1
|
Zhong H, Luo X, Abdullah, Liu X, Hussain M, Guan R. Nano-targeted delivery system: a promising strategy of anthocyanin encapsulation for treating intestinal inflammation. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39919822 DOI: 10.1080/10408398.2025.2458741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
Abstract
Anthocyanins are natural flavonoids derived from plants, widely recognized for their health-promoting effects, specifically to treat inflammatory bowel disease (Crohn's disease and ulcerative colitis). However, certain limitations are associated with their use, including instability, low solubility and permeability, poor gastrointestinal digestion, and low bioavailability. In this review, nano-carriers (e.g., liposome, polymersome, exosome, halloysite nanotubes, dendrimer, and nano-niosome, etc.) were summarized as anthocyanins delivery vehicles to treat inflammatory bowel disease. Recent progress on emerging strategies involved surface functionalization, responsive release, magnetic orientation, and self-assembly aggregation to address intestinal inflammation through nano-carriers and potential mechanisms were discussed. Anthocyanins, water-soluble pigments linked by glycoside bonds have attracted attention to alleviate intestinal inflammation related diseases. Anthocyanins can address intestinal inflammation by exerting their health beneficial effects such as anti-oxidative, anti-inflammatory, regulating the intestinal flora, and promoting apoptosis. Moreover, nano-carriers were discussed as oral delivery system for maximized bioefficacy of anthocyanins and to address concerns related to their low solubility and permeability, poor gastrointestinal metabolism, and low bioavailability were discussed. A future perspective is proposed concerning anthocyanin-loaded nano-carriers, different strategies to improve their efficacy, and developing functional food to treat intestinal inflammation.
Collapse
Affiliation(s)
- Hao Zhong
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xin Luo
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Abdullah
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Xiaofeng Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Muhammad Hussain
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| | - Rongfa Guan
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
2
|
Barakat A, El-Senduny FF, Islam MS, Al-Majid AM, Elshaier YAMM, Mazyed EA, Badria FA. Nanoformulation of Spirooxindole and Methods for Treating Hepatocellular Carcinoma. Pharmaceutics 2025; 17:93. [PMID: 39861743 PMCID: PMC11768502 DOI: 10.3390/pharmaceutics17010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/12/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Objectives: This in vivo study introduces a newly developed spirooxindole derivative that is deemed safe and effective as a potential targeted therapy for various cancers. Methods: Extensive in vivo investigations, including histopathology, immunohistochemistry, and molecular biology, validated its potential for further preclinical and clinical exploration, necessitating comprehensive examinations of its bioavailability, pharmacodynamics, and pharmacokinetics. Additionally, this study involves the development of a commercially viable proniosomal drug delivery system for the compound, facilitating controlled drug release. Results: The data revealed efficacy of spirooxindole derivative in halting the progression of liver cancer, metastasis, and portal vein thrombosis, with potential implications for enhancing regeneration and recovery of early-stage cancer cells in multiple organs, thereby improving recovery rates and remission among cancer patients. The proniosomes, loaded with the compound, exhibited high entrapment efficiency and prolonged drug release rates of up to 12 h in vitro. The optimized formula demonstrated superior drug release percentages and stability compared to conventional niosomes. Further analysis via FTIR and DSC confirmed the absence of chemical interactions and proper entrapment of the compound within the nanovesicles, indicating a stable and effective drug delivery system. Conclusions: This study presents a novel, safe, and effective chemical entity of spirooxindole derivatives for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Assem Barakat
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.I.); (A.M.A.-M.)
| | - Fardous F. El-Senduny
- Department of Pathology & Laboratory Medicine, Sylvester Comprehensive Cancer Center, Miller School of Medicine, Miami, FL 33136, USA;
- Department of Chemistry, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.I.); (A.M.A.-M.)
| | - Abdullah Mohammed Al-Majid
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia; (M.S.I.); (A.M.A.-M.)
| | - Yaseen A. M. M. Elshaier
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Menoufiya 32958, Egypt;
| | - Eman A. Mazyed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Kaferelsheikh University, Kaferelsheikh 33516, Egypt;
| | - Farid A. Badria
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
3
|
Ebadi M, Kavousi M, Farahmand M. Investigation of the Apoptotic and Antimetastatic Effects of Nano-Niosomes Containing the Plant Extract Anabasis setifera on HeLa: In Vitro Cervical Cancer Study. Chem Biodivers 2024:e202402599. [PMID: 39575851 DOI: 10.1002/cbdv.202402599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 12/12/2024]
Abstract
The present study focuses on the preparation of niosomes containing an extract of Anabasis setifera and evaluates their efficacy in inhibiting the growth and proliferation of HeLa cells. Thin-layer hydration technique was used to prepare niosomes/extract nanoparticles (NPs). The physicochemical properties of the synthesized NPs were confirmed by scanning electron microscope (SEM), dynamic light scattering (DLS), zeta potential analysis, and FTIR. The cytotoxicity of the free extract, free niosome, and NPs was investigated by MTT (3-(4, 5-diMethylThiazol-2-yl)-2,5-diphenylTetrazolium bromide) assay. For this purpose, solutions of the three mentioned agents were prepared and diluted in 400, 200, 100, 50, 25, 12.5, and 6.25 µg/mL concentrations and incubated for 24, 48, and 72 h. After calculating the IC50 concentration and treating the cells with this concentration, real-time polymerase chain reaction (PCR) (to measure changes in the expression of apoptosis and metastasis genes), flow cytometry (to determine the amount of early and late induced apoptosis), and cell cycle test (to determine the stopping stage of the cancer cell division cycle) were performed. Moreover, the scratch test (the ability to inhibit cell metastasis after treatment) was used to evaluate cell migration. The MTT assay results showed that 72 h of treatment with NPs has the greatest effect on the death of cancer cells. Real-time PCR showed that the expression of the Bad gene increased dramatically and the expression of the BCL-XL, integrin alpha 5 (ITGA5), and zinc finger E-box-binding homeobox 1 (ZEB-1) genes decreased significantly. The flow cytometry results showed that 48.64% of HeLa cells underwent apoptosis after treatment with synthesized NPs. The scratch test results showed that cancer cell metastasis stopped after treatment with NPs. The research demonstrates the significant potential of plant extract-loaded niosomes, as highly efficient drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Mahya Ebadi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahsa Kavousi
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mahnaz Farahmand
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
4
|
Ran Y, Hu J, Chen Y, Rao Z, Zhao J, Xu Z, Ming J. Morusin-Cu(II)-indocyanine green nanoassembly ignites mitochondrial dysfunction for chemo-photothermal tumor therapy. J Colloid Interface Sci 2024; 662:760-773. [PMID: 38377695 DOI: 10.1016/j.jcis.2024.02.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/22/2024]
Abstract
Nanoscale drug delivery systems derived from natural bioactive materials accelerate the innovation and evolution of cancer treatment modalities. Morusin (Mor) is a prenylated flavonoid compound with high cancer chemoprevention activity, however, the poor water solubility, low active pharmaceutical ingredient (API) loading content, and instability compromise its bioavailability and therapeutic effectiveness. Herein, a full-API carrier-free nanoparticle is developed based on the self-assembly of indocyanine green (ICG), copper ions (Cu2+) and Mor, termed as IMCNs, via coordination-driven and π-π stacking for synergistic tumor therapy. The IMCNs exhibits a desirable loading content of Mor (58.7 %) and pH/glutathione (GSH)-responsive motif. Moreover, the photothermal stability and photo-heat conversion efficiency (42.8 %) of IMCNs are improved after coordination with Cu2+ and help to achieve photothermal therapy. Afterward, the released Cu2+ depletes intracellular overexpressed GSH and mediates Fenton-like reactions, and further synergizes with ICG at high temperatures to expand oxidative damage. Furthermore, the released Mor elicits cytoplasmic vacuolation, expedites mitochondrial dysfunction, and exerts chemo-photothermal therapy after being combined with ICG to suppress the migration of residual live tumor cells. In vivo experiments demonstrate that IMCNs under laser irradiation could excellently inhibit tumor growth (89.6 %) through the multi-modal therapeutic performance of self-enhanced chemotherapy/coordinated-drugs/ photothermal therapy (PTT), presenting a great potential for cancer therapy.
Collapse
Affiliation(s)
- Yalin Ran
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Junfeng Hu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China
| | - Yuanyuan Chen
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhenan Rao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Jichun Zhao
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China
| | - Zhigang Xu
- School of Materials and Energy, Southwest University, Chongqing 400715, People's Republic of China.
| | - Jian Ming
- College of Food Science, Southwest University, Chongqing 400715, People's Republic of China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, People's Republic of China.
| |
Collapse
|
5
|
Roostaee M, Derakhshani A, Mirhosseini H, Banaee Mofakham E, Fathi-Karkan S, Mirinejad S, Sargazi S, Barani M. Composition, preparation methods, and applications of nanoniosomes as codelivery systems: a review of emerging therapies with emphasis on cancer. NANOSCALE 2024; 16:2713-2746. [PMID: 38213285 DOI: 10.1039/d3nr03495j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Nanoniosome-based drug codelivery systems have become popular therapeutic instruments, demonstrating tremendous promise in cancer therapy, infection treatment, and other therapeutic domains. An emerging form of vesicular nanocarriers, niosomes are self-assembling vesicles composed of nonionic surfactants, along with cholesterol or other amphiphilic molecules. This comprehensive review focuses on how nanosystems may aid in making anticancer and antibacterial pharmaceuticals more stable and soluble. As malleable nanodelivery instruments, the composition, types, preparation procedures, and variables affecting the structure and stability of niosomes are extensively investigated. In addition, the advantages of dual niosomes for combination therapy and the administration of multiple medications simultaneously are highlighted. Along with categorizing niosomal drug delivery systems, a comprehensive analysis of various preparation techniques, including thin-layer injection, ether injection, and microfluidization, is provided. Dual niosomes for cancer treatment are discussed in detail regarding the codelivery of two medications and the codelivery of a drug with organic, plant-based bioactive compounds or gene agents. In addition, niogelosomes and metallic niosomal carriers for targeted distribution are discussed. The review also investigates the simultaneous delivery of bioactive substances and gene agents, including siRNA, microRNA, shRNA, lncRNA, and DNA. Additional sections discuss the use of dual niosomes for cutaneous drug delivery and treating leishmanial infections, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The study concludes by delineating the challenges and potential routes for nanoniosome-based pharmaceutical codelivery systems, which will be useful for nanomedicine practitioners and researchers.
Collapse
Affiliation(s)
- Maryam Roostaee
- Department of Chemistry, Faculty of Sciences, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.
| | - Atefeh Derakhshani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadiseh Mirhosseini
- Department of Chemistry, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Elmira Banaee Mofakham
- Department of Nanotechnology and Advanced Materials Research, Materials & Energy Research Center, Karaj, Iran.
| | - Sonia Fathi-Karkan
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, 94531-55166, Iran.
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd 9414974877, Iran.
| | - Shekoufeh Mirinejad
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan, Iran.
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 7616913555, Iran.
| |
Collapse
|
6
|
Liga S, Paul C, Moacă EA, Péter F. Niosomes: Composition, Formulation Techniques, and Recent Progress as Delivery Systems in Cancer Therapy. Pharmaceutics 2024; 16:223. [PMID: 38399277 PMCID: PMC10892933 DOI: 10.3390/pharmaceutics16020223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Niosomes are vesicular nanocarriers, biodegradable, relatively non-toxic, stable, and inexpensive, that provide an alternative for lipid-solid carriers (e.g., liposomes). Niosomes may resolve issues related to the instability, fast degradation, bioavailability, and insolubility of different drugs or natural compounds. Niosomes can be very efficient potential systems for the specific delivery of anticancer, antioxidant, anti-inflammatory, antimicrobial, and antibacterial molecules. This review aims to present an overview of their composition, the most common formulation techniques, as well as of recent utilizations as delivery systems in cancer therapy.
Collapse
Affiliation(s)
- Sergio Liga
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Cristina Paul
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
| | - Elena-Alina Moacă
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeș” University of Medicine and Pharmacy Timișoara, 2nd Eftimie Murgu Square, 300041 Timișoara, Romania;
| | - Francisc Péter
- Biocatalysis Group, Department of Applied Chemistry and Engineering of Organic and Natural Compounds, Faculty of Industrial Chemistry and Environmental Engineering, Politehnica University Timișoara, Carol Telbisz 6, 300001 Timișoara, Romania; (S.L.); (F.P.)
- Research Institute for Renewable Energies, Politehnica University Timișoara, Gavril Muzicescu 138, 300501 Timișoara, Romania
| |
Collapse
|
7
|
Seyedi F, Sharifi I, Khosravi A, Molaakbari E, Tavakkoli H, Salarkia E, Bahraminejad S, Bamorovat M, Dabiri S, Salari Z, Kamali A, Ren G. Comparison of cytotoxicity of Miltefosine and its niosomal form on chick embryo model. Sci Rep 2024; 14:2482. [PMID: 38291076 PMCID: PMC10827708 DOI: 10.1038/s41598-024-52620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
Various drugs have been used for the treatment of leishmaniasis, but they often have adverse effects on the body's organs. In this study, we aimed to explore the effects of one type of drug, Miltefosine (MIL), and its analogue or modifier, liposomal Miltefosine (NMIL), on several fetal organs using both in silico analysis and practical tests on chicken embryos. Our in silico approach involved predicting the affinities of MIL and NMIL to critical proteins involved in leishmaniasis, including Vascular Endothelial Growth Factor A (VEGF-A), the Kinase insert domain receptor (KDR1), and apoptotic-regulator proteins (Bcl-2-associate). We then validated and supported these predictions through in vivo investigations, analyzing gene expression and pathological changes in angiogenesis and apoptotic mediators in MIL- and NMIL-treated chicken embryos. The results showed that NMIL had a more effective action towards VEGF-A and KDR1 in leishmaniasis, making it a better candidate for potential operative treatment during pregnancy than MIL alone. In vivo, studies also showed that chicken embryos under MIL treatment displayed less vascular mass and more degenerative and apoptotic changes than those treated with NMIL. These results suggest that NMIL could be a better treatment option for leishmaniasis during pregnancy.
Collapse
Affiliation(s)
- Fatemeh Seyedi
- Department of Anatomy, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Iraj Sharifi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Ahmad Khosravi
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran.
| | - Elaheh Molaakbari
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Hadi Tavakkoli
- Department of Clinical Science, School of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ehsan Salarkia
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Sina Bahraminejad
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Mehdi Bamorovat
- Leishmaniasis Research Center, Kerman University of Medical Science, Kerman, Iran
| | - Shahriar Dabiri
- Afzalipour School of Medicine and Pathology and Stem Cells Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zohreh Salari
- Obstetrics and Gynecology Center, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Kamali
- Department of Infectious Diseases, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB, UK
| |
Collapse
|
8
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
9
|
Barani M, Paknia F, Roostaee M, Kavyani B, Kalantar-Neyestanaki D, Ajalli N, Amirbeigi A. Niosome as an Effective Nanoscale Solution for the Treatment of Microbial Infections. BIOMED RESEARCH INTERNATIONAL 2023; 2023:9933283. [PMID: 37621700 PMCID: PMC10447041 DOI: 10.1155/2023/9933283] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 05/27/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023]
Abstract
Numerous disorders go untreated owing to a lack of a suitable drug delivery technology or an appropriate therapeutic moiety, particularly when toxicities and side effects are a major concern. Treatment options for microbiological infections are not fulfilled owing to significant adverse effects or extended therapeutic options. Advanced therapy options, such as active targeting, may be preferable to traditional ways of treating infectious diseases. Niosomes can be defined as microscopic lamellar molecules formed by a mixture of cholesterol, nonionic surfactants (alkyl or dialkyl polyglycerol ethers), and sometimes charge-inducing agents. These molecules comprise both hydrophilic and hydrophobic moieties of varying solubilities. In this review, several pathogenic microbes such as Staphylococcus aureus, Pseudomonas aeruginosa, Klebsiella pneumoniae, Plasmodium, Leishmania, and Candida spp. have been evaluated. Also, the development of a proper niosomal formulation for the required application was discussed. This review also reviews that an optimal formulation is dependent on several aspects, including the choice of nonionic surfactant, fabrication process, and fabrication parameters. Finally, this review will give information on the effectiveness of niosomes in treating acute microbial infections, the mechanism of action of niosomes in combating microbial pathogens, and the advantages of using niosomes over other treatment modalities.
Collapse
Affiliation(s)
- Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Fatemeh Paknia
- Department of Nanobiotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Maryam Roostaee
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Batoul Kavyani
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Davood Kalantar-Neyestanaki
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman, Iran
- Department of Medical Microbiology (Bacteriology & Virology), Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Narges Ajalli
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Amirbeigi
- Department of General Surgery, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
10
|
ERGİN AD, OLTULU Ç, TÜRKER NP, DEMİRBOLAT GM. In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turk J Med Sci 2023; 53:872-882. [PMID: 38031943 PMCID: PMC10760534 DOI: 10.55730/1300-0144.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/18/2023] [Accepted: 03/07/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is a folic acid antagonist that is widely used to treat osteosarcoma, leukemia, breast cancer, and autoimmune and inflammatory diseases. The most important concerns with MTX are its poor solubility and high toxicity, particularly in liver cells. To enhance its solubility and to minimize its toxicity, we encapsulated MTX in niosomes and investigated its hepatotoxicity mechanisms using genetic biomarkers. METHODS Niosomes were successfully prepared using a modified thin film method, and the prepared monodisperse smallsized formulation was subsequently characterized. In vitro cytotoxicity studies were performed both in hepatocarcinoma (HEP3G) and healthy liver (AML12) cell lines. Specifically, immunofluorescence assay and evaluation of the expression levels of apoptotic, antioxidant, heat shock protein, and oxidative stress genes were performed. RESULTS The formulation had a particle size of 117.1 ± 33 nm, a surface charge of -38.41 ± 0.7 mV, and an encapsulation efficiency of 59.7% ± 2.3%. The results showed that the niosomal formulation exhibited significantly higher cytotoxic effects in HEP3G than in AML12. The immunofluorescence and genetic analyses showed that the increased cytotoxicity of niosomes resulted mainly from oxidative stress and slight apoptosis. DISCUSSION These results demonstrated that niosomal drug delivery systems could be a new potential formulation for minimizing MTX-related hepatotoxicity.
Collapse
Affiliation(s)
- Ahmet Doğan ERGİN
- Department of Neuroscience, University of Torino, Torino,
Italy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| | - Çağatay OLTULU
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| | - Nebiye Pelin TÜRKER
- Technology Research Development Application and Research Center, Trakya University, Edirne,
Turkiye
| | - Gülen Melike DEMİRBOLAT
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| |
Collapse
|
11
|
Bashkeran T, Kamaruddin AH, Ngo TX, Suda K, Umakoshi H, Watanabe N, Nadzir MM. Niosomes in cancer treatment: A focus on curcumin encapsulation. Heliyon 2023; 9:e18710. [PMID: 37593605 PMCID: PMC10428065 DOI: 10.1016/j.heliyon.2023.e18710] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/19/2023] Open
Abstract
Curcumin is widely used as a therapeutic drug for cancer treatment. However, its limited absorption and rapid excretion are the major therapeutic limitations to its clinical use. Using niosomes as a curcumin delivery system is a cheap, easy, and less toxic strategy for enhancing the absorption of curcumin by cells and delaying its excretion. Thus, there is a vital need to explore curcumin niosomes to configure the curcumin to suitably serve and aid current pharmacokinetics in treatments for cancer. To date, no comprehensive review has focused on the cytotoxic effects of curcumin niosomes on malignant cells. Thus, this review provides a critical analysis of the curcumin niosomes in cancer treatment, formulations of curcumin niosomes, characterizations of curcumin niosomes, and factors influencing their performance. The findings from this review article can strongly accelerate the understanding of curcumin niosomes and pave a brighter direction towards advances in the pharmaceutical, biotechnology, and medical industries.
Collapse
Affiliation(s)
- Thaaranni Bashkeran
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Azlina Harun Kamaruddin
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Trung Xuan Ngo
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Kazuma Suda
- Rohto Pharmaceutical Co., Ltd., Basic Research Division, Research Village Kyoto, 6-5-4 Kunimidai, Kizugawa, Kyoto, 619-0216, Japan
| | - Hiroshi Umakoshi
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Nozomi Watanabe
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, 560-8531, Japan
| | - Masrina Mohd Nadzir
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
12
|
Zidan A, El Saadany AA, El Maghraby GM, Abdin AA, Hedya SE. Potential cardioprotective and anticancer effects of carvedilol either free or as loaded nanoparticles with or without doxorubicin in solid Ehrlich carcinoma-bearing mice. Toxicol Appl Pharmacol 2023; 465:116448. [PMID: 36921847 DOI: 10.1016/j.taap.2023.116448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/17/2023] [Accepted: 03/02/2023] [Indexed: 03/14/2023]
Abstract
AIM The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.
Collapse
Affiliation(s)
- Amr Zidan
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt.
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Gamal M El Maghraby
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Tanta University, Egypt
| | - Amany A Abdin
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| | - Sabeha E Hedya
- Department of Pharmacology, Faculty of Medicine, Tanta University, Egypt
| |
Collapse
|
13
|
Izhar MP, Hafeez A, Kushwaha P, Simrah. Drug Delivery Through Niosomes: A Comprehensive Review with Therapeutic Applications. J CLUST SCI 2023. [DOI: 10.1007/s10876-023-02423-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
14
|
Akbarzadeh I, Rezaei N, Bazzazan S, Mezajin MN, Mansouri A, Karbalaeiheidar H, Ashkezari S, Moghaddam ZS, Lalami ZA, Mostafavi E. In silico and in vitro studies of GENT-EDTA encapsulated niosomes: A novel approach to enhance the antibacterial activity and biofilm inhibition in drug-resistant Klebsiella pneumoniae. BIOMATERIALS ADVANCES 2023; 149:213384. [PMID: 37060635 DOI: 10.1016/j.bioadv.2023.213384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Klebsiella pneumoniae (Kp) is a common pathogen inducing catheter-related biofilm infections. Developing effective therapy to overcome antimicrobial resistance (AMR) in Kp is a severe therapeutic challenge that must be solved. This study aimed to prepare niosome-encapsulated GENT (Gentamicin) and EDTA (Ethylenediaminetetraacetic acid) (GENT-EDTA/Nio) to evaluate its efficacy toward Kp strains. The thin-film hydration method was used to prepare various formulations of GENT-EDTA/Nio. Formulations were characterized for their physicochemical characteristics. GENT-EDTA/Nio properties were used for optimization with Design-Expert Software. Molecular docking was utilized to determine the antibacterial activity of GENT. The niosomes displayed a controlled drug release and storage stability of at least 60 days at 4 and 25 °C. GENT-EDTA/Nio performance as antimicrobial agents has been evaluated by employing agar well diffusion method, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) against the Kp bacteria strains. Biofilm formation was investigated after GENT-EDTA/Nio administration through different detection methods, which showed that this formulation reduces biofilm formation. The effect of GENT-EDTA/Nio on the expression of biofilm-related genes (mrkA, ompA, and vzm) was estimated using QRT-PCR. MTT assay was used to evaluate the toxicity effect of niosomal formulations on HFF cells. The present study results indicate that GENT-EDTA/Nio decreases Kp's resistance to antibiotics and increases its antibiotic and anti-biofilm activity and could be helpful as a new approach for drug delivery.
Collapse
|
15
|
Ahmadi S, Seraj M, Chiani M, Hosseini S, Bazzazan S, Akbarzadeh I, Saffar S, Mostafavi E. In vitro Development of Controlled-Release Nanoniosomes for Improved Delivery and Anticancer Activity of Letrozole for Breast Cancer Treatment. Int J Nanomedicine 2022; 17:6233-6255. [PMID: 36531115 PMCID: PMC9753765 DOI: 10.2147/ijn.s384085] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/21/2022] [Indexed: 09/07/2023] Open
Abstract
INTRODUCTION Breast cancer is among the most prevalent mortal cancers in women worldwide. In the present study, an optimum formulation of letrozole, letrozole-loaded niosome, and empty niosome was developed, and the anticancer effect was assessed in in vitro MCF-7, MCF10A and MDA-MB-231 breast cancer cell lines. MATERIALS AND METHODS Various niosomal formulations of letrozole were fabricated through thin-film hydration method and characterized in terms of size, polydispersity index (PDI), morphology, entrapment efficiency (EE%), release kinetics, and stability. Optimized niosomal formulation of letrozole was achieved by response surface methodology (RSM). Antiproliferative activity and the mechanism were assessed by MTT assay, quantitative real-time PCR, and flow cytometry. Furthermore, cellular uptake of optimum formulation was evaluated by confocal electron microscopy. RESULTS The formulated letrozole had a spherical shape and showed a slow-release profile of the drug after 72 h. The size, PDI, and eEE% of nanoparticles showed higher stability at 4°C compared with 25°C. The drug release from niosomes was in accordance with Korsmeyer-Peppa's kinetic model. Confocal microscopy revealed the localization of drug-loaded niosomes in the cancer cells. MTT assay revealed that all samples exhibited dose-dependent cytotoxicity against breast cancer cells. The IC50 of mixed formulation of letrozole with letrozole-loaded niosome (L + L3) is the lowest value among all prepared formulations. L+L3 influenced the gene expression in the tested breast cancer cell lines by down-regulating the expression of Bcl 2 gene while up-regulating the expression of p53 and Bax genes. The flow cytometry results revealed that L + L3 enhanced the apoptosis rate in both MCF-7 and MDA-MB-231 cell lines compared with the letrozole (L), letrozole-loaded niosome (L3), and control sample. CONCLUSION Results indicated that niosomes could be a promising drug carrier for the delivery of letrozole to breast cancer cells.
Collapse
Affiliation(s)
- Saeedeh Ahmadi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Mahmoud Seraj
- Integrative Research Laboratory, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Seyedayin Hosseini
- School of Medicine, Sh Beheshti University of Medical Sciences, Tehran, Iran
| | - Saba Bazzazan
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
16
|
Poustforoosh A, Farmarz S, Nematollahi MH, Hashemipour H, Pardakhty A. Construction of Bio-conjugated nano-vesicles using non-ionic surfactants for targeted drug delivery: A computational supported experimental study. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
17
|
Development and In Vitro and In Vivo Evaluation of an Antineoplastic Copper(II) Compound (Casiopeina III-ia) Loaded in Nonionic Vesicles Using Quality by Design. Int J Mol Sci 2022; 23:ijms232112756. [PMID: 36361549 PMCID: PMC9655312 DOI: 10.3390/ijms232112756] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 12/02/2022] Open
Abstract
In recent decades, the interest in metallodrugs as therapeutic agents has increased. Casiopeinas are copper-based compounds that have been evaluated in several tumor cell lines. Currently, casiopeina III-ia (CasIII-ia) is being evaluated in phase I clinical trials. The aim of the present work is to develop a niosome formulation containing CasIII-ia for intravenous administration through a quality-by-design (QbD) approach. Risk analysis was performed to identify the factors that may have an impact on CasIII-ia encapsulation. The developed nanoformulation optimized from the experimental design was characterized by spectroscopy, thermal analysis, and electronic microscopy. In vitro drug release showed a burst effect followed by a diffusion-dependent process. The niosomes showed physical stability for at least three months at 37 °C and 75% relative humidity. The in vitro test showed activity of the encapsulated CasIII-ia on a metastatic breast cancer cell line and the in vivo test of nanoencapsulated CasIII-ia maintained the activity of the free compound, but showed a diminished toxicity. Therefore, the optimal conditions obtained by QbD may improve the scaling-up process.
Collapse
|
18
|
Moghtaderi M, Sedaghatnia K, Bourbour M, Fatemizadeh M, Salehi Moghaddam Z, Hejabi F, Heidari F, Quazi S, Farasati Far B. Niosomes: a novel targeted drug delivery system for cancer. Med Oncol 2022; 39:240. [PMID: 36175809 DOI: 10.1007/s12032-022-01836-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/27/2022] [Indexed: 10/25/2022]
Abstract
Recently, nanotechnology is involved in various fields of science, of which medicine is one of the most obvious. The use of nanoparticles in the process of treating and diagnosing diseases has created a novel way of therapeutic strategies with effective mechanisms of action. Also, due to the remarkable progress of personalized medicine, the effort is to reduce the side effects of treatment paths as much as possible and to provide targeted treatments. Therefore, the targeted delivery of drugs is important in different diseases, especially in patients who receive combined drugs, because the delivery of different drug structures requires different systems so that there is no change in the drug and its effectiveness. Niosomes are polymeric nanoparticles that show favorable characteristics in drug delivery. In addition to biocompatibility and high absorption, these nanoparticles also provide the possibility of reducing the drug dosage and targeting the release of drugs, as well as the delivery of both hydrophilic and lipophilic drugs by Niosome vesicles. Since various factors such as components, preparation, and optimization methods are effective in the size and formation of niosomal structures, in this review, the characteristics related to niosome vesicles were first examined and then the in silico tools for designing, prediction, and optimization were explained. Finally, anticancer drugs delivered by niosomes were compared and discussed to be a suitable model for designing therapeutic strategies. In this research, it has been tried to examine all the aspects required for drug delivery engineering using niosomes and finally, by presenting clinical examples of the use of these nanocarriers in cancer, its clinical characteristics were also expressed.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Kamand Sedaghatnia
- Department of Applied Chemistry, Azad University of Tehran South Branch, Tehran, Iran
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran, Iran
| | - Mahdi Fatemizadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Faranak Hejabi
- Department of Cell and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Fatemeh Heidari
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Sameer Quazi
- GenLab Biosolutions Private Limited, Bangalore, Karnataka, India.
- Department of Biomedical Sciences, School of Life Sciences, Anglia Ruskin University, Cambridge, UK.
- Clinical Bioinformatics, School of Health Sciences, The University of Manchester, Manchester, UK.
| | - Bahareh Farasati Far
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
19
|
Optimization of Curcumin Loaded Niosomes for Drug Delivery Applications. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Haroun M, Elsewedy HS, Shehata TM, Tratrat C, Al Dhubiab BE, Venugopala KN, Almostafa MM, Kochkar H, Elnahas HM. Significant of injectable brucine PEGylated niosomes in treatment of MDA cancer cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103322] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
21
|
Niosomes as cutting edge nanocarrier for controlled and targeted delivery of essential oils and biomolecules. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Chavda VP, Patel AB, Mistry KJ, Suthar SF, Wu ZX, Chen ZS, Hou K. Nano-Drug Delivery Systems Entrapping Natural Bioactive Compounds for Cancer: Recent Progress and Future Challenges. Front Oncol 2022; 12:867655. [PMID: 35425710 PMCID: PMC9004605 DOI: 10.3389/fonc.2022.867655] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/24/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer is a prominent cause of mortality globally, and it becomes fatal and incurable if it is delayed in diagnosis. Chemotherapy is a type of treatment that is used to eliminate, diminish, or restrict tumor progression. Chemotherapeutic medicines are available in various formulations. Some tumors require just one type of chemotherapy medication, while others may require a combination of surgery and/or radiotherapy. Treatments might last from a few minutes to many hours to several days. Each medication has potential adverse effects associated with it. Researchers have recently become interested in the use of natural bioactive compounds in anticancer therapy. Some phytochemicals have effects on cellular processes and signaling pathways with potential antitumor properties. Beneficial anticancer effects of phytochemicals were observed in both in vivo and in vitro investigations. Encapsulating natural bioactive compounds in different drug delivery methods may improve their anticancer efficacy. Greater in vivo stability and bioavailability, as well as a reduction in undesirable effects and an enhancement in target-specific activity, will increase the effectiveness of bioactive compounds. This review work focuses on a novel drug delivery system that entraps natural bioactive substances. It also provides an idea of the bioavailability of phytochemicals, challenges and limitations of standard cancer therapy. It also encompasses recent patents on nanoparticle formulations containing a natural anti-cancer molecule.
Collapse
Affiliation(s)
- Vivek P. Chavda
- Department of Pharmaceutics and Pharmaceutical Technology, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Kavya J. Mistry
- Pharmacy Section, L.M. College of Pharmacy, Ahmedabad, India
| | | | - Zhuo-Xun Wu
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John’s University, New York, NY, United States
| | - Kaijian Hou
- Department of Preventive Medicine,Shantou University Medical College, Shantou, China
- Department of Endocrine and Metabolic Diseases, Longhu Hospital, The First Afliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
23
|
Mousazadeh N, Gharbavi M, Rashidzadeh H, Nosrati H, Danafar H, Johari B. Anticancer evaluation of methotrexate and curcumin coencapsulated niosomes against colorectal cancer cell line. Nanomedicine (Lond) 2022; 17:201-217. [PMID: 35037483 DOI: 10.2217/nnm-2021-0334] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: The aim of the present investigation was to develop niosomes containing both curcumin (CUR) and methotrexate (MTX). Also, the combinational effect of CUR and MTX in both free and niosomal forms on growth inhibition potential and induction of apoptosis in the HCT-116 cell line were exploited. Materials & methods: Niosomes were prepared by the thin-film hydration method and their physicochemical properties were determined by various techniques. Cellular uptake, cell apoptosis, wound healing and MTT assay were conducted to ascertain niosomes' feasibility for cancer therapy. Results: The combination of CUR and MTX in niosomal formulation showed more toxicity than their combination in free form. Conclusion: The nanocarrier-based approach was effective for the codelivery of CUR and MTX against cancer cells in vitro.
Collapse
Affiliation(s)
- Navid Mousazadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmoud Gharbavi
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Nanotechnology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Rashidzadeh
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hamed Nosrati
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Joint Ukraine-Azerbaijan International Research & Education Center of Nanobiotechnology & Functional Nanosystems, Drohobych, Ukraine, Baku, Azerbaijan
| | - Hossein Danafar
- Department of Pharmaceutical Biomaterials, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.,Zanjan Pharmaceutical Biotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Behrooz Johari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.,Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
24
|
Khodaverdi H, Zeini MS, Moghaddam MM, Vazifedust S, Akbariqomi M, Tebyanian H. Lipid-Based Nanoparticles for Targeted Delivery of the Anti-Cancer Drugs: A Review. Curr Drug Deliv 2022; 19:1012-1033. [DOI: 10.2174/1567201819666220117102658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/01/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
Cancer is one of the main reasons for mortality worldwide. Chemotherapeutic agents have been effectively designed to increase certain patients' survival rates, but ordinarily designed chemotherapeutic agents necessarily deliver toxic chemotherapeutic drugs to healthy tissues, resulting in serious side effects. Cancer cells can often acquire drug resistance after repeated dosing of current chemotherapeutic agents, restricting their efficacy. Given such obstacles, investigators have attempted to distribute chemotherapeutic agents using targeted drug delivery systems (DDSs), especially nanotechnology-based DDSs. Lipid-Based Nanoparticles (LBNPs) are a large and complex class of substances that have been utilized to manage a variety of diseases, mostly cancer. Liposomes seem to be the most frequently employed LBNPs, owing to their high biocompatibility, bioactivity, stability, and flexibility; howbeit Solid Lipid Nanoparticles (SLNs) and Non-structured Lipid Carriers (NLCs) have lately received a lot of interest. Besides that, there are several reports that concentrate on novel therapies via LBNPs to manage various forms of cancer. In the present research, the latest improvements in the application of LBNPs have been shown to deliver different therapeutic agents to cancerous cells and have been demonstrated LBNPs also can be a quite successful candidate in cancer therapy for subsequent use.
Collapse
Affiliation(s)
- Hamed Khodaverdi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Shokrian Zeini
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Mostafa Akbariqomi
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid Tebyanian
- School of Dentistry, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Imam SS, Alshehri S, Altamimi MA, Hussain A, Alyahya KH, Mahdi WA, Qamar W. Formulation and Evaluation of Luteolin-Loaded Nanovesicles: In Vitro Physicochemical Characterization and Viability Assessment. ACS OMEGA 2022; 7:1048-1056. [PMID: 35036768 PMCID: PMC8757359 DOI: 10.1021/acsomega.1c05628] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/06/2021] [Indexed: 05/05/2023]
Abstract
Luteolin (LT) is a natural polyphenol water-insoluble compound. LT-loaded nanovesicles (NVs) were prepared by using the solvent evaporation method. LT-NVs were prepared using cholesterol, phosphatidylcholine, span 60, and labrasol in a different composition. The prepared LT-NVs were evaluated for encapsulation efficiency, in vitro drug release, and permeation study. The optimized LT-NVs were further evaluated for antioxidant activity and cytotoxicity using the lung cancer cell line. LT-NVs showed nanometric size (less than 300 nm), an optimum polydispersibility index (less than 0.5), and a negative zeta potential value. The formulations also showed significant variability in the encapsulation efficiency (69.44 ± 0.52 to 83.75 ± 0.35%) depending upon the formulation composition. The in vitro and permeation study results revealed enhanced drug release as well as permeation profile. The formulation LT-NVs (F2) showed the maximum drug release of 88.28 ± 1.13%, while pure LT showed only 20.1 ± 1.21% in 12 h. The release data revealed significant variation (p < 0.001) in the release pattern. The permeation results also depicted significant (p < 0.001) enhancement in the permeation across the membrane. The enhanced permeation from LT-NVs was achieved due to the enhanced solubility of LT in the presence of the surfactant. The antioxidant activity results proved that LT-NVs showed greater activity compared to pure LT. The cytotoxicity study showed lesser IC50 value from LT-NVs than the pure LT. Thus, it can be concluded that LT-NVs are a natural alternative to the synthetic drug in the treatment of lung cancer.
Collapse
Affiliation(s)
- Syed Sarim Imam
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Sultan Alshehri
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad A. Altamimi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Afzal Hussain
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Khaled Hamad Alyahya
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wael A. Mahdi
- Department
of Pharmaceutics, College of Pharmacy, King
Saud University, Riyadh 11451, Saudi Arabia
| | - Wajhul Qamar
- Department
of Pharmacology and Toxicology, Central Laboratory, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Dirir AM, Daou M, Yousef AF, Yousef LF. A review of alpha-glucosidase inhibitors from plants as potential candidates for the treatment of type-2 diabetes. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 21:1049-1079. [PMID: 34421444 PMCID: PMC8364835 DOI: 10.1007/s11101-021-09773-1] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 07/27/2021] [Indexed: 05/02/2023]
Abstract
UNLABELLED Diabetes mellitus is a multifactorial global health disorder that is rising at an alarming rate. Cardiovascular diseases, kidney damage and neuropathy are the main cause of high mortality rates among individuals with diabetes. One effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes is to target alpha-amylase and alpha-glucosidase, enzymes that catalyzes starch hydrolysis in the intestine. At present, approved inhibitors for these enzymes are restricted to acarbose, miglitol and voglibose. Although these inhibitors retard glucose absorption, undesirable gastrointestinal side effects impede their application. Therefore, research efforts continue to seek novel inhibitors with improved efficacy and minimal side effects. Natural products of plant origin have been a valuable source of therapeutic agents with lesser toxicity and side effects. The anti-diabetic potential through alpha-glucosidase inhibition of plant-derived molecules are summarized in this review. Eight molecules (Taxumariene F, Akebonoic acid, Morusin, Rhaponticin, Procyanidin A2, Alaternin, Mulberrofuran K and Psoralidin) were selected as promising drug candidates and their pharmacokinetic properties and toxicity were discussed where available. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11101-021-09773-1.
Collapse
Affiliation(s)
- Amina M. Dirir
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Marianne Daou
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| | - Ahmed F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
- Center for Membranes and Advances Water Technology, Khalifa University, Abu Dhabi, UAE
| | - Lina F. Yousef
- Department of Chemistry, Khalifa University, Abu Dhabi, UAE
| |
Collapse
|
27
|
Sayyad N, Maji R, Omolo CA, Ganai AM, Ibrahim UH, Pathan TK, Devnarain N, Karpoormath R, Dhawan S, Obakachi VA, Merugu SR, Kayamba F, Mahlalela M, Govender T, Tzakos AG, Singh S. Development of niosomes for encapsulating captopril-quercetin prodrug to combat hypertension. Int J Pharm 2021; 609:121191. [PMID: 34670120 DOI: 10.1016/j.ijpharm.2021.121191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022]
Abstract
Novel and effective anti-hypertensive agents are required to manage hypertension; therefore, we synthesised a novel antihypertensive drug from captopril and quercetin (cap-que) and explored its antihypertensive potential in a niosomal formulation via molecular hybridisation. The cap-que hybrid was synthesised, and its structure was characterised via NMR, FTIR, and HRMS. Niosomes were then loaded with cap-que using the thin-film hydration method. The particle size, polydispersity index, surface charge and drug entrapment efficiency (EE%) of the formulation were 418.8 ± 4.21 nm, 0.393 ± 0.063, 16.25 ± 0.21 mV, and 87.74 ± 2.82%, respectively. The drug release profile showed a sustained release of the active compound (43 ± 0.09%) from the niosomal formulation, compared to the parent drug (80.7 ± 4.68%), over 24 h. The cell viability study confirmed the biosafety of the formulation. The in vivo study in a rat model showed enhanced antihypertensive activity of the hybrid molecule and niosomal formulation which reduced systolic and diastolic pressure when compared to the individual, bare drugs. The findings of this study concluded that the antihypertensive potential of captopril can be enhanced by its hybridisation with quercetin, followed by niosomal nano drug delivery.
Collapse
Affiliation(s)
- Nisar Sayyad
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Ruma Maji
- Department of Pharmaceutics, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, (Westville Campus), Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P.O. Box 14634-00800, Nairobi, Kenya
| | - Ab Majeed Ganai
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Usri H Ibrahim
- Department of Pharmaceutics, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, (Westville Campus), Private Bag X54001, Durban, South Africa
| | - Tabasum Khan Pathan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Nikita Devnarain
- Department of Pharmaceutics, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, (Westville Campus), Private Bag X54001, Durban, South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa.
| | - Sanjeev Dhawan
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Vincent A Obakachi
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Srinivas Reddy Merugu
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Francis Kayamba
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Mavela Mahlalela
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| | - Thirumala Govender
- Department of Pharmaceutics, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu Natal, (Westville Campus), Private Bag X54001, Durban, South Africa
| | - Andreas G Tzakos
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, University of Ioannina, Ioannina 45110, Greece
| | - Sima Singh
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal (Westville Campus), Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
28
|
Kazmi I, Al-Abbasi FA, Nadeem MS, Altayb HN, Alshehri S, Imam SS. Formulation, Optimization and Evaluation of Luteolin-Loaded Topical Nanoparticulate Delivery System for the Skin Cancer. Pharmaceutics 2021; 13:1749. [PMID: 34834164 PMCID: PMC8623391 DOI: 10.3390/pharmaceutics13111749] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 01/13/2023] Open
Abstract
In the present study, luteolin (LT)-loaded nanosized vesicles (LT-NVs) were prepared by a solvent evaporation-hydration method using phospholipid and edge activator. The formulation was optimized using three factors at a three-level Box-Behnken design. The formulated LT-NVs were prepared using the three independent variables phospholipid (A), edge activator (B) and sonication time (C). The effect of used variables was assessed on the vesicle size (Y1) and encapsulation efficiency (Y2). The selection of optimum composition (LT-NVopt) was based on the point prediction method of the software. The prepared LT-NVopt showed the particle size of 189.92 ± 3.25 nm with an encapsulation efficiency of 92.43 ± 4.12% with PDI and zeta potential value of 0.32 and -21 mV, respectively. The formulation LT-NVopt was further converted into Carbopol 934 gel (1% w/v) to enhance skin retention. LT-NVoptG was further characterized for viscosity, spreadability, drug content, drug release, drug permeation and antioxidant, antimicrobial and cytotoxicity assessment. The evaluation result revealed optimum pH, viscosity, spreadability and good drug content. There was enhanced LT release (60.81 ± 2.87%), as well as LT permeation (128.21 ± 3.56 µg/cm2/h), which was found in comparison to the pure LT. The antioxidant and antimicrobial study results revealed significantly (p ˂ 0.05) better antioxidant potential and antimicrobial activity against the tested organisms. Finally, the samples were evaluated for cytotoxicity assessment using skin cancer cell line and results revealed a significant difference in the viability % at the tested concentration. LT-NVoptG showed a significantly lower IC50 value than the pure LT. From the study, it can be concluded that the prepared LT-NVoptG was found to be an alternative to the synthetic drug as well as conventional delivery systems.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Fahad A. Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Muhammad Shahid Nadeem
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Hisham N. Altayb
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 23443, Saudi Arabia; (F.A.A.-A.); (M.S.N.); (H.N.A.)
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
29
|
Bayoumi M, Arafa MG, Nasr M, Sammour OA. Nobiletin-loaded composite penetration enhancer vesicles restore the normal miRNA expression and the chief defence antioxidant levels in skin cancer. Sci Rep 2021; 11:20197. [PMID: 34642396 PMCID: PMC8511031 DOI: 10.1038/s41598-021-99756-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/27/2021] [Indexed: 12/27/2022] Open
Abstract
Skin cancer is one of the most dangerous diseases, leading to massive losses and high death rates worldwide. Topical delivery of nutraceuticals is considered a suitable approach for efficient and safe treatment of skin cancer. Nobiletin; a flavone occurring in citrus fruits has been reported to inhibit proliferation of carcinogenesis since 1990s, is a promising candidate in this regard. Nobiletin was loaded in various vesicular systems to improve its cytotoxicity against skin cancer. Vesicles were prepared using the thin film hydration method, and characterized for particle size, zeta potential, entrapment efficiency, TEM, ex-vivo skin deposition and physical stability. Nobiletin-loaded composite penetration enhancer vesicles (PEVs) and composite transfersomes exhibited particle size 126.70 ± 11.80 nm, 110.10 ± 0.90 nm, zeta potential + 6.10 ± 0.40 mV, + 9.80 ± 2.60 mV, entrapment efficiency 93.50% ± 3.60, 95.60% ± 1.50 and total skin deposition 95.30% ± 3.40, 100.00% ± 2.80, respectively. These formulations were selected for cytotoxicity study on epidermoid carcinoma cell line (A431). Nobiletin-loaded composite PEVs displayed the lowest IC50 value, thus was selected for the in vivo study, where it restored skin condition in DMBA induced skin carcinogenesis mice, as delineated by histological and immuno-histochemical analysis, biochemical assessment of skin oxidative stress biomarkers, in addition to miRNA21 and miRNA29A. The outcomes confirmed that nobiletin- loaded composite PEVs is an efficient delivery system combating skin cancer.
Collapse
Affiliation(s)
- Mahitab Bayoumi
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
| | - Mona G Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt, Cairo, 11837, Egypt
- Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, 35516, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt.
| | - Omaima A Sammour
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, African Organization Unity Street, Cairo, 11561, Egypt
| |
Collapse
|
30
|
Tuning the phase transition temperature of hybrid Span60-L64 thermoresponsive niosomes: Insights from fluorescence and Raman spectroscopy. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Kamalkazemi E, Abedi-Gaballu F, Mohammad Hosseini TF, Mohammadi A, Mansoori B, Dehghan G, Baradaran B, Sheibani N. Glimpse into Cellular Internalization and Intracellular Trafficking of Lipid-Based Nanoparticles in Cancer Cells. Anticancer Agents Med Chem 2021; 22:1897-1912. [PMID: 34488605 DOI: 10.2174/1871520621666210906101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 11/22/2022]
Abstract
Lipid-based nanoparticles as drug delivery carriers have been mainly used for delivery of anti-cancer therapeutic agents. Lipid-based nanoparticles, due to their smaller particle size and similarity to cell membranes, are readily internalized into cancer cells. Interestingly, cancer cells also overexpress receptors for specific ligands including folic acid, hyaluronic acid, and transferrin on their surface. This allows the use of these ligands for surface modification of the lipid-based nanoparticle. These modifications then allow the specific recognition of these ligand-coated nanoparticles by their receptors on cancer cells allowing the targeted gradual intracellular accumulation of the functionalized nanoplatforms. These interactions could eventually enhance the internalization of desired drugs via increasing ligand-receptor mediated cellular uptake of the nanoplatforms. The cellular internalization of the nanoplatforms also varies and depends on their physicochemical properties including particle size, zeta potential, and shape. The cellular uptake is also influenced by the types of ligand internalization pathway utilized by cells such as phagocytosis, macropinocytosis, and multiple endocytosis pathways. In this review, we will classify and discuss lipid based nanoparticles engineered to express specific ligands, and are recognized by their receptors on cancer cell, and their cellular internalization pathways. Moreover, the intracellular fate of nanoparticles decorated with specific ligands and the best internalization pathways (caveolae mediated endocytosis) for safe cargo delivery will be discussed.
Collapse
Affiliation(s)
- Elham Kamalkazemi
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | | | | | - Ali Mohammadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Behzad Mansoori
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz. Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz. Iran
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, Biomedical Engineering, and Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI . United States
| |
Collapse
|
32
|
Panek-Krzyśko A, Stompor-Gorący M. The Pro-Health Benefits of Morusin Administration-An Update Review. Nutrients 2021; 13:3043. [PMID: 34578920 PMCID: PMC8470188 DOI: 10.3390/nu13093043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/27/2021] [Accepted: 08/28/2021] [Indexed: 01/12/2023] Open
Abstract
Prenylflavonoids are widespread in nature. Plants are valuable sources of natural polyphenolic compounds with isoprenyl groups, which include flavones, flavanones, chalcones and aurones. They can be found in flowers, bark and stems. One of the most important compounds found in the bark of white mulberry (Morus alba) is morusin, a prenylated flavone with interesting pro-health properties. The research carried out so far revealed that morusin has antioxidant, antitumor, anti-inflammatory and anti-allergic activity. Moreover, its neuroprotective and antihyperglycemic properties have also been confirmed. Morusin suppresses the growth of different types of tumors, including breast cancer, glioblastoma, pancreatic cancer, hepatocarcinoma, prostate cancer, and gastric cancer. It also inhibits the inflammatory response by suppressing COX activity and iNOS expression. Moreover, an antimicrobial effect against Gram-positive bacteria was observed after treatment with morusin. The objective of this review is to summarize the current knowledge about the positive effects of morusin on human health in order to facilitate future study on the development of plant polyphenolic drugs and nutraceutics in the group of prenylflavones.
Collapse
Affiliation(s)
| | - Monika Stompor-Gorący
- Department of Human Pathophysiology, Institute of Medical Sciences, University of Rzeszów, Warzywna 1a, 35-310 Rzeszów, Poland;
| |
Collapse
|
33
|
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative Delivery Systems Loaded with Plant Bioactive Ingredients: Formulation Approaches and Applications. PLANTS (BASEL, SWITZERLAND) 2021; 10:1238. [PMID: 34207139 PMCID: PMC8234206 DOI: 10.3390/plants10061238] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/10/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Plants constitute a rich source of diverse classes of valuable phytochemicals (e.g., phenolic acids, flavonoids, carotenoids, alkaloids) with proven biological activity (e.g., antioxidant, anti-inflammatory, antimicrobial, etc.). However, factors such as low stability, poor solubility and bioavailability limit their food, cosmetics and pharmaceutical applications. In this regard, a wide range of delivery systems have been developed to increase the stability of plant-derived bioactive compounds upon processing, storage or under gastrointestinal digestion conditions, to enhance their solubility, to mask undesirable flavors as well as to efficiently deliver them to the target tissues where they can exert their biological activity and promote human health. In the present review, the latest advances regarding the design of innovative delivery systems for pure plant bioactive compounds, extracts or essential oils, in order to overcome the above-mentioned challenges, are presented. Moreover, a broad spectrum of applications along with future trends are critically discussed.
Collapse
Affiliation(s)
- Anastasia Kyriakoudi
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | - Eleni Spanidi
- APIVITA SA, Industrial Park, Markopoulo, 19003 Athens, Greece;
| | - Ioannis Mourtzinos
- Laboratory of Food Chemistry and Biochemistry, Department of Food Science and Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.K.); (I.M.)
| | | |
Collapse
|
34
|
Moghtaderi M, Mirzaie A, Zabet N, Moammeri A, Mansoori-Kermani A, Akbarzadeh I, Eshrati Yeganeh F, Chitgarzadeh A, Bagheri Kashtali A, Ren Q. Enhanced Antibacterial Activity of Echinacea angustifolia Extract against Multidrug-Resistant Klebsiella pneumoniae through Niosome Encapsulation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1573. [PMID: 34203811 PMCID: PMC8232788 DOI: 10.3390/nano11061573] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
With the increased occurrence of antibiotic-resistant bacteria, alternatives to classical antibiotics are urgently needed for treatment of various infectious diseases. Medicinal plant extracts are among the promising candidates due to their bioactive components. The aim of this study was to prepare niosome-encapsulated Echinacea angustifolia extract and study its efficacy against multidrug-resistant Klebsiella pneumoniae strains. Encapsulation was first optimized by Design of Experiments, followed by the empirical study. The obtained niosomes were further characterized for the size and morphology using dynamic light scattering (DLS), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Spherical niosomes had a diameter of 142.3 ± 5.1 nm, as measured by DLS. The entrapment efficiency (EE%) of E. angustifolia extract reached up to 77.1% ± 0.3%. The prepared niosomes showed a controlled drug release within the tested 72 h and a storage stability of at least 2 months at both 4 and 25 °C. The encapsulated E. angustifolia displayed up to 16-fold higher antibacterial activity against multidrug-resistant K.pneumoniae strains, compared to the free extract. Additionally, the niosome exhibited negligible cytotoxicity against human foreskin fibroblasts. We anticipate that the results presented herein could contribute to the preparation of other plant extracts with improved stability and antibacterial activity, and will help reduce the overuse of antibiotics by controlled release of natural-derived drugs.
Collapse
Affiliation(s)
- Maryam Moghtaderi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.M.); (A.M.)
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand 3761396361, Iran
| | - Negar Zabet
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1996835113, Iran;
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran; (M.M.); (A.M.)
| | - Amirreza Mansoori-Kermani
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran;
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Arman Chitgarzadeh
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen 3973188981, Iran; (A.C.); (A.B.K.)
| | - Aliasghar Bagheri Kashtali
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen 3973188981, Iran; (A.C.); (A.B.K.)
| | - Qun Ren
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| |
Collapse
|
35
|
Malektaj H, Imani R, Siadati MH. Study of injectable PNIPAAm hydrogels containing niosomal angiogenetic drug delivery system for potential cardiac tissue regeneration. Biomed Mater 2021; 16. [PMID: 33482656 DOI: 10.1088/1748-605x/abdef8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023]
Abstract
Nowadays, heart disease, especially myocardial infarction, is one of the most astoundingly unfortunate causes of mortality in the world. That is why special attention has been paid toward tissue engineering techniques for curing and regeneration of heart tissue. In this study, poly(N-isopropyl acrylamide) (PNIPAAm), a temperature-sensitive injectable hydrogel, was selected as a minimally invasive scaffold to accommodate, carry, and release of niosomal rosuvastatin to the inflicted area for inducing angiogenesis and thus accelerating the healing process. The characteristics of PNIPAAm were studied by scanning electron microscopy, rheology tests, and Fourier transform infrared spectroscopy. The properties of the niosomal rosuvastatin release system, including particle size distribution, zeta potential, encapsulation efficiency (EE), and drug release, were also studied. The results showed that niosomes (358 nm) had a drug EE of 78% and a loading capacity of 53%. The drug was sustainably released from the system up to about 54% in 5 d. Cellular studies showed no toxicity to the endothelial cell lines, and the niosomal drug with a concentration of 7.5 nM enhanced cell proliferation, and cell migration increased from 72% to 90% compared to the control sample. Therefore, the controlled-release of niosomal rosuvastatin enhanced angiogenesis in a dose-dependent manner. Taken together, these advantages suggest that PNIPAAm-based niosomal hydrogel provides a promising candidate as an angiogentic injectable scaffold for potential cardiac tissue regeneration.
Collapse
Affiliation(s)
- Haniyeh Malektaj
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| | - Rana Imani
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - M Hossein Siadati
- Materials Science and Engineering Faculty, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
36
|
Sabry S, El hakim Ramadan A, Abd elghany M, Okda T, Hasan A. Formulation, characterization, and evaluation of the anti-tumor activity of nanosized galangin loaded niosomes on chemically induced hepatocellular carcinoma in rats. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Maniam G, Mai CW, Zulkefeli M, Fu JY. Co-encapsulation of gemcitabine and tocotrienols in nanovesicles enhanced efficacy in pancreatic cancer. Nanomedicine (Lond) 2021; 16:373-389. [PMID: 33543651 DOI: 10.2217/nnm-2020-0374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Aim: To synthesize niosomes co-encapsulating gemcitabine (GEM) and tocotrienols, and physicochemically characterize and evaluate the antipancreatic effects of the nanoformulation on Panc 10.05, SW 1990, AsPC-1 and BxPC-3 cells. Materials & methods: Niosomes-entrapping GEM and tocotrienols composed of Span 60, cholesterol and D-α-tocopheryl polyethylene glycol 1000 succinate were produced by Handjani-Vila and film hydration methods. Results: The film hydration produced vesicles measuring 161.9 ± 0.5 nm, approximately 50% smaller in size than Handjani-Vila method, with maximum entrapment efficiencies of 20.07 ± 0.22% for GEM and 34.52 ± 0.10% for tocotrienols. In Panc 10.05 cells, GEM's antiproliferative effect was enhanced 2.78-fold in combination with tocotrienols. Niosomes produced a significant ninefold enhancement in cytotoxicity of the combination, supported by significantly higher cellular uptake of GEM in the cells. Conclusion: This study is a proof of concept on the synthesis of dual-drug niosomes and their efficacy on pancreatic cancer cells in vitro.
Collapse
Affiliation(s)
- Geetha Maniam
- School of Postgraduate Study, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| | - Chun-Wai Mai
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
- Centre for Cancer & Stem Cells Research, Institute for Research, Development & Innovation, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Ju-Yen Fu
- Product Development & Advisory Services Division, Malaysian Palm Oil Board, Bandar Baru Bangi, Selangor, Malaysia
| |
Collapse
|
39
|
Akbarzadeh I, Keramati M, Azadi A, Afzali E, Shahbazi R, Chiani M, Norouzian D, Bakhshandeh H. Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids 2020; 234:105019. [PMID: 33232724 DOI: 10.1016/j.chemphyslip.2020.105019] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Niosomes, as a kind of drug delivery system, is widely used for the topical delivery of lipophilic drugs. Optimization of niosomes plays an essential role in enhancing their therapeutic efficiencies. This study aims to prepare an optimized niosomal formulation of simvastatin (nSIM), a lipophilic member of statins, through the experiment (Response Surface methodology). Optimized niosomes were characterized in size, polydispersity index (PDI), entrapment efficiency (EE), stability, releasing pattern, and antimicrobial activity. The different molar ratio of surfactant and cholesterol were applied to prepare various formulation of simvastatin loaded niosome. Mean particle size and size distribution were analyzed by dynamic light scattering. Antibacterial activity was determined by MIC and MBC tests against Staphylococcus aureus and Escherichia coli. The release rate of simvastatin from noisome nanoparticles was studied by the Franz diffusion cell method. The release pattern was studied through zero order, first order, Higuchi, Korsmeyer-Peppas, and Hixson-Crowell kinetics models. Optimized niosomes were obtained by span 80, drug to cholesterol ratio of 0.4 with 7 min sonication time. Mean particle size, PDI, zeta potential, and entrapment efficiency (EE%) of optimized nSIM were obtained about 168 nm, 0.34, -32.40, and 96 %, respectively. The niosomes significantly decreased the drug's releasing rate and enhanced antibacterial activity against S. aureus and E. Coli. It was found that the release pattern of drug followed the Higuchi kinetic model which means drug release is by diffusion. Overall, our findings indicated that the prepared simvastatin loaded niosomes showed good stability and biological properties than free drug. Our study suggests that niosomal formulation could be considered as a promising strategy for the delivery of poor water-soluble drugs that enhance antibacterial activity.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran; Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Maliheh Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Afzali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Chiani
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
40
|
Synthesis and characterization of turmeric oil loaded non-ionic surfactant vesicles (niosomes) and its enhanced larvicidal activity against mosquito vectors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
41
|
Choi DW, Cho SW, Lee SG, Choi CY. The Beneficial Effects of Morusin, an Isoprene Flavonoid Isolated from the Root Bark of Morus. Int J Mol Sci 2020; 21:E6541. [PMID: 32906784 PMCID: PMC7554996 DOI: 10.3390/ijms21186541] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/04/2020] [Accepted: 09/05/2020] [Indexed: 12/19/2022] Open
Abstract
The root bark of Morus has long been appreciated as an antiphlogistic, diuretic and expectorant drug in Chinese herbal medicine, albeit with barely known targets and mechanisms of action. In the 1970s, the development of analytic chemistry allowed for the discovery of morusin as one of 7 different isoprene flavonoid derivatives in the root bark of Morus. However, the remarkable antioxidant capacity of morusin with the unexpected potential for health benefits over the other flavonoid derivatives has recently sparked scientific interest in the biochemical identification of target proteins and signaling pathways and further clinical relevance. In this review, we discuss recent advances in the understanding of the functional roles of morusin in multiple biological processes such as inflammation, apoptosis, metabolism and autophagy. We also highlight recent in vivo and in vitro evidence on the clinical potential of morusin treatment for multiple human pathologies including inflammatory diseases, neurological disorders, diabetes, cancer and the underlying mechanisms.
Collapse
Affiliation(s)
- Dong Wook Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| | - Seok-Geun Lee
- Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea
- KHU-KIST Department of Converging Science & Technology, Kyung Hee University, Seoul 02447, Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea; (D.W.C.); (S.W.C.)
| |
Collapse
|
42
|
Akbarzadeh I, Tavakkoli Yaraki M, Ahmadi S, Chiani M, Nourouzian D. Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.08.011] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Akbarzadeh I, Saremi Poor A, Yaghmaei S, Norouzian D, Noorbazargan H, Saffar S, Ahangari Cohan R, Bakhshandeh H. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev Ind Pharm 2020; 46:1535-1549. [PMID: 32808813 DOI: 10.1080/03639045.2020.1810269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. SIGNIFICANCE Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. METHODS Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells. RESULTS Size, polydispersity index (PDI), and EE of the best formulation were obtained as 164.8 nm, 0.232, and 97%, respectively. The formulated simvastatin had a spherical shape and showed a slow release profile of the drug after 72 h. Stability data elucidated an increase in mean diameter and PDI which was lower for 4 °C than 25 °C. Confocal microscopy showed the localization of drug loaded niosomes in the cancer cells. The MTT assay revealed both free drug and drug loaded niosomes exhibited a dose-dependent cytotoxicity against breast cancer cells (MDA-MB-231 cells). Flow cytometry and qPCR analysis revealed drug loaded niosomes exert their cytotoxicity on cancerous cells via regulation of apoptotic and anti-apoptotic genes. CONCLUSION The prepared niosomal simvastatin showed good physicochemical and biological properties than free drug. Our study suggests that niosomal delivery could be considered as a promising strategy for the delivery of poor water-soluble drugs to cancer cells.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.,Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Anita Saremi Poor
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
44
|
Agarwal S, Mohamed MS, Mizuki T, Maekawa T, Sakthi Kumar D. Chlorotoxin modified morusin-PLGA nanoparticles for targeted glioblastoma therapy. J Mater Chem B 2020; 7:5896-5919. [PMID: 31423502 DOI: 10.1039/c9tb01131e] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Malignant brain tumors remain a major cause of concern and mortality as successful treatment is hindered due to the poor transport and low penetration of chemotherapeutics across the blood-brain barrier (BBB). In this study, a nano formulation composed of chlorotoxin (CTX)-conjugated morusin loaded PLGA nanoparticles (PLGA-MOR-CTX) was devised against Glioblastoma Multiforme (GBM) and its anti-proliferative effects were evaluated in vitro. The synthesized nanoparticles were loaded with morusin, a naturally derived chemotherapeutic drug, and surface conjugated with CTX, a peptide derived from scorpion venom, highly specific for chloride channels (CIC-3) expressed in glioma tumor cells, as well as for matrix metalloproteinase (MMP-2), which is up regulated in the tumor microenvironment. Subsequently, the anti-cancer potential of the NPs was assessed in U87 and GI-1 (human glioblastoma) cells. Antiproliferative, cell apoptosis, and other cell-based assays demonstrated that the PLGA-MOR-CTX NPs resulted in enhanced inhibitory effects on U87 and GI-1 glioma cells. Prominent cytotoxicity parameters such as ROS generation, enhanced caspase activity, cytoskeletal destabilization, and inhibition of MMP-activity were observed in glioblastoma cells upon PLGA-MOR-CTX NP treatment. The cytocompatibility observed with normal human neuronal cells (HCN-1A) and the enhanced lethal effects in glioblastoma cells highlight the potential of PLGA-MOR-CTX nanoparticles as promising therapeutic nanocarriers towards GBM.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama 350-8585, Japan.
| | | | | | | | | |
Collapse
|
45
|
Ali I, Saifullah S, El‐Haj BM, Ali HS, Yasmeen S, Imran M, Nisar J, Shah MR. Synthesis and Characterization of Sulfanilamide‐Based Nonionic Surfactants and Evaluation of Their Nano‐Vesicular Drug Loading Application. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Imdad Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi 74200 Pakistan
| | - Salim Saifullah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi 74200 Pakistan
| | - Babiker M. El‐Haj
- Pharmaceutical Sciences Department, College of Pharmacy and Health SciencesUniversity of Sciences and Technology of Al Fujairah Fujairah 2202 UAE
| | - Heyam Saad Ali
- Department of PharmaceuticsUniversity of Khartoum Khartoum, 11111 Sudan
| | - Saira Yasmeen
- Deparment of ChemistryUniversity of Karachi Karachi 74200 Pakistan
| | - Muhammad Imran
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi 74200 Pakistan
| | - Jan Nisar
- National Centre of Excellence in Physical ChemistryUniversity of Peshawar Peshawar 25120 Pakistan
| | - Muhammad Raza Shah
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological SciencesUniversity of Karachi Karachi 74200 Pakistan
| |
Collapse
|
46
|
Barani M, Mirzaei M, Torkzadeh-Mahani M, Lohrasbi-Nejad A, Nematollahi MH. A new formulation of hydrophobin-coated niosome as a drug carrier to cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110975. [PMID: 32487392 DOI: 10.1016/j.msec.2020.110975] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Revised: 04/15/2020] [Accepted: 04/15/2020] [Indexed: 12/16/2022]
Abstract
Hydrophobin-1 (HFB-1) found on the surface of fungal spores, plays a role in the lack of antigen recognition by the host immune system. The present study aimed to evaluate the potential application of HFB-1 for the delivery of doxorubicin (Dox) into different cell lines. Coating the surface of niosomes (Nio) with HFB-1 leads to the hypothesis that this protein can confer protection against in vivo immune-system recognition and prevent the immune response. Thus, HFB-1 could become a promising alternative to polyethylene glycol (PEG). Here, HFB-1-coated niosome loaded with doxorubicin (Dox) based on Span 40, Tween 40 and cholesterol was prepared and compared with the PEG-coated niosome. Physicochemical characteristics of the prepared formulations in terms of size, zeta potential, polydispersity index (PDI), morphology, entrapment efficiency (EE), and release rate were evaluated at different pH levels (2, 5.2, and 7.4). In the end, the in vitro cytotoxicity assay was performed on four different cancer cell lines namely A549, MDA-MB-231, C6 and PC12 in addition to one control cell line (3 T3) to ensure the formulation's selectivity against cancer cells. Results showed that the niosomes coated with HFB-1 presented better size distribution, higher EE, more sustained release profile, enhanced biocompatibility and improved anticancer effects as compared to the PEG-coated niosomes. Interestingly, the viability percentage of the control cell line was higher than different cancer cells when treated with the formulations, which indicates the higher selectivity of the formulation against cancer cells. In conclusion, loading the niosomes with Dox and coating them with HFB-1 enhanced their efficacy and selectivity toward cancer cells, presenting a promising drug delivery system for sustained drug release in cancer treatment.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Mirzaei
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Masoud Torkzadeh-Mahani
- Department of Biotechnology, Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran.
| | - Azadeh Lohrasbi-Nejad
- Department of Agricultural Biotechnology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Hadi Nematollahi
- Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran; Department of Biochemistry, School of Medicine, University of Medical Sciences, Kerman, Iran
| |
Collapse
|
47
|
Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: A review on niosomal research in the last decade. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101581] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
48
|
Preparation, characterization, and evaluation of the anticancer activity of artemether-loaded nano-niosomes against breast cancer. Breast Cancer 2019; 27:243-251. [DOI: 10.1007/s12282-019-01014-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/03/2019] [Indexed: 11/27/2022]
|
49
|
Moulahoum H, Sanli S, Timur S, Zihnioglu F. Potential effect of carnosine encapsulated niosomes in bovine serum albumin modifications. Int J Biol Macromol 2019; 137:583-591. [DOI: 10.1016/j.ijbiomac.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/29/2019] [Accepted: 07/01/2019] [Indexed: 12/18/2022]
|
50
|
Trinh LH, Takzare A, Ghafoor DD, Siddiqi AF, Ravali S, Shalbaf M, Bakhtiar M. Trachyspermum copticum essential oil incorporated niosome for cancer treatment. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.05.046] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|