1
|
Wu Q, Chen Y, Wang YL, Song JY, Lv HT, Sun YM. Dual emission chiral carbon dots as fluorescent probe for fast chiral recognition of tryptophan enantiomers. Anal Chim Acta 2025; 1334:343414. [PMID: 39638463 DOI: 10.1016/j.aca.2024.343414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Chirality is an essential property of nature. Chiral recognition is of great significance to life sciences, pharmaceutical industry, food analysis, and so on. Chiral carbon dots (CCDs), as green nanomaterials, have great prospects in chiral sensing. However, CCDs with enantioselectivity for tryptophan (Trp) enantiomers are scarce. Moreover, most chiral sensing platforms depend on the difference of fluorescence intensity at the same emission wavelength to identify enantiomers, it is still a challenge to distinguish enantiomers by the positions of fluorescent emission peaks. RESULTS Novel CCDs with specific chiral recognition ability for Trp enantiomers are synthesized using l-lysine and l-cysteine as precursors. The CCDs have two fluorescent emission peaks at 390 nm and 450 nm. Interestingly, the fluorescence intensity of CCDs at 390 nm enhances obviously on the addition of L-Trp, while it enhances slightly at 450 nm in the presence of D-Trp. This chiral sensing system not only can identify Trp enantiomers according to fluorescence intensity, but also achieves the distinguishment depending on emission wavelength. The enantioselectivity (IL/ID) reaches 4.5 when the concentration of Trp enantiomer is 1 mM. This chiral sensing platform not only can be used for quantitative analysis of D-Trp and L-Trp, but also can be used for determining the enantiomeric excess of racemates. The chiral recognition mechanism is investigated by molecular simulation. It is found that L-Trp has higher binding energy with CCDs. SIGNIFICANCE This work presents a novel kind of CCDs with special chiral recognition performance for Trp enantiomers, and opens the door to identify chiral isomers according to wavelength difference, which has profound significance for the development of chiral sensing platforms, and may provide inspirations for the design of novel CCDs with excellent chiral recognition performance.
Collapse
Affiliation(s)
- Qi Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Yuan Chen
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yan-Li Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ji-Ying Song
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Hai-Tao Lv
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Ya-Ming Sun
- National Engineering Laboratory/Key Laboratory of Henan Province, Henan University of Technology, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Sinha A, So H. Synthesis of chiral graphene structures and their comprehensive applications: a critical review. NANOSCALE HORIZONS 2024; 9:1855-1895. [PMID: 39171372 DOI: 10.1039/d4nh00021h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
From a molecular viewpoint, chirality is a crucial factor in biological processes. Enantiomers of a molecule have identical chemical and physical properties, but chiral molecules found in species exist in one enantiomer form throughout life, growth, and evolution. Chiral graphene materials have considerable potential for application in various domains because of their unique structural framework, properties, and controlled synthesis, including chiral creation, segregation, and transmission. This review article provides an in-depth analysis of the synthesis of chiral graphene materials reported over the past decade, including chiral nanoribbons, chiral tunneling, chiral dichroism, chiral recognition, and chiral transfer. The second segment focuses on the diverse applications of chiral graphene in biological engineering, electrochemical sensors, and photodetectors. Finally, we discuss research challenges and potential future uses, along with probable outcomes.
Collapse
Affiliation(s)
- Animesh Sinha
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
| | - Hongyun So
- Department of Mechanical Convergence Engineering, Hanyang University, Seoul 04763, South Korea.
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
3
|
Daneshvar Tarigh G. Enantioseparation/Recognition based on nano techniques/materials. J Sep Sci 2023:e2201065. [PMID: 37043692 DOI: 10.1002/jssc.202201065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 04/14/2023]
Abstract
Enantiomers show different behaviors in interaction with the chiral environment. Due to their identical chemical structure and their wide application in various industries, such as agriculture, medicine, pesticide, food, and so forth, their separation is of great importance. Today, the term "nano" is frequently encountered in all fields. Technology and measuring devices are moving towards miniaturization, and the usage of nanomaterials in all sectors is expanding substantially. Given that scientists have recently attempted to apply miniaturized techniques known as nano-liquid chromatography/capillary-liquid chromatography, which were originally accomplished in 1988, as well as the widespread usage of nanomaterials for chiral resolution (back in 1989), this comprehensive study was developed. Searching the terms "nano" and "enantiomer separation" on scientific websites such as Scopus, Google Scholar, and Web of Science yields articles that either use miniaturized instruments or apply nanomaterials as chiral selectors with a variety of chemical and electrochemical detection techniques, which are discussed in this article.
Collapse
Affiliation(s)
- Ghazale Daneshvar Tarigh
- Department of Analytical Chemistry, University College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
4
|
Bakhshpour-Yucel M. SPR-based sensing of Lysozyme using Lyz-MIP-modified graphene oxide surfaces. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-022-02656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
5
|
Singh GP, Sardana N. Smartphone-based Surface Plasmon Resonance Sensors: a Review. PLASMONICS (NORWELL, MASS.) 2022; 17:1869-1888. [PMID: 35702265 PMCID: PMC9184243 DOI: 10.1007/s11468-022-01672-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The surface plasmon resonance (SPR) is a phenomenon based on the combination of quantum mechanics and electromagnetism, which leads to the creation of charge oscillations on a metal-dielectric interface. The SPR phenomenon creates a signal which measures refractive index change at the metal-dielectric interface. SPR-based sensors are being developed for real-time and label-free detection of water pollutants, toxins, disease biomarkers, etc., which are highly sensitive and selective. Smartphones provide hardware and software capability which can be incorporated into SPR sensors, enabling the possibility of economical and accurate on-site portable sensing. The camera, screen, and LED flashlight of the smartphone can be employed as components of the sensor. The current article explores the recent advances in smartphone-based SPR sensors by studying their principle, components, application, and signal processing. Furthermore, the general theoretical and practical aspects of SPR sensors are discussed.
Collapse
Affiliation(s)
- Gaurav Pal Singh
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001 India
| | - Neha Sardana
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Ropar, Rupnagar, 140001 India
| |
Collapse
|
6
|
Lim HJ, Saha T, Tey BT, Tan WS, Hassan SS, Ooi CW. Quartz crystal microbalance-based biosensing of hepatitis B antigen using a molecularly imprinted polydopamine film. Talanta 2022; 249:123659. [PMID: 35728452 DOI: 10.1016/j.talanta.2022.123659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 10/31/2022]
Abstract
Quartz crystal microbalance (QCM)-based biosensors are highly attractive as rapid diagnostic devices for detecting infectious diseases. However, the fabrication of QCM-based biosensors often involves tedious processes due to the poor stability of the biological recognition elements. In this work, the simple self-polymerisation of dopamine was used to functionalise the QCM crystal surface with a molecularly imprinted polydopamine (MIPDA) sensing film for detecting the hepatitis B core antigen (HBcAg), a serological biomarker of hepatitis B. Recognition cavities that complemented the size and shape of HBcAg were observed on the QCM crystal surface after functionalisation with the MIPDA film. The MIPDA-QCM biosensor showed a selective affinity for HBcAg, recording frequency responses up to 7.8 folds larger towards HBcAg compared to human serum albumin at the same analyte concentrations. The biosensor response was enhanced by using the optimal concentrations of 10 mg mL-1 of dopamine and 1 mg mL-1 of template for MIPDA film formation, resulting in a low detection limit (0.88 μg mL-1) that enables the detection of clinically relevant titres of HBcAg. The detection process could be completed within 10 min after sample loading without additional steps for signal amplification, highlighting the practical advantages of the MIPDA-QCM biosensor for point-of-care detection of hepatitis B.
Collapse
Affiliation(s)
- Hui Jean Lim
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Tridib Saha
- Electrical and Computer Systems Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Beng Ti Tey
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Vaccine and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sharifah Syed Hassan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Chien Wei Ooi
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia; Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
7
|
Suryana S, Mutakin, Rosandi Y, Hasanah AN. An Update on Molecularly Imprinted Polymer Design through a Computational Approach to Produce Molecular Recognition Material with Enhanced Analytical Performance. Molecules 2021; 26:1891. [PMID: 33810542 PMCID: PMC8036856 DOI: 10.3390/molecules26071891] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/23/2021] [Indexed: 12/23/2022] Open
Abstract
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material.
Collapse
Affiliation(s)
- Shendi Suryana
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Pharmacy Department, Faculty of Mathematics and Natural Sciences, Garut University, Jl. Jati No.42B, Tarogong, Garut 44151, Indonesia
| | - Mutakin
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
| | - Yudi Rosandi
- Geophysic Department, Faculty of Mathematics and Natural Sciences, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia;
| | - Aliya Nur Hasanah
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia; (S.S.); (M.)
- Drug Development Study Center, Faculty of Pharmacy, Padjadjaran University, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
8
|
Alhawiti AS, Monier M, Elsayed NH. Designing of amino functionalized imprinted polymeric resin for enantio-separation of (±)-mandelic acid racemate. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Cynthia S, Ahmed R, Islam S, Ali K, Hossain M. Graphene based hyperbolic metamaterial for tunable mid-infrared biosensing. RSC Adv 2021; 11:7938-7945. [PMID: 35423319 PMCID: PMC8695080 DOI: 10.1039/d0ra09781k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/12/2021] [Indexed: 12/16/2022] Open
Abstract
Plasmonic biosensors, operating in the mid-infrared (mid-IR) region, are well-suited for highly specific and label-free optical biosensing. The principle of operation is based on detecting the shift in resonance wavelength caused by the interaction of biomolecules with the surrounding medium. However, metallic plasmonic biosensors suffer from poor signal transduction and high optical losses in the mid-IR range, leading to low sensitivity. Here, we introduce a hyperbolic metamaterial (HMM) biosensor, that exploits the strong, tunable, mid-IR localization of graphene plasmons, for detecting nanometric biomolecules with high sensitivity. The HMM stack consists of alternating graphene/Al2O3 multilayers, on top of a gold grating structure with rounded corners, to produce plasmonic hotspots and enhance sensing performance. Sensitivity and figure-of-merit (FOM) can be systematically tuned, by varying the structural parameters of the HMM stack and the doping levels (Fermi energy) in graphene. Finite-difference time-domain (FDTD) analysis demonstrates that the proposed biosensor can achieve sensitivities as high as 4052 nm RIU-1 (refractive index unit) with a FOM of 11.44 RIU-1. We anticipate that the reported graphene/Al2O3 HMM device will find potential application as a mid-IR, highly sensitive plasmonic biosensor, for tunable and label-free detection.
Collapse
Affiliation(s)
- Sarah Cynthia
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Rajib Ahmed
- School of Medicine, Stanford University Palo Alto California 94304 USA
| | - Sharnali Islam
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Khaleda Ali
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| | - Mainul Hossain
- Department of Electrical and Electronic Engineering, University of Dhaka Dhaka-1000 Bangladesh
| |
Collapse
|
10
|
Fauzi NIM, Fen YW, Omar NAS, Saleviter S, Daniyal WMEMM, Hashim HS, Nasrullah M. Nanostructured Chitosan/Maghemite Composites Thin Film for Potential Optical Detection of Mercury Ion by Surface Plasmon Resonance Investigation. Polymers (Basel) 2020; 12:E1497. [PMID: 32635555 PMCID: PMC7407496 DOI: 10.3390/polym12071497] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
In this study, synthesis and characterization of chitosan/maghemite (Cs/Fe2O3) composites thin film has been described. Its properties were characterized using Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM) and ultraviolet-visible spectroscopy (UV-Vis). FTIR confirmed the existence of Fe-O bond, C-N bond, C-C bond, C-O bond, O=C=O bond and O-H bond in Cs/Fe2O3 thin film. The surface morphology of the thin film indicated the relatively smooth and homogenous thin film, and also confirmed the interaction of Fe2O3 with the chitosan. Next, the UV-Vis result showed high absorbance value with an optical band gap of 4.013 eV. The incorporation of this Cs/Fe2O3 thin film with an optical-based method, i.e., surface plasmon resonance spectroscopy showed positive response where mercury ion (Hg2+) can be detected down to 0.01 ppm (49.9 nM). These results validate the potential of Cs/Fe2O3 thin film for optical sensing applications in Hg2+ detection.
Collapse
Affiliation(s)
- Nurul Illya Muhamad Fauzi
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
| | - Yap Wing Fen
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Nur Alia Sheh Omar
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Silvan Saleviter
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Wan Mohd Ebtisyam Mustaqim Mohd Daniyal
- Functional Devices Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (S.S.); (W.M.E.M.M.D.)
| | - Hazwani Suhaila Hashim
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (N.I.M.F.); (H.S.H.)
| | - Mohd Nasrullah
- Faculty of Civil Engineering Technology, Universiti Malaysia Pahang (UMP), Gambang 26300, Kuantan, Pahang, Malaysia;
| |
Collapse
|
11
|
Liu Y, Li Z, Jia L. Synthesis of molecularly imprinted polymer modified magnetic particles for chiral separation of tryptophan enantiomers in aqueous medium. J Chromatogr A 2020; 1622:461147. [PMID: 32450989 DOI: 10.1016/j.chroma.2020.461147] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/25/2022]
Abstract
Molecularly imprinted polymers coated magnetic particles (Fe3O4@MIPs) were prepared and used as adsorbents in solid phase extraction for efficient enantioseparation of racemic tryptophan (Trp) in aqueous medium. The amino-modified magnetic particles (Fe3O4-NH2) were first synthesized by one-pot hydrothermal method. Then the template molecules (L-Trp) were assembled on the surface of Fe3O4-NH2. Finally, Fe3O4@MIPs were prepared via a sol-gel method using L-Trp@Fe3O4-NH2 complex as matrix, 3-aminopropyltriethoxylsilane and n-octyltriethoxysilane as functional monomers. The as-prepared Fe3O4@MIPs were spherical with an average diameter about 149 ± 6.0 nm. The thickness of MIPs layer was approximately 3.5 ± 2.3 nm. The adsorption isotherms data of Fe3O4@MIPs toward L-Trp and D-Trp were well described by the Langmuir model. The maximum adsorption capacities of Fe3O4@MIPs for L-Trp and D-Trp were calculated to be 17.2 ± 0.34 mg/g and 7.2 ± 0.19 mg/g, respectively. The material exhibited good selectivity toward L-Trp with imprinting factor of 5.6. Excitingly, the enantiomeric excess (ee) of Trp in supernatant after adsorption of racemic Trp by Fe3O4@MIPs was as high as 100%. The result suggests that the imprinted caves in Fe3O4@MIPs are highly matched with L-Trp molecule in space structure and spatial arrangement of active functional groups. The work also demonstrates that sol-gel technology has great potential in preparation of MIPs for chiral separation.
Collapse
Affiliation(s)
- Ya Liu
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Zhenqun Li
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Li Jia
- Ministry of Education Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
12
|
|
13
|
Rico-Yuste A, Carrasco S. Molecularly Imprinted Polymer-Based Hybrid Materials for the Development of Optical Sensors. Polymers (Basel) 2019; 11:E1173. [PMID: 31336762 PMCID: PMC6681127 DOI: 10.3390/polym11071173] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
We report on the development of new optical sensors using molecularly imprinted polymers (MIPs) combined with different materials and explore the novel strategies followed in order to overcome some of the limitations found during the last decade in terms of performance. This review pretends to offer a general overview, mainly focused on the last 3 years, on how the new fabrication procedures enable the synthesis of hybrid materials enhancing not only the recognition ability of the polymer but the optical signal. Introduction describes MIPs as biomimetic recognition elements, their properties and applications, emphasizing on each step of the fabrication/recognition procedure. The state of the art is presented and the change in the publication trend between electrochemical and optical sensor devices is thoroughly discussed according to the new fabrication and micro/nano-structuring techniques paving the way for a new generation of MIP-based optical sensors. We want to offer the reader a different perspective based on the materials science in contrast to other overviews. Different substrates for anchoring MIPs are considered and distributed in different sections according to the dimensionality and the nature of the composite, highlighting the synergetic effect obtained as a result of merging both materials to achieve the final goal.
Collapse
Affiliation(s)
| | - Sergio Carrasco
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| |
Collapse
|
14
|
Patil PO, Pandey GR, Patil AG, Borse VB, Deshmukh PK, Patil DR, Tade RS, Nangare SN, Khan ZG, Patil AM, More MP, Veerapandian M, Bari SB. Graphene-based nanocomposites for sensitivity enhancement of surface plasmon resonance sensor for biological and chemical sensing: A review. Biosens Bioelectron 2019; 139:111324. [PMID: 31121435 DOI: 10.1016/j.bios.2019.111324] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 05/01/2019] [Accepted: 05/12/2019] [Indexed: 02/07/2023]
Abstract
Surface plasmon resonance (SPR) offers exceptional advantages such as label-free, in-situ and real-time measurement ability that facilitates the study of molecular or chemical binding events. Besides, SPR lacks in the detection of various binding events, particularly involving low molecular weight molecules. This drawback ultimately resulted in the development of several sensitivity enhancement methodologies and their application in the various area. Among graphene materials, graphene-based nanocomposites stands out owing to its significant properties such as strong adsorption of molecules, signal amplification by optical, high carrier mobility, electronic bridging, ease of fabrication and therefore, have established as an important sensitivity enhancement substrate for SPR. Also, graphene-based nanocomposites could amplify the signal generated by plasmon material and increase the sensitivity of molecular detection up to femto to atto molar level. This review focuses on the current important developments made in the potential research avenue of SPR and fiber optics based SPR for chemical and biological sensing. Latest trends and challenges in engineering and applications of graphene-based nanocomposites enhanced sensors for detecting minute and low concentration biological and chemical analytes are reviewed comprehensively. This review may aid in futuristic designing approaches and application of grapheneous sensor platforms for sensitive plasmonic nano-sensors.
Collapse
Affiliation(s)
- Pravin O Patil
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India.
| | - Gaurav R Pandey
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Ashwini G Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Vivek B Borse
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Prashant K Deshmukh
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Dilip R Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Rahul S Tade
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Sopan N Nangare
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Zamir G Khan
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Arun M Patil
- R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| | - Mahesh P More
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| | - Murugan Veerapandian
- Council of Scientific and Industrial Research-Central Electrochemical Research Institute, Karaikudi-630003, Tamilnadu, India
| | - Sanjay B Bari
- H. R. Patel Institute of Pharmaceutical Education and Research, Shirpur, 425405, Maharashtra, India
| |
Collapse
|