1
|
Du X, Jing W, Jiang R, Chen M, Liu D. Removal of dissolved organic matter in road runoff with sludge-based filters from the drinking water treatment plant. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2025; 91:160-173. [PMID: 39882920 DOI: 10.2166/wst.2024.405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025]
Abstract
Road runoff underwent treatment using a filter filled with sludge from drinking water treatment plants to assess its capacity for removing dissolved organic matter (DOM). This evaluation utilized resin fractionation, gel permeation chromatography, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-Visible spectroscopy. The filter demonstrated enhanced efficiency in removing dissolved organic carbon, achieving removal rates between 70 and 80%. It effectively targeted macromolecular DOM components present in road runoff, with hydrophobic organic compounds showing higher removal rates than hydrophilic ones. Additionally, acidic and neutral organic substances were preferentially removed over basic organic compounds. Fluorescent substances identified in road runoff DOM included fulvic acid-like, humic acids, and protein-like substances, all of which exhibited significantly reduced intensities in fluorescence peaks after filtration. Furthermore, filtration led to a decrease in the aromatization and humification of runoff DOM due to the effective removal of aromatic compounds and macromolecular structural components.
Collapse
Affiliation(s)
- Xiaoli Du
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, Beijing 100044, China E-mail:
| | - Wenhui Jing
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Rongying Jiang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mengyao Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Dianwei Liu
- China Construction Fifth Engineering Division Co., Ltd, Changsha, Hunan 410004, China
| |
Collapse
|
2
|
Yao C, Xue J, Xie Q, Chen S, Jiang T, Wang J, Wang Y, Wang D. Mercury reduction by agricultural organic waste-derived dissolved organic matter: Kinetic analysis and the role of light-induced free radicals. ENVIRONMENTAL RESEARCH 2025; 264:120332. [PMID: 39547563 DOI: 10.1016/j.envres.2024.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/22/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Agricultural organic wastes can leach dissolved organic matter (DOM) into surrounding water bodies, establishing them as significant sources of aquatic DOM. Given the importance of DOM in biogeochemical cycling of mercury (Hg), this DOM may mediate divalent Hg (Hg(II)) reduction, a process that remains poorly understood. This study investigated Hg(II) reduction using DOM derived from six representative agricultural wastes, categorized into livestock manure (chicken, pig, cow) and crop straw (rice, corn, rapeseed), with systematic considerations of the kinetics of reduction processes and the involvement of key free radicals. Results revealed that photoreduction was the primary pathway for Hg(II) reduction, with pig manure DOM exhibiting the highest efficiency at 36%. Key DOM quality parameters, such as protein-like components, have been identified as critical determinants of Hg(II) photoreduction capacity. Furthermore, free radicals induced by DOM could either enhance or inhibit Hg(II) reduction capacities. Specifically, in livestock manure, the superoxide anion (O2•-)·was identified as the primary radical promoting Hg(II) photoreduction of pig manure DOM. In crop straw, hydroxyl radicals (·OH) were found to inhibit Hg(II) photoreduction, whereas O2•- promoted the Hg(II) photoreduction of rice straw DOM. These findings provide valuable insights into the role of agricultural organic wastes in biogeochemical cycling of Hg within aquatic ecosystems.
Collapse
Affiliation(s)
- Cong Yao
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Jinping Xue
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et des Physico-Chimie pour l'Environnement et les Matériaux (IPREM), Pau, 64000, France
| | - Qing Xie
- Chongqing Vocational Institute of Engineering, Chongqing, 402260, China
| | - Sha Chen
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Jiang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Juan Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| |
Collapse
|
3
|
Fei J, Bai X, Jiang C, Yin X, Ni BJ. A state-of-the-art review of environmental behavior and potential risks of biodegradable microplastics in soil ecosystems: Comparison with conventional microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176342. [PMID: 39312976 DOI: 10.1016/j.scitotenv.2024.176342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/03/2024] [Accepted: 09/15/2024] [Indexed: 09/25/2024]
Abstract
As the use of biodegradable plastics becomes increasingly widespread, their environmental behaviors and impacts warrant attention. Unlike conventional plastics, their degradability predisposes them to fragment into microplastics (MPs) more readily. These MPs subsequently enter the terrestrial environment. The abundant functional groups of biodegradable MPs significantly affect their transport and interactions with other contaminants (e.g., organic contaminants and heavy metals). The intermediates and additives released from depolymerization of biodegradable MPs, as well as coexisting contaminants, induce alterations in soil ecosystems. These processes indicate that the impacts of biodegradable MPs on soil ecosystems might significantly diverge from conventional MPs. However, an exhaustive and timely comparison of the environmental behaviors and effects of biodegradable and conventional MPs within soil ecosystems remains scarce. To address this gap, the Web of Science database and bibliometric software were utilized to identify publications with keywords containing biodegradable MPs and soil. Moreover, this review comprehensively summarizes the transport behavior of biodegradable MPs, their role as contaminant carriers, and the potential risks they pose to soil physicochemical properties, nutrient cycling, biota, and CO2 emissions as compared with conventional MPs. Biodegradable MPs, due to their great transport and adsorption capacity, facilitate the mobility of coexisting contaminants, potentially inducing widespread soil and groundwater contamination. Additionally, these MPs and their depolymerization products can disrupt soil ecosystems by altering physicochemical properties, increasing microbial biomass, decreasing microbial diversity, inhibiting the development of plants and animals, and increasing CO2 emissions. Finally, some perspectives are proposed to outline future research directions. Overall, this study emphasizes the pronounced effects of biodegradable MPs on soil ecosystems relative to their conventional counterparts and contributes to the understanding and management of biodegradable plastic contamination within the terrestrial ecosystem.
Collapse
Affiliation(s)
- Jiao Fei
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Xue Bai
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Chuanjia Jiang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Dia M, Farjon J, Raveleau C, Simpson A, Peyneau PE, Béchet B, Courtier-Murias D. Understanding the Interactions of Nanoparticles and Dissolved Organic Matter at the Molecular Level by 1H 2D Multi-Exponential Transverse Relaxation NMR Spectroscopy. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2024. [PMID: 39415470 DOI: 10.1002/mrc.5487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/18/2024]
Abstract
The interaction between humic acid (HA) and engineered nanoparticles (NPs) is critical in environmental sciences, especially for understanding the behavior of NPs in natural waters. This study employs 1H 2D Multi-Exponential Transverse Relaxation (METR) NMR spectroscopy to examine the molecular-level interactions between Pahokee Peat humic acid (HA) and carboxyl-functionalized iron oxide nanoparticles (NPCOs). First, 1H 2D METR NMR spectroscopy allowed not only the identification of HA in terms of its chemical composition but also the separation of molecules with the same chemical shift values but different rates of molecular tumbling. Then, using solutions with varying NPCO concentrations (0, 10, 40, and 100 μM), we observed significant changes in the T2 relaxation times of HA components, indicating interactions between HA and NPCO. Analysis showed the biggest effect on two chemical shift regions, corresponding to lipids and carbohydrates, revealing that smaller molecules within these regions exhibit the most significant changes in T2 values upon the addition of NPCO. This suggests that these molecules are the initial sites of interaction, with the entire HA system being affected at higher NPCO concentrations. These findings highlight the utility of METR NMR spectroscopy in studying complex environmental mixtures and provide insights into the behavior of HA and NPs, essential for understanding the fate of NPs in the environment.
Collapse
Affiliation(s)
- Malak Dia
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | | | - Clotilde Raveleau
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- CNRS, CEISAM UMR 6230, Nantes Université, Nantes, France
| | - André Simpson
- Environmental NMR Center, University of Toronto Scarborough, Scarborough, Ontario, Canada
| | | | - Béatrice Béchet
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| | - Denis Courtier-Murias
- Univ Gustave Eiffel, GERS-LEE, Bouguenais, France
- Institut de Recherche en Sciences et Techniques de la Ville - CNRS FR2488, Centrale Nantes, France
| |
Collapse
|
5
|
Meskelu T, Senbeta AF, Keneni YG, Sime G. Heavy metal accumulation and food safety of lettuce ( Lactuca sativa L.) amended by bioslurry and chemical fertilizer application. Food Sci Nutr 2024; 12:7449-7460. [PMID: 39479694 PMCID: PMC11521628 DOI: 10.1002/fsn3.4363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/16/2024] [Accepted: 07/11/2024] [Indexed: 11/02/2024] Open
Abstract
The accumulation of heavy metals in soil and plant tissue is a serious concern since it impacts both soil quality and food safety. This study evaluated the accumulation of heavy metals and the food quality of lettuce as a result of the application of chemical fertilizer (CF) and bioslurry (BS). The treatments were CF (158 kg ha-1 NPS and 200 kg ha-1 urea), BS (5 ton ha-1), and control with no fertilizer, laid out in a randomized complete block design with three replications. Soil samples were analyzed for their physico-chemical characteristics. The concentrations of 10 heavy metals (As, Pb, Zn, Cd, Cu, Ni, Co, Fe, Mn, and Cr) in the agricultural soil, bioslurry, and lettuce tissue were determined. Both the BS and CF reduced the concentrations of most heavy metals in the agricultural soil, particularly As, Pb, and Cd. Only the mean concentration of Cd in the agricultural soils exceeded the threshold level set by WHO/FAO (2011) for agricultural soils. Similarly, the concentration of As, Pb, and Cd in lettuce tissue grown in BS-treated soils and the concentration of As in agricultural soils surpassed the limit set for vegetables. Given the toxicities of As, Cd, and Pb, as well as the effect on food safety, human health, and the environment, it is unsafe to cultivate lettuce using either the agricultural soil or BS in the study area.
Collapse
Affiliation(s)
| | | | | | - Getachew Sime
- Department of BiologyHawassa UniversityHawassaEthiopia
- Center for Ethiopian Rift Valley StudiesHawassa UniversityHawassaEthiopia
| |
Collapse
|
6
|
Masinga P, Simbanegavi TT, Makuvara Z, Marumure J, Chaukura N, Gwenzi W. Emerging organic contaminants in the soil-plant-receptor continuum: transport, fate, health risks, and removal mechanisms. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:367. [PMID: 38488937 DOI: 10.1007/s10661-023-12282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/29/2023] [Indexed: 03/17/2024]
Abstract
There is a lack of comprehensive reviews tracking emerging organic contaminants (EOCs) within the soil-plant continuum using the source-pathway-receptor-impact-mitigation (SPRIM) framework. Therefore, this review examines existing literature to gain insights into the occurrence, behaviour, fate, health hazards, and strategies for mitigating EOCs within the soil-plant system. EOCs identified in the soil-plant system encompass endocrine-disrupting chemicals, surfactants, pharmaceuticals, personal care products, plasticizers, gasoline additives, flame retardants, and per- and poly-fluoroalkyl substances (PFAS). Sources of EOCs in the soil-plant system include the land application of biosolids, wastewater, and solid wastes rich in EOCs. However, less-studied sources encompass plastics and atmospheric deposition. EOCs are transported from their sources to the soil-plant system and other receptors through human activities, wind-driven processes, and hydrological pathways. The behaviour, persistence, and fate of EOCs within the soil-plant system are discussed, including sorption, degradation, phase partitioning, (bio)transformation, biouptake, translocation, and bioaccumulation in plants. Factors governing the behaviour, persistence, and fate of EOCs in the soil-plant system include pH, redox potential, texture, temperature, and soil organic matter content. The review also discusses the environmental receptors of EOCs, including their exchange with other environmental compartments (aquatic and atmospheric), and interactions with soil organisms. The ecological health risks, human exposure via inhalation of particulate matter and consumption of contaminated food, and hazards associated with various EOCs in the soil-plant system are discussed. Various mitigation measures including removal technologies of EOCs in the soil are discussed. Finally, future research directions are presented.
Collapse
Affiliation(s)
- Privilege Masinga
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Tinoziva T Simbanegavi
- Department of Soil Science and Environment, Faculty of Agriculture, Environment, and Food Systems, University of Zimbabwe, Mount Pleasant, P. O. Box MP 167, Harare, Zimbabwe
| | - Zakio Makuvara
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Jerikias Marumure
- Department of Physics, Geography and Environmental Science, School of Natural Sciences, Great Zimbabwe University, Masvingo, Zimbabwe
- Department of Life and Consumer Sciences, School of Agriculture and Life Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, Sol Plaatje University, Kimberley, 8301, South Africa
| | - Willis Gwenzi
- Biosystems and Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
- Biosystems and Environmental Engineering Research Group, 380 New Adylin, Marlborough, Harare, Zimbabwe.
| |
Collapse
|
7
|
Zhao J, Wang X, Gao B, Xia X, Li Y. Characterization and quantification of silver complexes with dissolved organic matter by size exclusion chromatography coupled to ICP-MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133645. [PMID: 38310837 DOI: 10.1016/j.jhazmat.2024.133645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
The fate and behavior of silver in aquatic systems is intricately determined by its interactions with dissolved organic matter (DOM). In this study, we have introduced a method for identification and quantification of silver-DOM complexes using size exclusion chromatography-inductively coupled plasma mass spectrometry (SEC-ICP-MS). Our findings revealed that silver(I) was weakly bound to Suwannee River humic acid, fulvic acid, and natural organic matter (SRHA, SRFA, and SRNOM) in various media, resulting in facile dissociation during chromatographic separation. Suitable chromatographic conditions were determined for the elution of Ag-DOM complexes, involving the use of 0.5 mM ammonium acetate (pH 7) as the mobile phase and silver-aged column (pre-absorbing 0.1-0.7 μg silver(I)). SEC-UV and SEC-ICP-MS chromatograms revealed that Ag-binding fractions of DOM were dominated by its aromatic compounds. The quantification of silver-DOM complexes was achieved by SEC-ICP-MS combination with on-line isotope dilution. Silver at concentrations below 20 µg L-1 was mainly present in the form of organic complexes in low salinity water. These measurements aligned well with the results obtained using the equilibrium dialysis method. Species analyses of Ag-DOM complexes provide a deeper understanding of the reactivity, transport, and fate of silver in aquatic environments. ENVIRONMENTAL IMPLICATION: Ionic silver is highly toxic to aquatic organisms such as fish and zooplankton. The complexation of silver with binding sites within DOM significantly influences its speciation, mobility, and toxicity. Despite the complex and unknown structure of silver-DOM complexes, this study provided a SEC-ICP-MS method to identify and quantify these complexes in a range of media. By uncovering the formation of silver-DOM complexes across diverse media, this work enhances the comprehension of silver transformation processes and associated environmental risks in aquatic environments.
Collapse
Affiliation(s)
- Jian Zhao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinjie Wang
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bowen Gao
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xinghui Xia
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yang Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, School of Environment, Beijing Normal University, Beijing 100875, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
8
|
Hu J, Yang N, He T, Zhou X, Yin D, Wang Y, Zhou L. Elevated methylmercury production in mercury-contaminated paddy soil resulted from the favorable dissolved organic matter variation created by algal decomposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 324:121415. [PMID: 36893976 DOI: 10.1016/j.envpol.2023.121415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/18/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Algae-derived organic matter (AOM) may considerably regulate methylmercury (MeHg) production and accumulation in the paddy fields by changing the soil-dissolved OM (SDOM) properties. In this study, a 25-day microcosm experiment was performed to compare the responding mechanisms of MeHg production in the Hg-contaminated paddy soil-water system to the input of algae-, rice-, and rape-derived OMs. Results showed that algal decomposition could release much more cysteine and sulfate than crop straws. Compared with crop straw-derived OMs, AOM input greatly increased the dissolved organic carbon concentrations in soil but resulted in a greater decrease in tryptophan-like fractions while accelerated the formation of high-molecular-weight fractions in soil DOM. Moreover, AOM input significantly increased MeHg concentrations in the pore water by 19.43%-3427.66% and 52.81%-5846.57% compared to rape- and rice-derived OMs, respectively (P < 0.05). And, a similar MeHg changing pattern was also observed in the overlying water (10-25 d) and the soil solid-phase particles (15-25 d) (P < 0.05). Correlation analysis revealed that MeHg concentrations in the AOM-added soil-water system had significantly negative and positive relationships with the tryptophan-like C4 fraction and molecular weight (E2/E3 ratio) of soil DOM, respectively (P < 0.01). These findings suggest that AOM has a higher capacity than crop straw-derived OMs to promote MeHg production and accumulation in the Hg-contaminated paddy soils by creating a favorable soil DOM variation and providing more microbial electron donors and receptors.
Collapse
Affiliation(s)
- Jie Hu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Ningla Yang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tianrong He
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Xian Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Deliang Yin
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; Guizhou Karst Environmental Ecosystems Observation and Research Station, Ministry of Education, Guiyang, 550025, China.
| | - Yan Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, 550025, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Litao Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
9
|
Olaniyan PO, Nadim MM, Subir M. Detection and binding interactions of pharmaceutical contaminants using quartz crystal microbalance - Role of adsorbate structure and surface functional group on adsorption. CHEMOSPHERE 2023; 311:137075. [PMID: 36336013 DOI: 10.1016/j.chemosphere.2022.137075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/08/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
HYPOTHESIS Emerging contaminants (ECs) can interact with soft solid/aqueous interfaces of particulate organic matter and microplastics in the aquatic environment but to what extent? It is hypothesized that EC adsorption can be detected using quartz crystal microbalance (QCM), a sensitive gravimetric tool, and their adsorption energetics and uptake capacity can be measured for various substrates of distinct functional group. This in turn reveals the specific vs. nonspecific interactions. EXPERIMENTS QCM has been used to detect and measure the adsorption of selected pharmaceuticals, amlodipine (AMP) and carbamazepine (CBZ), onto butyl, carboxyl, amine, and phenyl functionalized self-assembled monolayers (SAMs), mapping out the hydrophobic effect, H-bonding capability, and π- interactions. Adsorption free energy (ΔGads) and maximum interfacial concentration (cmax) for these surfaces are compared. Solvatochromic studies to elucidate the likelihood of H-bonding interactions for CBZ and AMP have been conducted using UV-Vis absorption spectroscopy. FINDINGS Amlodipine and carbamazepine adsorb onto butyl/aqueous interface with respective ΔGads values of -35.8 ± 1.1 and -37.7 ± 0.1 kJ/mol. Nonspecific interaction allows a greater extent of cmax on the hydrophobic/aqueous interface. CBZ does not bind to the phenyl surface. AMP and CBZ exhibit H-bonding and show proclivity for the amine and carboxyl SAMs. Interfacial chemical environment and adsorbate structural properties play a significant role on EC adsorption.
Collapse
Affiliation(s)
| | | | - Mahamud Subir
- Department of Chemistry, Ball State University, Muncie, IN, USA.
| |
Collapse
|
10
|
Zhang W, Li T, Tang J, Liu X, Liu Y, Zhong X. The profiles of chiral pesticides in peri-urban areas near Yangtze River: Enantioselective distribution characteristics and correlations with surface sediments. J Environ Sci (China) 2022; 121:199-210. [PMID: 35654510 DOI: 10.1016/j.jes.2022.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 06/15/2023]
Abstract
Chiral pesticides account for 30% of pesticides. Pesticides are inevitably leached into the groundwater by runoff. At the watershed level, the distribution characteristics of enantiomers in sediments collected from the river network of an agricultural area near the middle and lower reaches of the Yangtze River were tested, and their potential correlations with the physicochemical properties and microbial communities of the sediments were analyzed. The sediment pollution was serious at sites 8 and 9, with their pollution source possibly being agricultural or industrial sewage. Moreover, there were higher cumulative contents of pesticide residues at sites 4, 8, and 9. Specifically, Cycloxaprid was the most detected chiral pesticide in the study area, followed by Dinotefuran and Diclofop-methyl. Additionally, Ethiprole and Difenoconazole had strong enantioselectivity in the study area. Interestingly, the enantiomers of some chiral pesticides, such as Tebuconazole, had completely different distributions at different sites. Pearson correlation analysis showed that sediment catalase and microbial biomass carbon were important factors for enantioselectivity of chiral pesticides. The effect of sediment physicochemical properties on enantioselective distribution was achieved by influencing the microorganisms in the sediment. Furthermore, the enantioselective distribution of Tebuconazole was closely related to the genus Arenimonas. Overall, the enantioselective distribution of most of the chiral pesticides was positively correlated with the prokaryotic microbial community. This study provides empirical support for agricultural non-point source pollution caused by chiral pesticides, and also lays a research foundation for exploring the factors that affect the fate of chiral pesticides in the environment.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Tingting Li
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiayi Tang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiaoli Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yuhang Liu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Zhong
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
11
|
Wu D, Ren D, Li Q, Zhu A, Song Y, Yin W, Wu C. Molecular linkages between chemodiversity and MCPA complexation behavior of dissolved organic matter in paddy soil: Effects of land conversion. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119949. [PMID: 35970345 DOI: 10.1016/j.envpol.2022.119949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Complexation of dissolved organic matter (DOM) plays a crucial role in regulating the fate and risk of agrochemicals. Here, taking a toxic herbicide MCPA (4-chloro-2- methylphenoxyacetic acid) as the target, the effect of land conversion on complexation behavior of DOM to agrochemicals was investigated in paddy soil. Furthermore, the mechanisms were explored in a new perspective of DOM chemodiversity. Soil DOMs were selected from four long-term cropping systems, including paddy field (PF), vegetable field (VF), rice-vegetable rotation (RV) and abandoned land (AL). The results showed that the DOMs in PF and AL were rich in hydrophilic substances (e.g., carbohydrates or protein-like molecules) with low aromaticity. However, after converting PF to VF and RV, abundant aromatic macromolecules and aliphatic alkanes were observed in DOM. Due to those changes in DOM chemodiversity, the binding site and capability of DOM were highest in VF and RV, and were positively correlated with DOM aromaticity, MW, humus and polar groups (e.g., amino). This was because the complexation of "DOM-MCPA" was static binding via ligand exchange and H-bonding among polar groups and hydrophobic interaction among aromatic skeletons. The EEM-PARAFAC confirmed that microbial humic-like substances dominated the complexation of DOM rather than terrestrial humic-like and tryptophan-like matters. The 2D-COS analysis further revealed that the complexation of DOM preferentially occurred in amino, polysaccharide C-O and aliphatic C-H for PF and AL, but in aromatic C=C, amide C=N for RV and VF. In summary, these findings provide molecular insight into the effect of land conversion on DOM complexation activity, which highlight the importance of DOM chemodiversity. These results will contribute to the risk assessments of agrochemicals in paddy soil.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong, 637009, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Key Laboratory of Tropical Eco-circuling Agriculture, Haikou, 571101, PR China
| | - Anhong Zhu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Yike Song
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Wenfang Yin
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; National Agricultural Experimental Station for Agricultural Environment, Tropical Agro-ecosystem, National Observation and Research Station, Danzhou, 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Haikou, 571101, PR China.
| |
Collapse
|
12
|
Yang G, Tang X, Guan Z, Cui J. Effects of Straw Return and Moisture Condition on Temporal Changes of DOM Composition and Cd Speciation in Polluted Farmland Soil. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191912128. [PMID: 36231431 PMCID: PMC9566551 DOI: 10.3390/ijerph191912128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/20/2022] [Indexed: 05/15/2023]
Abstract
Straw return can improve soil quality and change the mobility and bioavailability of pollutants in soil. Elevated cadmium (Cd) contents in farmland soils were often reported. However, the impacts of straw-derived dissolved organic matter (DOM) on Cd speciation in soil remain poorly understood. In this study, the effects of straw return and moisture condition on temporal changes of DOM composition and Cd speciation in farmland soils were explored through a laboratory incubation experiment. The humified components of DOM were negatively correlated with exchangeable, carbonate-bound, and Fe-Mn oxide-bound Cd (p < 0.01), while its protein-like component was negatively correlated with residual Cd (p < 0.01). It was found that selected fluorescence parameters could be used to predict temporal changes of Cd geochemical fractions. Straw addition led to increases in soil DOM content during the first three days of the incubation. Flooding should be avoided in the first three days following the straw application to reduce the risk of DOM-facilitated Cd mobilization.
Collapse
Affiliation(s)
- Guang Yang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Tang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- Correspondence:
| | - Zhuo Guan
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Junfang Cui
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
13
|
Issaka E, Fapohunda FO, Amu-Darko JNO, Yeboah L, Yakubu S, Varjani S, Ali N, Bilal M. Biochar-based composites for remediation of polluted wastewater and soil environments: Challenges and prospects. CHEMOSPHERE 2022; 297:134163. [PMID: 35240157 DOI: 10.1016/j.chemosphere.2022.134163] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/13/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Pharmaceuticals, heavy metals, pesticides, and dyes are the main environmental contaminants that have serious effects on both land and aquatic lives and necessitate the development of effective methods to mitigate these issues. Although some conventional methods are in use to tackle soil contamination, but biochar and biochar-based composites represent a reliable and sustainable means to deal with a spectrum of toxic organic and inorganic pollutants from contaminated environments. The capacity of biochars and derived constructs to remediate inorganic dyes, pesticides, insecticides, heavy metals, and pharmaceuticals from environmental matrices is attributed to their extensive surface area, surface functional groups, pore size distribution, and high sorption capability of these pollutants in water and soil environments. Application conditions, biochar feedstock, pyrolysis conditions and precursor materials are the factors that influence the capacity and functionality of biochar to adsorb pollutants from wastewater and soil. These factors, when improved, can benefit biochar in agrochemical and heavy metal remediation from various environments. However, the processes involved in biochar production and their influence in enhancing pollutant sequestration remain unclear. Therefore, this paper throws light on the current strategies, operational conditions, and sequestration performance of biochar and biochar-based composites for agrochemical and heavy metal in soil and water environments. The main challenges associated with biochar preparation and exploitation, toxicity evaluation, research directions and future prospects for biochar in environmental remediation are also outlined.
Collapse
Affiliation(s)
- Eliasu Issaka
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | | | | | - Linda Yeboah
- School of Biological Sciences, University of Ghana, Legon, 00233, Accra, Ghana
| | - Salome Yakubu
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, PR China
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, 382 010, Gujarat, India
| | - Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Deep Utilization Technology of Rock-salt Resource, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
14
|
Chen M, Zhao X, Wu D, Peng L, Fan C, Zhang W, Li Q, Ge C. Addition of biodegradable microplastics alters the quantity and chemodiversity of dissolved organic matter in latosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151960. [PMID: 34843778 DOI: 10.1016/j.scitotenv.2021.151960] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) chemodiversity plays an important role in regulating nutrient cycles and contaminant behavior in soil. However, how biodegradable microplastic (MPs) affect the DOM chemodiversity is still unknown, although developing biodegradable plastics are regarded as a promising strategy to minimize the risks of MPs residues in soil. Here, with the common poly (butylene adipate-co-terephthalate) (PBAT) as the model, the molecular effect of biodegradable MPs on soil DOM was explored by adding 0%, 5% and 10% (w/w) of PBAT to tropical latosol, respectively. The results showed that PBAT addition increased microbial activity and exoenzyme activity (e.g., rhizopus oryzae lipase, invertase and cellulose). As a result, the quantity and chemodiversity of soil DOM were changed. The multispectroscopic characterization showed that PBAT addition significantly increased the DOC molecules in soil, including condensed aromatic-like substances and carbohydrates. In contrast, the TDN molecules with high bioavailability and low aromaticity, such as amino acids, were decreased. The multivariate statistical analysis indicated that there were three mechanisms that drove the shift in DOM chemodiversity. Firstly, the degradation of PBAT by rhizopus oryzae lipase facilitated the release of exogenous aromatic molecules. Secondly, PBAT decomposition stimulated the selective consumption of native N-rich molecules by soil microbes. Thirdly, PBAT accelerated the enzymatic transformation of native aliphatic CHx and cellulose toward humic substances. In addition, concentration effect was also observed in the study that high-concentration PBAT were more likely to trigger the molecular shift in DOM chemodiversity. These findings provided a new insight into the impact of biodegradable MPs on soil DOM chemodiversity at molecular level, which will be beneficial to understanding the fate and biochemical reactivity of DOM in MPs-polluted soil.
Collapse
Affiliation(s)
- Miao Chen
- College of Ecology and Environment, Hainan University, Haikou 570228, China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Xiongwei Zhao
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Dongming Wu
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Licheng Peng
- College of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Changhua Fan
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Wen Zhang
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China
| | - Qinfen Li
- Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou 571737, China.
| | - Chengjun Ge
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| |
Collapse
|
15
|
Garrido Reyes TI, Mendoza Crisosto JE, Varela Echeverria PS, Mejías Barrios EG, Álvarez Salgado XA. Interaction between polychlorinated biphenyls and dissolved organic matter of different molecular weights from natural and anthropic sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113645. [PMID: 34523545 DOI: 10.1016/j.jenvman.2021.113645] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) are compounds of significant interest due to high toxicity, persistence, long-range atmospheric transport, and bioaccumulation. These compounds can interact with components present in the environment, including dissolved organic matter (DOM) in soils and waters, thereby modifying its availability and movement. In this study, DOM was fractionated by ultrafiltration and characterized according to its hydrophobicity and hydrophilicity, then the interaction of a series of PCBs and different DOM fractions was evaluated. The DOM was collected from the surface waters of three sectors located along a river in the southern part of America. These sectors are subject to different anthropic activities, thus the DOM of sector 1, with the least anthropic influence, was mainly hydrophobic and with a high content of aromatic structures. In contrast, the DOM collected from sectors 2 and 3, where anthropic activity is highest, was slightly hydrophobic and hydrophilic, respectively. The DOM of these two sectors was mainly composed of low molecular weight macromolecules. These results revealed that more hydrophobic PCBs (i.e., 101, 118, 138, and 180) have a greater affinity to DOM with a higher molecular weight (i.e., >1 kDa). In turn, PCBs with lesser chlorination and hydrophobicity presented a greater affinity to DOM with a lower molecular weight. In conclusion, our study shows that the high molecular weight DOM is responsible for mobilizing PCBs with a high degree of chlorination.
Collapse
Affiliation(s)
- Tatiana Inés Garrido Reyes
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Inorgánica y Analítica, Casilla 233, Santiago, Chile.
| | - Jorge Eugenio Mendoza Crisosto
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Inorgánica y Analítica, Casilla 233, Santiago, Chile
| | - Paula Stefanie Varela Echeverria
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Inorgánica y Analítica, Casilla 233, Santiago, Chile
| | - Enrique Gabriel Mejías Barrios
- Departamento de Tecnologías Nucleares (DTN), División de Investigación y Aplicaciones Nucleares (DIAN), Comisión Chilena de Energía Nuclear (CCHEN), Santiago, Chile
| | | |
Collapse
|
16
|
Zhang H, Zheng Y, Wang XC, Wang Y, Dzakpasu M. Characterization and biogeochemical implications of dissolved organic matter in aquatic environments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:113041. [PMID: 34126535 DOI: 10.1016/j.jenvman.2021.113041] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 05/12/2021] [Accepted: 06/06/2021] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is viewed as one of the most chemically active organic substances on earth. It plays vital roles in the fate, bioavailability and toxicity of aquatic exogenous chemical species (e.g., heavy metals, organic pollutants, and nanomaterials). The characteristics of DOM such low concentrations, salt interference and complexity in aquatic environments and limitations of pretreatment for sample preparation and application of characterization techniques severely limit understanding of its nature and environmental roles. This review provides a characterization continuum of aquatic DOM, and demonstrate its biogeochemical implications, enabling in-depth insight into its nature and environmental roles. A synthesis of the effective DOM pretreatment strategies, comprising extraction and fractionation methods, and characterization techniques is presented. Additionally, the biogeochemical dynamics of aquatic DOM and its environmental implications are discussed. The findings indicate the collection of representative DOM samples from water as the first and critical step for characterizing its properties, dynamics, and environmental implications. However, various pretreatment procedures may alter DOM composition and structure, producing highly variable recoveries and even influencing its subsequent characterization. Therefore, complimentary use of various characterization techniques is highly recommended to obtain as much information on DOM as possible, as each characterization technique exhibits various advantages and limitations. Moreover, DOM could markedly change the physical and chemical properties of exogenous chemical species, influencing their transformation and mobility, and finally altering their potential bioavailability and toxicity. Several research gaps to be addressed include the impact of pretreatment on the composition and structure of aquatic DOM, molecular-level structural elucidation for DOM, and assessment of the effects of DOM dynamics on the fate, bioavailability and toxicity of exogenous chemical species.
Collapse
Affiliation(s)
- Hengfeng Zhang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yucong Zheng
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Yongkun Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
| | - Mawuli Dzakpasu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China.
| |
Collapse
|
17
|
Ye T, Fang T, Wang Y, Zhang S, Bai L, Xu H, Guo M, Sheng G. The release inhibition of organic substances from microplastics in the presence of algal derived organic matters: Influence of the molecular weight-dependent inhibition heterogeneities. ENVIRONMENTAL RESEARCH 2021; 200:111424. [PMID: 34126049 DOI: 10.1016/j.envres.2021.111424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
As the emerging contaminants, the behavior and fate of microplastics (MPs) were highly related to the interactions with surrounding organic matters. However, information on the effects of molecular sizes of organic matters on the interaction is still lacking. In this study, the bulk algal-derived organic matter (AOM) samples were obtained and further fractionated into high molecular weight (HMW-, 1kDa-0.45 μm) and low molecular weight (LMW-, < 1 kDa) fractions. The interaction between MPs [polyethylene (PE) and polystyrene (PS)] and these MW-fractionated AOMs were characterized by dissolved organic carbon, fluorescence and absorbance spectroscopy, and fourier transform infrared (FTIR) analysis. Results showed that presence of AOM could effectively inhibit the release of additives from MPs. Further analysis found that the inhibition extents decreased in the order of HMW- > bulk > LMW-AOM. The absorbance and fluorescence spectroscopy showed that aromatic protein-like substances in HMW fraction exhibited higher adsorption affinity to MPs than the bulk and LMW counterparts. The strong sorption of aromatic substances may offer more binding sites for additives to inhibit the release of organic substances. Moreover, two dimensional FTIR correlation spectroscopy revealed that the HMW non-aromatic substances were preferentially adsorbed onto PS, which led to an enhanced adsorption capacity to additives by forming H-bonding. Therefore, the MW- and component-dependent heterogeneities of AOM samples must be fully considered in evaluating the environmental behavior of MPs.
Collapse
Affiliation(s)
- Tianran Ye
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Tian Fang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Shenzhen Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| | - Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China.
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, China
| | - Guanghong Sheng
- School of Energy and Environment, Anhui University of Technology, Maanshan, 243002, China
| |
Collapse
|
18
|
Wu D, Ren C, Wu C, Li Y, Deng X, Li Q. Mechanisms by which different polar fractions of dissolved organic matter affect sorption of the herbicide MCPA in ferralsol. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125774. [PMID: 33857809 DOI: 10.1016/j.jhazmat.2021.125774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Exogenous dissolved organic matter (DOM) modifies the sorption of 4-chloro-2-methylphenoxyacetic acid (MCPA, a polar herbicide) in soil. However, how the chemodiversity and diverse fractions of DOM affect MCPA sorption is still unknown. Here, DOM was extracted from compost and rice straw; the structure-activity correlations between DOM chemodiversity and their effects on MCPA sorption were investigated by redundancy analysis. Moreover, the mechanism involved was explored by spectroscopic techniques, microbeam and modeling. DOM mainly affected MCPA sorption by altering soil surface properties and MCPA complexed form. Hydrophobic neutral (HON) and acid insoluble matter (AIM) were the fractions of DOM that most inhibited MCPA sorption through soil pore blockage, and were related to the humic-like substances with high aromaticity and large molecular weight. The hydrophobic acid fraction (HOA) only showed an intermediate inhibition on the sorption, although the largest competitive sorption occurred. This was because HOA contained abundant aromatic acid and polar groups with moderate polarity. Thus, the reduced effect caused by competitive sorption was partly compensated by the greatest co-sorption by HOA. The hydrophilic matter (HIM) had the weakest inhibition on MCPA sorption, because this fraction was rich in simple sugars, poly- and oligosaccharides, but lacked aryl groups. The results will aid in the risk assessments and prevention of MCPA in DOM-introduced soil.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Changqi Ren
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-Point Source and Heavy Metal Pollution Control, Haikou 571101, PR China.
| | - Yi Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Xiao Deng
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China; Hainan Key Laboratory of Tropical Eco-Circuling Agriculture, Haikou 571101, PR China.
| |
Collapse
|
19
|
He S, Liu T, Kang C, Xue H, Sun S, Yu S. Photodegradation of dissolved organic matter of chicken manure: Property changes and effects on Zn 2+/Cu 2+ binding property. CHEMOSPHERE 2021; 276:130054. [PMID: 33690046 DOI: 10.1016/j.chemosphere.2021.130054] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/30/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Untreated livestock manure contains high concentrations of dissolved organic matter (DOM), which can enter the environment through leaching and eluviation, showing an important impact on the environment. In this research, fresh chicken manure from a large-scale chicken farm was collected as the source of DOM. The infrared spectrum of the original DOM was characterized. TOC analysis, UV spectrum and 3D fluorescence spectrum were used to measure the properties of DOM before and after photodegradation. Infrared spectroscopy results show that chicken manure DOM may contain aliphatic and aromatic compounds, alcohols, phenols, polysaccharides and some protein substances; In three systems, the order of TOC removal rates of DOM was water + UV system (85%) > > water + simulated sunlight system (7.2%) > ice + simulated sunlight system (4.5%); Changes of UV spectra, fluorescence spectra, molecular weight distribution and pH value show that, in three systems, as the illumination time increased, photodegradation reduced pH value of the systems, aromaticity and humus contents of DOM, while increased the proportion of medium and/or small molecular weight components of DOM. The amounts of all these changes were proportional to DOM photodegradation rates in the system. The binding ability of DOM with Cu2+ and Zn2+ in water solution decreased significantly after the photodegradation.
Collapse
Affiliation(s)
- Shuiyuan He
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Tingting Liu
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China; Research Institute of Solid Waste Management, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Chunli Kang
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China.
| | - Honghai Xue
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China; Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, China
| | - Siyang Sun
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| | - Shuyi Yu
- Key Laboratory of Groundwater Resources and Environment, Jilin University, Ministry of Education, Changchun, 130021, Jilin, PR China
| |
Collapse
|
20
|
Zhan J, Huang H, Yu H, Zhang X, Wang Y, Li T. Characterization of dissolved organic matter in the rhizosphere of phytostabilizer Athyrium wardii (Hook.) involved in enhanced metal accumulation when exposed to Cd and Pb co-contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115196. [PMID: 32771840 DOI: 10.1016/j.envpol.2020.115196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 06/17/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
The characterization of DOM and its effect on heavy metal solubility in soils have been widely concerned, while few concerns on the phytostabilization of multi-metal contaminated soils. A pot experiment was performed to characterize dissolved organic matter (DOM) in the rhizosphere of the mining ecotype (ME) and non-mining ecotype (NME) of Athyrium wardii (Hook.) when exposed to Cd and Pb simultaneously, and investigate its effect on Cd and Pb solubility in soils. The ME presented more DOM in the rhizosphere when exposed to Cd and Pb simultaneously than that exposed to single Cd or Pb, and also than the NME. The acid fractions (hydrophilic acid, hydrophobic acid) and hydrophilic fractions (hydrophilic acid, hydrophilic neutral, and hydrophilic base) were the dominant parts of DOM in the ME rhizosphere. The ME presented more acid and hydrophilic fractions in the rhizosphere when exposed to Cd and Pb simultaneously. Meanwhile, there were more O-H, C-O, N-H and C-H, assigned to carboxylic groups, phenolic groups, hydroxyl groups, and/or amino groups, present in DOM from the rhizosphere of ME when exposed to Cd and Pb simultaneously. These results highlighted the acid characteristics of DOM in the rhizosphere of ME when exposed to Cd and Pb simultaneously. DOM in the rhizosphere of ME thereby showed greater complexation degree for Cd (68%) and Pb (77%), thus showing greater ability to enhance Cd and Pb solubility in soils when exposed to Cd and Pb simultaneously. This is thereby considered to be one of the key processes for enhancing Cd and Pb uptake by the ME when exposed to Cd and Pb simultaneously.
Collapse
Affiliation(s)
- Juan Zhan
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China
| | - Huagang Huang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China
| | - Haiying Yu
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China
| | - Xizhou Zhang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China
| | - Yongdong Wang
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China
| | - Tingxuan Li
- College of Resources, Sichuan Agricultural University, 211 Huimin Road, Chengdu, Sichuan, 611130, PR China.
| |
Collapse
|
21
|
Wu D, Ren C, Jiang L, Li Q, Zhang W, Wu C. Characteristic of dissolved organic matter polar fractions with variable sources by spectrum technologies: Chemical properties and interaction with phenoxy herbicide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138262. [PMID: 32272408 DOI: 10.1016/j.scitotenv.2020.138262] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/11/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) is ubiquitous with high biological and chemical activity. The large intake of DOM from compost, plant residues or soil can modify the behaviors of agrochemicals. Phenoxy herbicide is the third widely used herbicide around the world with both aromaticity and polarity. However, how the diverse fractions of DOM interacting with phenoxy herbicide and the underlying mechanisms remain unknown. Thus, it is crucial to investigate the heterogeneous chemical properties of DOM fractions from variable sources and explore the interactive mechanisms. In this study, polar DOM derived from compost, rice straw and soil were fractionated, and the chemical properties of fractions were analyzed by spectrum technology and the complex interaction with phenoxy herbicide was assessed by infrared spectroscopy. Results showed that hydrophobic acid (HOA) was the largest component (49.6%) in compost DOM, while hydrophilic matter (HIM) was the main component in the polar DOM from rice straw and soil. The 4-chloro-2-methylphenoxyac etic acid (MCPA) as one representative of phenoxy herbicides was used in our study, and the results showed the interaction between different DOM fractions and MCPA was heterogeneous. HOA containing abundant fulvic-like component and polar groups resulted a greatly complex interaction with MCPA mainly via hydrophobic force, ligand exchange and hydrogen bonding. Hydrophobic neutral fraction and acid-insoluble matter showed a medium interaction with MCPA as a result of enrichment with the high aromatic humic-like molecules. Inversely, no significant interaction between HIM and MCPA was observed. Our research revealed that the aromatic framework associated with polar groups in DOM dominated the interaction with phenoxy herbicide, which might affect the bioavailability, toxicity, and mobility of phenoxy herbicide.
Collapse
Affiliation(s)
- Dongming Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China
| | - Changqi Ren
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Lei Jiang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China
| | - Qinfen Li
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China.
| | - Wen Zhang
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Chunyuan Wu
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture, Danzhou 571737, PR China.
| |
Collapse
|