1
|
Osella MI, Salazar MO, Solís CM, Furlan RLE. New semisynthetic α-glucosidase inhibitor from a doubly-chemically engineered extract. NATURAL PRODUCTS AND BIOPROSPECTING 2025; 15:4. [PMID: 39755857 DOI: 10.1007/s13659-024-00488-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025]
Abstract
Chemically engineered extracts represent a promising source of new bioactive semi-synthetic molecules. Prepared through direct derivatization of natural extracts, they can include constituents enriched with elements and sub-structures that are less common in natural products compared to drugs. Fourteen such extracts were prepared through sequential reactions with hydrazine and a fluorinating reagent, and their α-glucosidase inhibition properties were compared. For the most bioactive mixture, a chemically modified propolis extract, enzyme inhibition increased 22 times due to the reaction sequence. Bio-guided fractionation led to the isolation of a new fluorinated pyrazole produced within the extract by chemical transformation of the flavonoid chrysin. The inhibitor results from the action of the two reagents used on four common functional groups present in natural products (carbonyl, phenol, aromatic carbon, and a double bond). The reactions led to the opening of a 6-member oxygenated heterocycle to produce a 5-member nitrogenated one, as well as the dehydroxylation and fluorination in two different positions of one of the aromatic rings of the natural starting material, all within a complex mixture of natural products. Overall, these transformations led to an approximately 20-fold increase in the α-glucosidase inhibition by the isolated inhibitor compared to its natural precursor.
Collapse
Affiliation(s)
- María I Osella
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Mario O Salazar
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Carlos M Solís
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina
| | - Ricardo L E Furlan
- Consejo Nacional de Investigaciones Científicas y Técnicas, Suipacha 531, S2002LRK, Rosario, Argentina.
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Argentina.
| |
Collapse
|
2
|
Lescano LE, Salazar MO, Furlan RLE. Chemically engineered essential oils prepared through thiocyanation under solvent-free conditions: chemical and bioactivity alteration. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:35. [PMID: 38822174 PMCID: PMC11143095 DOI: 10.1007/s13659-024-00456-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/02/2024]
Abstract
The generation of chemically engineered essential oils (CEEOs) prepared from bi-heteroatomic reactions using ammonium thiocyanate as a source of bioactive compounds is described. The impact of the reaction on the chemical composition of the mixtures was qualitatively demonstrated through GC-MS, utilizing univariate and multivariate analysis. The reaction transformed most of the components in the natural mixtures, thereby expanding the chemical diversity of the mixtures. Changes in inhibition properties between natural and CEEOs were demonstrated through acetylcholinesterase TLC autography, resulting in a threefold increase in the number of positive events due to the modification process. The chemically engineered Origanum vulgare L. essential oil was subjected to bioguided fractionation, leading to the discovery of four new active compounds with similar or higher potency than eserine against the enzyme. The results suggest that the directed chemical transformation of essential oils can be a valuable strategy for discovering new acetylcholinesterase (AChE) inhibitors.
Collapse
Affiliation(s)
- Liz E Lescano
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
| | - Mario O Salazar
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina.
| | - Ricardo L E Furlan
- Farmacognosia, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR), Suipacha 531, 2000, Rosario, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|
3
|
Beato A, Haudecoeur R, Boucherle B, Peuchmaur M. Expanding Chemical Frontiers: Approaches for Generating Diverse and Bioactive Natural Product-Like Compounds Libraries from Extracts. Chemistry 2024; 30:e202304166. [PMID: 38372433 DOI: 10.1002/chem.202304166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
The realms of natural products and synthetic compounds exhibit distinct chemical spaces that not only differ but also complement each other. While the convergence of these two domains has been explored through semisynthesis and conventional pharmacomodulation endeavours applied to natural frameworks, a recent and innovative approach has emerged that involves the combinatorial generation of libraries of 'natural product-like compounds' (NPLCs) through the direct synthetic derivatization of natural extracts. This has led to the production of numerous NPLCs that incorporate structural elements from both their natural (multiple saturated rings, oxygen content, chiral centres) and synthetic (aromatic rings, nitrogen and halogen content, drug-like properties) precursors. Through careful selection of extracts and reagents, specific bioactivities have been achieved, and this strategy has been deployed in various ways, showing great promise without reaching its full potential to date. This review seeks to provide an overview of reported examples involving the chemical engineering of extracts, showcasing a spectrum of natural product alterations spanning from simple substitutions to complete scaffold remodelling. It also includes an analysis of the accomplishments, perspectives and technical challenges within this field.
Collapse
Affiliation(s)
- Aurélien Beato
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Romain Haudecoeur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Benjamin Boucherle
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| | - Marine Peuchmaur
- Univ. Grenoble Alpes, CNRS, DPM, Bâtiment E Pôle Chimie BP 53, 38000, Grenoble, France
| |
Collapse
|
4
|
Legerská B, Chmelová D, Ondrejovič M, Miertuš S. The TLC-Bioautography as a Tool for Rapid Enzyme Inhibitors detection - A Review. Crit Rev Anal Chem 2020; 52:275-293. [PMID: 32744081 DOI: 10.1080/10408347.2020.1797467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microorganisms and plants can be important sources of many compounds with potential pharmaceutical applications. Extraction of these matrices is one of the ways of identifying the presence of inhibitory active substances against enzymes whose high activity leads to serious human diseases including cancer, Parkinson's or Crohn's diseases. The isolation and purification of inhibitors are time-consuming and expensive steps in the analysis of the crude extract and therefore, it is necessary to find a fast, efficient, and inexpensive method for screening extracts of interest. TLC-Bioautography combines the separation of the extract on a thin layer with its subsequent biological analysis. TLC-Bioautography methods have been developed for several classes of enzymes including oxidoreductases, hydrolases and isomerases, and there is a potential for developing functional methods for other classes of enzymes. This review summarizes known TLC-Bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts and compares the effectiveness of different methodological approaches. It also indicates the current state and perspective of the development of TLC-Bioautography and its possible future applications.
Collapse
Affiliation(s)
- Barbora Legerská
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Daniela Chmelová
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Miroslav Ondrejovič
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia
| | - Stanislav Miertuš
- Department of Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius in Trnava, Trnava, Slovakia.,ICARST n.o., Bratislava, Slovakia
| |
Collapse
|
5
|
Osella MI, Salazar MO, Gamarra MD, Moreno DM, Lambertucci F, Frances DE, Furlan RLE. Arylsulfonyl histamine derivatives as powerful and selective α-glucosidase inhibitors. RSC Med Chem 2020; 11:518-527. [PMID: 33479653 PMCID: PMC7489258 DOI: 10.1039/c9md00559e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 12/24/2022] Open
Abstract
A series of simple N-arylbenzenesulfonyl histamine derivatives were prepared and screened against α-glucosidase. Inhibition was in the micromolar range for several N α,N τ-di-arylsulfonyl compounds, with N α,N τ-di-4-trifluorobenzenesulfonyl histamine (IId) being the best inhibitor. Compound IId is a reversible and competitive α-glucosidase inhibitor, and presented good selectivity with respect to other target enzymes, including β-glucosidase and α-amylase, and interesting predicted physicochemical properties. Docking studies have been run to postulate ligand-enzyme interactions to account for the experimental results. In vivo, compound IId produced a similar hypoglycemic effect to acarbose with half of its dose.
Collapse
Affiliation(s)
- M I Osella
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| | - M O Salazar
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| | - M D Gamarra
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA) , Departamento de Biológica , Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Ciudad Universitaria , Intendente Guiraldes 2160 , Ciudad Autónoma de Buenos Aires C1428EGA , Argentina
| | - D M Moreno
- Instituto de Química Rosario (IQUIR, CONICET-UNR) , Área Química General e Inorgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - F Lambertucci
- Instituto de Fisiología Experimental (IFISE, CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - D E Frances
- Instituto de Fisiología Experimental (IFISE, CONICET-UNR) , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina
| | - R L E Furlan
- Farmacognosia , Departamento de Química Orgánica , Facultad de Ciencias Bioquímicas y Farmacéuticas , Universidad Nacional de Rosario , Suipacha 531 , Rosario S2002LRK , Argentina .
| |
Collapse
|
6
|
Abstract
Enzymatic bioautography enables the detection of enzyme inhibitors absorbed on a thin-layer chromatography plate. Therefore, it is an assay format that is particularly useful for the detection of inhibitors present in complex mixtures. The inhibition properties of compounds separated by thin-layer chromatography can be directly analyzed to produce an inhibition profile. Here, we describe the conditions to detect inhibitor of the enzymes xanthine oxidase and β-glucosidase immobilized on agar gel.
Collapse
Affiliation(s)
- I Ayelen Ramallo
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Mario O Salazar
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas, Universidad Nacional de Rosario-CONICET, Rosario, Argentina.
| |
Collapse
|
7
|
Solís CM, Salazar MO, Ramallo IA, García P, Furlan RLE. A Tyrosinase Inhibitor from a Nitrogen-Enriched Chemically Engineered Extract. ACS COMBINATORIAL SCIENCE 2019; 21:622-627. [PMID: 31361945 DOI: 10.1021/acscombsci.9b00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The enzyme tyrosinase is involved in the biosynthesis of melanin and the enzymatic browning of fruits and vegetables, and therefore, its inhibitors have potential to treat hyperpigmentary disorders or to function as food antibrowning agents. The use of hydrazine monohydrate as a reagent to prepare chemically engineered extracts can lead to semisynthetic compounds that contain the portion N-N, a fragment rarely found in natural products and present in some tyrosinase inhibitors. Here, we report the tyrosinase inhibition screening of a series of chemically engineered extracts that are diversified by reaction with hydrazine. LC-MS was used to evaluate the change in composition produced by the reaction. Bioguided fractionation of the most active chemically engineered extract, prepared from Matricaria recutita L., led to the discovery of a pyrazole that inhibits tyrosinase with an IC50 value of 28.20 ± 1.13 μM. This compound was produced by a one-pot double chemical transformation of its natural precursor, which includes an unexpected selective removal of one -OH group.
Collapse
Affiliation(s)
- Carlos M. Solís
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Mario O. Salazar
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - I. Ayelen Ramallo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Paula García
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| | - Ricardo L. E. Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario-CONICET, Suipacha 531, 2000, Rosario, Argentina
| |
Collapse
|