the material potential as a radioactive iodine gas capture material.
Collapse
Affiliation(s)
- Jiaxin Cao
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Siyihan Duan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Qian Zhao
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Guangyuan Chen
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Zeru Wang
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Ruixi Liu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Lin Zhu
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| | - Tao Duan
- State Key Laboratory of Environment-Friendly Energy Materials, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
- Tianfu Institute of Research and Innovation, Southwest University of Science and Technology, Chengdu, Sichuan 610299, People's Republic of China
- National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang, Sichuan 621010, People's Republic of China
| |
Collapse
|
29
|
Zhou W, Li A, Zhou M, Xu Y, Zhang Y, He Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat Commun 2023; 14:5388. [PMID: 37666841 PMCID: PMC10477329 DOI: 10.1038/s41467-023-41056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Adsorbents widely utilized for environmental remediation, water purification, and gas storage have been usually reported to be either porous or crystalline materials. In this contribution, we report the synthesis of two covalent organic superphane cages, that are utilized as the nonporous amorphous superadsorbents for aqueous iodine adsorption with the record-breaking iodine adsorption capability and selectivity. In the static adsorption system, the cages exhibit iodine uptake capacity of up to 8.41 g g-1 in I2 aqueous solution and 9.01 g g-1 in I3- (KI/I2) aqueous solution, respectively, even in the presence of a large excess of competing anions. In the dynamic flow-through experiment, the aqueous iodine adsorption capability for I2 and I3- can reach up to 3.59 and 5.79 g g-1, respectively. Moreover, these two superphane cages are able to remove trace iodine in aqueous media from ppm level (5.0 ppm) down to ppb level concentration (as low as 11 ppb). Based on a binding-induced adsorption mechanism, such nonporous amorphous molecular materials prove superior to all existing porous adsorbents. This study can open up a new avenue for development of state-of-the-art adsorption materials for practical uses with conceptionally new nonporous amorphous superadsorbents (NAS).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yiyao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|
30
|
Liao H, Wang Y, Zhu Y, Zhang M, Wang H, Zhang X, Liu G, Tan C. Iodine Molecules within Triethylenediamine-Based Metal-Organic Frameworks for Hydrolysis/Alkylation Tandem Reactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38433-38443. [PMID: 37535436 DOI: 10.1021/acsami.3c06326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
The integration of radionuclide iodine molecules in metal-organic frameworks (MOFs) for organic synthesis is attracting considerable research attention due to their specific catalytic performance. However, understanding the comprehensive catalytic behaviors of different types of molecular iodine encapsulated in MOFs for a sequential organic transformation is a great challenge. To address this issue, we have designed two triethylenediamine-functionalized MOFs assembled from 1,3,5-tricarboxyphenyl-2-(triethylenediaminemethyl)benzene-linker and {Cd(COO)3N} or {Cu4(u3-OH)2(COO)6N} clusters. Both MOFs show good stability and adsorption of I2 in the solution and vapor phases. Catalysts obtained after treatment with ethyl acetate present efficient catalytic activity in hydrolysis/alkylation tandem reactions in water. The mechanistic investigations disclose a sequential catalytic process comprising a "hidden" Brønsted acid catalytic hydrolysis of acetals to aldehydes followed by the I2-bonding Lewis acid catalytic alkylation of aldehydes to 3,3'-disubstituted 1H-indoles.
Collapse
Affiliation(s)
- Haocheng Liao
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yongjie Wang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Yuanli Zhu
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Mengzhi Zhang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Houting Wang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Xiang Zhang
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Guohua Liu
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| | - Chunxia Tan
- Joint Laboratory on Resource Chemistry of Ministry of Education, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai Normal University, Shanghai 200234, P. R. China
| |
Collapse
|
31
|
Yu RL, Li QF, Li ZL, Wang XY, Xia LZ. Analysis of Radioactive Iodine Trapping Mechanism by Zinc-Based Metal-Organic Frameworks with Various N-Containing Carboxylate Ligands. ACS APPLIED MATERIALS & INTERFACES 2023; 15:35082-35091. [PMID: 37458304 DOI: 10.1021/acsami.3c07032] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
This study aimed to develop effective adsorbents for capturing radioactive iodine in nuclear power waste gas. Two zinc metal-organic frameworks (Zn-MOFs) were synthesized and found to have favorable properties such as a large surface area, thermal stability, surface rich in π-electron-containing nitrogen, and redox potential. Adsorption experiments revealed maximum capacities of 1.25 and 1.96 g g-1 for the MOFs at 75 °C, with the pseudo-second-order kinetic model fitting the data well. The Langmuir equation provided a better fit in cyclohexane, with maximum adsorption amounts of 249 and 358 mg g-1 for Zn-MOF-1 and Zn-MOF-2, respectively. The MOFs were also stable during six cycles of adsorption and desorption. Furthermore, electron transfer occurred due to the synergistic adsorption of Zn, N, and O atoms, resulting in the conversion of some iodine to polyiodide. Zn-MOF-2 exhibited better chemisorption than Zn-MOF-1 due to a smaller highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap. Notably, it was discovered that N-containing radicals had stronger interactions with iodine compared to radicals without N. These findings provide valuable insights into MOF synthesis and environmental protection.
Collapse
Affiliation(s)
- Rui-Li Yu
- Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Qian-Fan Li
- Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zhen-Le Li
- Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiao-Yu Wang
- Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Liang-Zhi Xia
- Department of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
32
|
Alsudairy Z, Brown N, Yang C, Cai S, Akram F, Ambus A, Ingram C, Li X. Facile Microwave-Assisted Synthesis of 2D Imine-Linked Covalent Organic Frameworks for Exceptional Iodine Capture. PRECISION CHEMISTRY 2023; 1:233-240. [PMID: 37388216 PMCID: PMC10302871 DOI: 10.1021/prechem.3c00006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 07/01/2023]
Abstract
Covalent organic frameworks (COFs) have emerged as auspicious porous adsorbents for radioiodine capture. However, their conventional solvothermal synthesis demands multiday synthetic times and anaerobic conditions, largely hampering their practical use. To tackle these challenges, we present a facile microwave-assisted synthesis of 2D imine-linked COFs, Mw-TFB-BD-X, (X = -CH3 and -OCH3) under air within just 1 h. The resultant COFs possessed higher crystallinity, better yields, and more uniform morphology than their solvothermal counterparts. Remarkably, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 exhibited exceptional iodine adsorption capacities of 7.83 g g-1 and 7.05 g g-1, respectively, placing them among the best-performing COF adsorbents for static iodine vapor capture. Moreover, Mw-TFB-BD-CH3 and Mw-TFB-BD-OCH3 can be reused 5 times with no apparent loss in the adsorption capacity. The exceptionally high iodine adsorption capacities and excellent reusability of COFs were mainly attributed to their uniform spherical morphology and enhanced chemical stability due to the in-built electron-donating groups, despite their low surface areas. This work establishes a benchmark for developing advanced iodine adsorbents that combine fast kinetics, high capacity, excellent reusability, and facile rapid synthesis, a set of appealing features that remain challenging to merge in COF adsorbents so far.
Collapse
Affiliation(s)
- Ziad Alsudairy
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Normanda Brown
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Chongqing Yang
- The
Molecular Foundry, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Songliang Cai
- School
of Chemistry, Guangzhou Key Laboratory of Analytical Chemistry for
Biomedicine, South China Normal University, Guangzhou 510006, P. R. China
| | - Fazli Akram
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Abrianna Ambus
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Conrad Ingram
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| | - Xinle Li
- Department
of Chemistry, Clark Atlanta University, Atlanta, Georgia 30314, United States
| |
Collapse
|
33
|
Zhang X, Li J, Niu Y. Two New 1D Supramolecular Compounds Based on PbI2 for Efficient Iodine Capture. Molecules 2023; 28:molecules28072934. [PMID: 37049697 PMCID: PMC10096370 DOI: 10.3390/molecules28072934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/16/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Two new inorganic-organic hybrid crystals based on PbI2 were assembled through the solvent evaporation method, namely, {[L1]·[Pb2I6]}n (1) and {[L2]2·[Pb3I10]}n (2). L1-L2 are a series of multivalent nitrogen-containing cationic ligands. Compounds 1–2 were characterized by single-crystal X-ray diffraction, elemental analysis, FT-IR, powder X-ray diffraction, and thermogravimetric microanalysis. The results showed that the adsorption rate of 80 mg compound 1 to iodine reached 96.59%, indicating a high iodine capture performance in cyclohexane solution. In the meantime, the adsorption kinetics is most suitable for a pseudo-second-order model, and the adsorption process is mainly chemisorption. Adsorption thermodynamics is most suitable for the Langmuir model, indicating that adsorption occurs on the surface of the monolayer. According to the adsorption mechanism, it can be inferred that the structure of compound 1 contains amino, benzene, N heterocyclic, and other active groups, that is, indirectly increases the adsorption site with iodine, and the chemical reaction with iodine improves the removal rate of iodine in cyclohexane solution. In addition, compound 1 was found to have good iodine adsorption and recyclability by cyclic experiments. Therefore, the synthesized compound 1 can be used as a potential and excellent iodide capture adsorbent, which may have a good application prospects in the future.
Collapse
Affiliation(s)
- Xingxing Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jian Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Yunyin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
34
|
Yu J, Chen X, Ren H, Li X, Shi X, Chen Z, Liang S, Li Y. Study on adsorption characteristics of radioactive gaseous iodine on Ag ion exchange molecular sieve. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
35
|
Grubel K, Rosenthal WS, Autrey T, Henson NJ, Koh K, Flowers S, Blake TA. An experimental, computational, and uncertainty analysis study of the rates of iodoalkane trapping by DABCO in solution phase organic media. Phys Chem Chem Phys 2023; 25:6914-6926. [PMID: 36807434 DOI: 10.1039/d2cp05286e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
NMR spectroscopy was used to measure the rates of the first and second substitution reactions between iodoalkane (R = Me, 1-butyl) and DABCO in methanol, acetonitrile and DMSO. Most of the reactions were recorded at three different temperatures, which permitted calculation of the activation parameters from Eyring and Arrhenius plots. Additionally, the reaction rate and heat of reaction for 1-iodobutane + DABCO in acetonitrile and DMSO were also measured using calorimetry. To help interpret experimental results, ab initio calculations were performed on the reactant, product, and transition state entities to understand structures, reaction enthalpies and activation parameters. Markov chain Monte Carlo statistical sampling was used to determine a distribution of kinetic rates with respect to the uncertainties in measured concentrations and correlations between parameters imposed by a kinetics model. The reactions with 1-iodobutane are found to be slower in all cases compared to reactions under similar conditions for iodomethane. This is due to steric crowding around the reaction centre for the larger butyl group compared to methyl which results in a larger activation energy for the reaction.
Collapse
Affiliation(s)
- Katarzyna Grubel
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA.
| | - W Steven Rosenthal
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA.
| | - Tom Autrey
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA.
| | - Neil J Henson
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA. .,Department of Chemistry, Washington State University, Pullman, WA 99164, USA
| | - Katherine Koh
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA.
| | - Sarah Flowers
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA. .,Boston Heart Diagnostics, 31 Gage St., Needham, MA 02492, USA
| | - Thomas A Blake
- Pacific Northwest National Laboratory, P.O. Box 999, Mail Stop K4-13, Richland, WA 99352, USA.
| |
Collapse
|
36
|
Asmussen RM, Westesen A, Cordova EA, Fujii Yamagata AL, Schonewill PP, Moore AC, Bourchy A, Saslow SA, Smith GL, Riley BJ, Skeen RS. Iodine Removal from Carbonate-Containing Alkaline Liquids Using Strong Base Resins, Hybrid Resins, and Silver Precipitation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- R. Matthew Asmussen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Amy Westesen
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Elsa A. Cordova
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Alessandra Lie Fujii Yamagata
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Philip P. Schonewill
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Aryiana C. Moore
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Agathe Bourchy
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Sarah A. Saslow
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Gary L. Smith
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Brian J. Riley
- Energy and Environment Directorate, Pacific Northwest National Laboratory, 902 Battelle BLVD, Richland, Washington 99352, United States
| | - Rodney S. Skeen
- Washington River Protection Solutions, LLC, 2505 Garlick Rd, Richland, Washington 99352, United States
| |
Collapse
|
37
|
Highly Efficient Iodine Capture by Hydrophobic Bismuth-based Chrysotile Membrane from Humid Gas Streams. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
38
|
Efficient removal of iodide/iodate from aqueous solutions by Purolite A530E resin. J Radioanal Nucl Chem 2023. [DOI: 10.1007/s10967-023-08786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
39
|
Wang ST, Liu YJ, Zhang CY, Yang F, Fang WH, Zhang J. Cluster-Based Crystalline Materials for Iodine Capture. Chemistry 2023; 29:e202202638. [PMID: 36180419 DOI: 10.1002/chem.202202638] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/06/2022]
Abstract
The treatment of radioactive iodine in nuclear waste has always been a critical issue of social concern. The rational design of targeted and efficient capture materials is of great significance to the sustainable development of the ecological environment. In recent decades, crystalline materials have served as a molecular platform to study the binding process and capture mechanism of iodine molecules, enabling people to understand the interaction between radioactive iodine guests and pores intuitively. Cluster-based crystalline materials, including molecular clusters and cluster-based metal-organic frameworks, are emerging candidates for iodine capture due to their aggregative binding sites, precise structural information, tunable pores/packing patterns, and abundant modifications. Herein, recent progress of different types of cluster materials and cluster-dominated metal-organic porous materials for iodine capture is reviewed. Research prospects, design strategies to improve the affinity for iodine and possible capture mechanisms are discussed.
Collapse
Affiliation(s)
- San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.,University of Chinese Academy of Sciences Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ya-Jie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Cheng-Yang Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fan Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
40
|
Asmussen RM, Turner J, Chong S, Riley BJ. Review of recent developments in iodine wasteform production. Front Chem 2022; 10:1043653. [PMID: 36618856 PMCID: PMC9816813 DOI: 10.3389/fchem.2022.1043653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Radioiodine capture and immobilization is not only important to consider during the operation of reactors (i.e., I-131), during nuclear accidents (i.e., I-131 and I-129) or nuclear fuel reprocessing (i.e., I-131 and I-129), but also during disposal of nuclear wastes (i.e., I-129). Most disposal plans for I-129-containing waste forms (including spent nuclear fuel) propose to store them in underground repositories. Here, iodine can be highly mobile and, given its radiotoxicity, needs to be carefully managed to minimize long-term environmental impacts arising from disposal. Typically, any process that has been used to capture iodine from reprocessing or in a reactor is not suitable for direct disposal, rather conversion into a wasteform for disposal is required. The objectives of these materials are to use either chemical immobilization or physical encapsulation to reduce the leaching of iodine by groundwaters. Some of the more recent ideas have been to design capture materials that better align with disposal concepts, making the industrial processing requirements easier. Research on iodine capture materials and wasteforms has been extensive. This review will act as both an update on the state of the research since the last time it was comprehensively summarized, and an evaluation of the industrial techniques required to create the proposed iodine wasteforms in terms of resulting material chemistry and applicability.
Collapse
Affiliation(s)
- R. Matthew Asmussen
- Pacific Northwest National Laboratory, Richland, WA, United States,*Correspondence: R. Matthew Asmussen, ; Joshua Turner,
| | - Joshua Turner
- National Nuclear Laboratory, Sellafield, Cumbria, United Kingdom,*Correspondence: R. Matthew Asmussen, ; Joshua Turner,
| | - Saehwa Chong
- Pacific Northwest National Laboratory, Richland, WA, United States
| | - Brian J. Riley
- Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|
41
|
Zhao Q, Liao C, Chen G, Liu R, Wang Z, Xu A, Ji S, Shih K, Zhu L, Duan T. In Situ Confined Synthesis of a Copper-Encapsulated Silicalite-1 Zeolite for Highly Efficient Iodine Capture. Inorg Chem 2022; 61:20133-20143. [PMID: 36426769 DOI: 10.1021/acs.inorgchem.2c03582] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Effective capture of radioactive iodine is highly desirable for decontamination purposes in spent fuel reprocessing. Cu-based adsorbents with a low cost and high chemical affinity for I2 molecules act as a decent candidate for iodine elimination, but the low utilization and stability remain a significant challenge. Herein, a facile in situ confined synthesis strategy is developed to design and synthesize a copper-encapsulated flaky silicalite-1 (Cu@FSL-1) zeolite with a thickness of ≤300 nm. The maximum iodine uptake capacity of Cu@FSL-1 can reach 625 mg g-1 within 45 min, which is 2 times higher than that of a commercial silver-exchanged zeolite even after nitric acid and NOX treatment. The Cu nanoparticles (NPs) confined within the zeolite exert superior iodine adsorption and immobilization properties as well as high stability and fast adsorption kinetics endowed by the all-silica zeolite matrix. This study provides new insight into the design and controlled synthesis of zeolite-confined metal adsorbents for efficient iodine capture from gaseous radioactive streams.
Collapse
Affiliation(s)
- Qian Zhao
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Changzhong Liao
- Key Laboratory of New Processing for Nonferrous Metal and Materials (Ministry of Education), School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Guangyuan Chen
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Ruixi Liu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Zeru Wang
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Anhu Xu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Shiyin Ji
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Kaimin Shih
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 852, HKSAR, China
| | - Lin Zhu
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Tao Duan
- National Co-Innovation Center for Nuclear Waste Disposal and Environmental Safety, Southwest University of Science and Technology, Mianyang 621010, China
- State Key Laboratory of Environment-Friendly Energy Materials, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| |
Collapse
|
42
|
Xian JY, Huang ZY, Xie XX, Lin CJ, Zhang XJ, Song HY, Zheng SR. A cationic nanotubular metal-organic framework for the removal of Cr2O72– and Iodine. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2022. [DOI: 10.1016/j.cjsc.2022.100005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
43
|
Wu Y, Guo Y, Su R, Ma X, Wu Q, Zeng Z, Li L, Yao X, Wang S. Hierarchical porous carbon with an ultrahigh surface area for high-efficient iodine capture: Insights into adsorption mechanisms through experiments, simulations and modeling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
44
|
Liu S, Zeng Y, Liu J, Li J, Peng H, Xie H, Zou H, Xiao C, Hua X, Bao J, Xian L, Li Y, Chi F. Efficient capture and stable storage of radioactive iodine by bismuth-based ZIF-8 derived carbon materials as adsorbents. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Synthesis and Iodine Adsorption Properties of Organometallic Copolymers with Propeller-Shaped Fe(II) Clathrochelates Bridged by Different Diaryl Thioether and Their Oxidized Sulfone Derivatives. Polymers (Basel) 2022; 14:polym14224818. [PMID: 36432945 PMCID: PMC9697507 DOI: 10.3390/polym14224818] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Three organometallic copolymers, ICP1-3, containing iron(II) clathrochelate units with cyclohexyl lateral groups and interconnected by various thioether derivatives were synthesized. The reaction of the latter into their corresponding OICP1-3 sulfone derivatives was achieved quantitatively using mild oxidation reaction conditions. The target copolymers, ICP1-3 and OICP1-3, were characterized by various instrumental analysis techniques, and their iodine uptake studies disclosed excellent iodine properties, reaching a maximum of 360 wt.% (qe = 3600 mg g-1). The adsorption mechanisms of the copolymers were explored using pseudo-first-order and pseudo-second-order kinetic models. Furthermore, regeneration tests confirmed the efficiency of the target copolymers for their iodine adsorption even after several adsorption-desorption cycles.
Collapse
|
46
|
Wu X, Che Y, Chen L, Amigues EJ, Wang R, He J, Dong H, Ding L. Mapping the Porous and Chemical Structure-Function Relationships of Trace CH 3I Capture by Metal-Organic Frameworks using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47209-47221. [PMID: 36197758 DOI: 10.1021/acsami.2c10861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Large-scale computational screening has become an indispensable tool for functional materials discovery. It, however, remains a challenge to adequately interrogate the large amount of data generated by a screening study. Here, we computationally screened 1087 metal-organic frameworks (MOFs), from the CoRE MOF 2014 database, for capturing trace amounts (300 ppmv) of methyl iodide (CH3I); as a primary representative of organic iodides, CH3129I is one of the most difficult radioactive contaminants to separate. Furthermore, we demonstrate a simple and general approach for mapping and interrogating the high-dimensional structure-function data obtained by high-throughput screening; this involves learning two-dimensional embeddings of the high-dimensional data by applying unsupervised learning to encoded structural and chemical features of MOFs. The resulting various porous and chemical structure-function maps are human-interpretable, revealing not only top-performing MOFs but also complex structure-function correlations that are hidden when inspecting individual MOF features. These maps also alleviate the need of laborious visual inspection of a large number of MOFs by clustering similar MOFs, per the encoding features, into defined regions on the map. We also show that these structure-function maps are amenable to supervised classification of the performances of MOFs for trace CH3I capture. We further show that the machine-learning models trained on the 1087 CoRE MOFs can be used to predict an unseen set of 250 MOFs randomly selected from a different MOF database, achieving high prediction accuracies.
Collapse
Affiliation(s)
- Xiaoyu Wu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Yu Che
- Department of Chemistry and Materials Innovation Factory, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Linjiang Chen
- School of Chemistry and School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Eric Jean Amigues
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Ruiyao Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Huilong Dong
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, Jiangsu, P. R. China
| | - Lifeng Ding
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
47
|
Robshaw TJ, Turner J, Tuck O, Pyke C, Kearney S, Simoni M, Sharrad CA, Walkley B, Ogden MD. Functionality screening to help design effective materials for radioiodine abatement. Front Chem 2022; 10:997147. [PMID: 36329859 PMCID: PMC9623042 DOI: 10.3389/fchem.2022.997147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
This paper is part of a growing body of research work looking at the synthesis of an optimal adsorbent for the capture and containment of aqueous radioiodine from nuclear fuel reprocessing waste. 32 metalated commercial ion exchange resins were subjected to a two-tier screening assessment for their capabilities in the uptake of iodide from aqueous solutions. The first stage determined that there was appreciable iodide capacity across the adsorbent range (12–220 mg·g−1). Candidates with loading capacities above 40 mg·g−1 were progressed to the second stage of testing, which was a fractional factorial experimental approach. The different adsorbents were treated as discrete variables and concentrations of iodide, co-contaminants and protons (pH) as continuous variables. This gave rise to a range of extreme conditions, which were representative of the industrial challenges of radioiodine abatement. Results were fitted to linear regression models, both for the whole dataset (R2 = 59%) and for individual materials (R2 = 18–82%). The overall model determined that iodide concentration, nitrate concentration, pH and interactions between these factors had significant influences on the uptake. From these results, the top six materials were selected for project progression, with others discounted due to either poor uptake or noticeable iodide salt precipitation behaviour. These candidates exhibited reasonable iodide uptake in most experimental conditions (average of >20 mg·g−1 hydrated mass), comparing favourably with literature values for metallated adsorbents. Ag-loaded Purolite S914 (thiourea functionality) was the overall best-performing material, although some salt precipitation was observed in basic conditions. Matrix effects not withstanding it is recommended that metalated thiourea, bispicolylamine, and aminomethylphosphonic acid functionalized silicas warrant further exploration.
Collapse
Affiliation(s)
- Thomas J. Robshaw
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
- Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Joshua Turner
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Olivia Tuck
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Caroline Pyke
- National Nuclear Laboratory, Central Laboratory, Sellafield, Seascale, United Kingdom
| | - Sarah Kearney
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Marco Simoni
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Clint A. Sharrad
- Department of Chemical Engineering and Analytical Science, the University of Manchester, Manchester, United Kingdom
| | - Brant Walkley
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
| | - Mark D. Ogden
- Department of Chemical and Biological Engineering, the University of Sheffield, Sheffield, United Kingdom
- *Correspondence: Mark D. Ogden,
| |
Collapse
|
48
|
Chang S, Wang K, Gao L, Liu J, Wang L, Li Y, Song X, Yu J, Luan X. Highly efficient adsorption of radioiodine by a three-dimensional ordered macroporous bismuth-silica composite aerogel. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
49
|
Efficient capture of radioactive iodine by Ag-attached silica gel and its kinetics. NUCLEAR MATERIALS AND ENERGY 2022. [DOI: 10.1016/j.nme.2022.101270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Shen Z, Wiechert AI, Choi S, Tavlarides LL, Tsouris C, Yiacoumi S. Silver Sulfide and Silver Sulfate as Aging Byproducts and Adsorbents for Gaseous Iodine Capture in Spent Nuclear Fuel Reprocessing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ziheng Shen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, Georgia 30332-0373, United States
| | - Alexander I. Wiechert
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, Georgia 30332-0373, United States
| | - Seungrag Choi
- Department of Biomedical and Chemical Engineering, Syracuse University, 130 Sims Dr, Syracuse, New York 13244, United States
| | - Lawrence L. Tavlarides
- Department of Biomedical and Chemical Engineering, Syracuse University, 130 Sims Dr, Syracuse, New York 13244, United States
| | - Costas Tsouris
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, Georgia 30332-0373, United States
- Manufacturing Science Division, Oak Ridge National Laboratory, 1 Bethel Valley Rd, Oak Ridge, Tennessee 37830, United States
| | - Sotira Yiacoumi
- School of Civil and Environmental Engineering, Georgia Institute of Technology, 200 Bobby Dodd Way, Atlanta, Georgia 30332-0373, United States
| |
Collapse
|