1
|
Omidian H, Wilson RL. Polydopamine Applications in Biomedicine and Environmental Science. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3916. [PMID: 39203091 PMCID: PMC11355457 DOI: 10.3390/ma17163916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024]
Abstract
This manuscript explores the multifaceted applications of polydopamine (PDA) across various scientific and industrial domains. It covers the chemical aspects of PDA and its potential in bone tissue engineering, implant enhancements, cancer treatment, and nanotechnology. The manuscript investigates PDA's roles in tissue engineering, cell culture technologies, surface modifications, drug delivery systems, and sensing techniques. Additionally, it highlights PDA's contributions to microfabrication, nanoengineering, and environmental applications. Through detailed testing and assessment, the study identifies limitations in PDA-related research, such as synthesis complexity, incomplete mechanistic understanding, and biocompatibility variability. It also proposes future research directions aimed at improving synthesis techniques, expanding biomedical applications, and enhancing sensing technologies to optimize PDA's efficacy and scalability.
Collapse
Affiliation(s)
- Hossein Omidian
- Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Fort Lauderdale, FL 33328, USA;
| | | |
Collapse
|
2
|
Brief History, Preparation Method, and Biological Application of Mesoporous Silica Molecular Sieves: A Narrative Review. Molecules 2023; 28:molecules28052013. [PMID: 36903259 PMCID: PMC10004212 DOI: 10.3390/molecules28052013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
It has been more than 30 years since the first ordered mesoporous silica molecular sieve (MCM-41) was reported, but the enthusiasm for exploiting mesoporous silica is still growing due to its superior properties, such as its controllable morphology, excellent hosting capability, easy functionalization, and good biocompatibility. In this narrative review, the brief history of the discovery of mesoporous silica and several important mesoporous silica families are summarized. The development of mesoporous silica microspheres with nanoscale dimensions, hollow mesoporous silica microspheres, and dendritic mesoporous silica nanospheres is also described. Meanwhile, common synthesis methods for traditional mesoporous silica, mesoporous silica microspheres, and hollow mesoporous silica microspheres are discussed. Then, we introduce the biological applications of mesoporous silica in fields such as drug delivery, bioimaging, and biosensing. We hope this review will help people to understand the history of the development of mesoporous silica molecular sieves and become familiar with their synthesis methods and applications in biology.
Collapse
|
3
|
Alamer N, Meshkini A, Khoshtabiat L, Behnamsani A. Synergizing effects of chemodynamic therapy and chemotherapy against breast cancer by oxaliplatin-loaded polydopamine/BSA@copper ferrite. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Zhuang B, Chen T, Huang Y, Xiao Z, Jin Y. Chemo-photothermal immunotherapy for eradication of orthotopic tumors and inhibition of metastasis by intratumoral injection of polydopamine versatile hydrogels. Acta Pharm Sin B 2022; 12:1447-1459. [PMID: 35530148 PMCID: PMC9069317 DOI: 10.1016/j.apsb.2021.09.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer remains one of the leading causes of death globally and metastasis always leads to treatment failure. Here, we develop a versatile hydrogel loading photothermal agents, chemotherapeutics, and immune-adjuvants to eradicate orthotopic tumors and inhibit metastasis by combinational therapy. Hydrogel networks were synthesized via the thiol-Michael addition of polydopamine (PDA) with thiolated hyaluronic acid. PDA acted as a cross-linking agent and endowed the hydrogel with excellent photothermal property. Meanwhile, a chemotherapeutic agent, doxorubicin (DOX), was loaded in the hydrogel via π‒π stacking with PDA and an immune-adjuvant, CpG-ODN, was loaded via electrostatic interaction. The release of DOX from the hydrogel was initially slow but accelerated due to near infrared light irradiation. The hydrogels showed remarkably synergistic effect against 4T1 cancer cells and stimulated plenty of cytokines secreting from RAW264.7 cells. Moreover, the hydrogels eradicated orthotopic murine breast cancer xenografts and strongly inhibited metastasis after intratumoral injection and light irradiation. The high anticancer efficiency of this chemo-photothermal immunotherapy resulted from the strong synergistic effect of the versatile hydrogels, including the evoked host immune response. The combinational strategy of chemo-photothermal immunotherapy is promising for highly effective treatment of breast cancer.
Collapse
Key Words
- ALT, alanine aminotransferase
- Breast cancer
- CCK-8, cell counting kit-8
- CRE, creatinine
- Chemotherapy
- DOX, doxorubicin
- DOX@PDA, DOX-loaded PDA nanoparticles
- DTT, dithiothreitol
- EDC, 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
- ELISA, enzyme-linked immunosorbent assay
- FBS, fetal bovine serum
- FDA, fluorescein diacetate
- H&E, Hematoxylin and Eosin
- HA, hyaluronic acid
- HA-SH, thiolated hyaluronic acid
- Hydrogel
- Immunotherapy
- Intratumoral injection
- LPS, lipopolysaccharide
- Metastasis
- NHS, N-hydroxysuccinimide
- NIR, near-infrared
- PDA, polydopamine
- PI, propidium iodide
- PTT, photothermal therapy
- Photothermal
- Polydopamine
- RBC, red blood cells
- SEM, scanning electron microscope
- Tunel, terminal deoxynucleotidyl transferase dUTP nick end labeling
- WBC, white blood cells
Collapse
|
5
|
Wang K, Lu J, Li J, Gao Y, Mao Y, Zhao Q, Wang S. Current trends in smart mesoporous silica-based nanovehicles for photoactivated cancer therapy. J Control Release 2021; 339:445-472. [PMID: 34637819 DOI: 10.1016/j.jconrel.2021.10.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022]
Abstract
Photoactivated therapeutic strategies (photothermal therapy and photodynamic therapy), due to the adjusted therapeutic area, time and light dosage, have prevailed for the fight against tumors. Currently, the monotherapy with limited treatment effect and undesired side effects is gradually replaced by multimodal and multifunctional nanosystems. Mesoporous silica nanoparticles (MSNs) with unique physicochemical advantages, such as huge specific surface area, controllable pore size and morphology, functionalized modification, satisfying biocompatibility and biodegradability, are considered as promising candidates for multimodal photoactivated cancer therapy. Excitingly, the innovative nanoplatforms based on the mesoporous silica nanoparticles provide more and more effective treatment strategies and display excellent antitumor potential. Given the rapid development of antitumor strategies based on MSNs, this review summarizes the current progress in MSNs-based photoactivated cancer therapy, mainly consists of (1) photothermal therapy-related theranostics; (2) photodynamic therapy-related theranostics; (3) multimodal synergistic therapy, such as chemo-photothermal-photodynamic therapy, phototherapy-immunotherapy and phototherapy-radio therapy. Based on the limited penetration of irradiation light in photoactivated therapy, the challenges faced by deep-seated tumor therapy are fully discussed, and future clinical translation of MSNs-based photoactivated cancer therapy are highlighted.
Collapse
Affiliation(s)
- Kaili Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Junya Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Jiali Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yinlu Gao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Yuling Mao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| |
Collapse
|
6
|
Liu S, Wang Y. Facile synthesis of porous MoS 2nanofibers for efficient drug delivery and cancer treatment. NANOTECHNOLOGY 2021; 32:385701. [PMID: 34111863 DOI: 10.1088/1361-6528/ac0a18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/10/2021] [Indexed: 06/12/2023]
Abstract
Porous MoS2nanofibers were synthesized by electroplating and post-annealing and applied in a responsive drug delivery system. The one-dimensional (1D) MoS2nanofibers displayed a high specific surface area, controllable morphology, and uniform size, serving as a promising drug carrier for chemotherapy. After surface modification with polyethylene glycol (PEG) through PEGylation, the MoS2/PEG composite displayed excellent physical/chemical stability and biocompatibility. More importantly, MoS2/PEG loaded with doxorubicin (DOX) exhibited a controllable release responsive to pH and near-infrared (NIR) irradiation and demonstrated precise DOX dose release. Such remarkable anticancer effects were mainly attributed to outstanding photothermal performance and stability of porous MoS2nanofibers. This work offered a new opportunity of employing porous MoS2nanofibers as drug carriers for effective cancer chemotherapy.
Collapse
Affiliation(s)
- Shaobo Liu
- Operational Department, General Hospital of Pangang Group, Panzhihua 617000, Sichuan, People's Republic of China
| | - Yan Wang
- Basic Medicine, Henan University, Zhengzhou 450000, Henan, People's Republic of China
| |
Collapse
|
7
|
Vapor deposition synthesis of polypyrrole nanoparticles with a tunable photothermal conversion capacity. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
8
|
Gao Y, Gao D, Shen J, Wang Q. A Review of Mesoporous Silica Nanoparticle Delivery Systems in Chemo-Based Combination Cancer Therapies. Front Chem 2020; 8:598722. [PMID: 33330389 PMCID: PMC7732422 DOI: 10.3389/fchem.2020.598722] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/20/2020] [Indexed: 01/11/2023] Open
Abstract
Chemotherapy is an important anti-tumor treatment in clinic to date, however, the effectiveness of traditional chemotherapy is limited by its poor selectivity, high systemic toxicity, and multidrug resistance. In recent years, mesoporous silica nanoparticles (MSNs) have become exciting drug delivery systems (DDS) due to their unique advantages, such as easy large-scale production, adjustable uniform pore size, large surface area and pore volumes. While mesoporous silica-based DDS can improve chemotherapy to a certain extent, when used in combination with other cancer therapies MSN based chemotherapy exhibits a synergistic effect, greatly improving therapeutic outcomes. In this review, we discuss the applications of MSN DDS for a diverse range of chemotherapeutic combination anti-tumor therapies, including phototherapy, gene therapy, immunotherapy and other less common modalities. Furthermore, we focus on the characteristics of each nanomaterial and the synergistic advantages of the combination therapies. Lastly, we examine the challenges and future prospects of MSN based chemotherapeutic combination therapies.
Collapse
Affiliation(s)
- Ying Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Dongruo Gao
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jie Shen
- Department of Pharmacy, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Qiwen Wang
- Department of Cardiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Liao J, Zhang H, Wang X. Polydopamine-doped virus-like mesoporous silica coated reduced graphene oxide nanosheets for chemo-photothermal synergetic therapy. J Biomater Appl 2020; 35:28-38. [DOI: 10.1177/0885328220916968] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Multifunctional nanocarriers have been widely accepted and utilized for biomedical applications, because of their structural regularity, convenient post-modification and controllable structure and morphology. Herein, we reported polydopamine-doped virus-like mesoporous silica coated reduced graphene oxide nanosheets (rGO@PVMSNs) nanocomposites by a facile oil–water biphase stratification method. The synthesized rGO@PVMSNs nanocomposites performed excellent biocompatibility and photothermal performance. They could be employed as photoacoustic imaging contrast in vivo. Furthermore, the rGO@PVMSNs nanocarriers were used for loading the antitumor drug doxorubicin (DOX), the rGO@PVMSNs@DOX nanocomposites were also demonstrated to be with high inhibition of HepG2 cancer cells, especially with the help of near-infrared irradiation, which were more efficient than single chemotherapy or photothermal therapy. The rGO@PVMSNs@DOX nanocomposites of this work could be used as photoacoustic imaging and chemo-photothermal synergetic therapy agents, which show a new perspective for clinical tumor diagnosis and therapy.
Collapse
Affiliation(s)
- Jieying Liao
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, China
| | - Huicong Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences, Xiamen, China
| | - Xuandong Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Environment, Jinan University, Guangzhou, China
| |
Collapse
|
10
|
Zhong R, Wang R, Hou X, Song L, Zhang Y. Polydopamine-doped virus-like structured nanoparticles for photoacoustic imaging guided synergistic chemo-/photothermal therapy. RSC Adv 2020; 10:18016-18024. [PMID: 35517193 PMCID: PMC9059141 DOI: 10.1039/d0ra02915g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/28/2020] [Indexed: 11/30/2022] Open
Abstract
The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials. However, the morphology of nanomaterials significantly affects cellular uptake capability. Herein, we designed a polydopamine-doped virus-like structured nanoparticle (GNR@HPMO@PVMSN) composed of a gold nanorod (GNR) core, hollow periodic mesoporous organosilica (HPMO) shell and polydopamine-doped virus-like mesoporous silica nanoparticle (PVMSN) outer shell. Compared with conventional gold nanorod@hollow periodic mesoporous organosilica core–shell nanoparticles (GNR@HPMO), GNR@HPMO@PVMSN with its virus-like structure was proved to enhance the efficiency of cellular uptake. GNR@HPMO@PVMSN with the virtues of high photothermal conversion efficiency and good photoacoustic imaging (PAI) ability was expected to be a promising nanotheranostic agent for imaging guided cancer treatment. The experiments in vitro and in vivo proved that GNR@HPMO@PVMSN had good biocompatibility as well as photothermal conversion ability. In addition, DOX loading and pH-/NIR-response DOX release abilities of GNR@HPMO@PVMSN were also verified in vitro. Therefore, the GNR@HPMO@PVMSN offers a promising strategy for PAI directed synergistic chemo-/photothermal therapy, which improves the therapeutic effect of the nanomaterial on tumors. This work explores the effects of rough surfaces on cellular uptake and provides a versatile theranostic platform for biomedical applications. The therapeutic diagnosis effect of cancer commonly depends on the cellular uptake efficiency of nanomaterials.![]()
Collapse
Affiliation(s)
- Rong Zhong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Ruoping Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Xuemei Hou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Liang Song
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| | - Yun Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures
- Fujian Provincial Key Laboratory of Nanomaterials
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou 350002
| |
Collapse
|
11
|
Cao W, Wang X, Song L, Wang P, Hou X, Zhang H, Tian X, Liu X, Zhang Y. Folic acid-conjugated gold nanorod@polypyrrole@Fe 3O 4 nanocomposites for targeted MR/CT/PA multimodal imaging and chemo-photothermal therapy. RSC Adv 2019; 9:18874-18887. [PMID: 35516886 PMCID: PMC9065171 DOI: 10.1039/c9ra00541b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/26/2019] [Indexed: 12/23/2022] Open
Abstract
Integrating multimodal bioimaging and different therapies into one nanoplatform is a promising strategy for biomedical applications, but remains a great challenge. Herein, we have synthesized a biocompatible folic acid (FA) functionalized gold nanorod@polypyrrole@Fe3O4 (GNR@PPy@Fe3O4-FA) nanocomposite through a facile method. The conjugated FA has endowed the nanocomposite with the ability to recognize targeted cancer cells. Importantly, the nanocomposite has been successfully utilized for magnetic resonance (MR), computed tomography (CT) and photoacoustic (PA) multimodal imaging. Moreover, the GNR@PPy@Fe3O4-DOX nanocomposite shows pH-responsive chemotherapy and enables the integration of photothermal therapy and chemotherapy to achieve superior antitumor efficacy. The GNR@PPy@Fe3O4-DOX nanocomposites have a drug release of 23.64%, and the photothermal efficiency of the GNR@PPy@Fe3O4 nanocomposites reaches 51.46%. Cell viability decreases to 15.83% and 16.47% because of the combination of chemo-photothermal therapy effects. Moreover, the GNR@PPy@Fe3O4-DOX-FA nanocomposite could target cancer cells via folic acid and under a magnetic field. The in vivo multimodal imaging and chemo-photothermal therapy effects showed that the GNR@PPy@Fe3O4-DOX-FA nanocomposites are a good contrast and theranostic agent. Thus, this multifunctional nanocomposite could be a promising theranostic platform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Wei Cao
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Xuandong Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Liang Song
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Peiyuan Wang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Xuemei Hou
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Huicong Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Xiangdong Tian
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| | - Xiaolong Liu
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University Fuzhou 350025 China
| | - Yun Zhang
- Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
- Department of Translational Medicine, Xiamen Institute of Rare Earth Materials, Chinese Academy of Sciences Xiamen 361021 China
| |
Collapse
|
12
|
One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity. Colloids Surf B Biointerfaces 2019; 177:346-355. [PMID: 30772669 DOI: 10.1016/j.colsurfb.2019.02.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/07/2019] [Indexed: 11/20/2022]
Abstract
With an excellent near-infrared (NIR) light-responsive property, polypyrrole (PPy) nanoparticle has emerged as a promising NIR photothermal transducing agent for tumor photothermal therapy (PTT). Herein, we reported the PVP mediated one-pot synthesis of colloidal stable and biocompatible PPy nanoparticles (PPy-PVP NPs) for combined tumor photothermal-chemotherapy. The influence of molecular weight and PVP concentration on the spectroscopic characteristic, photothermal feature, drug loading performance, and antitumor efficiency of the resultant PPy-PVP NPs was systematically studied. By choosing PVP with a molecular weight of 360 kDa (concentration of 5 mg/mL) as the template and surface modifier during the synthesis, PPy-PVP NPs with optimal spectroscopic characteristic, photothermal feature, drug loading performance, and antitumor efficiency were synthesized. Findings in this study are anticipated to provide an in-depth understanding of the important character of surface engineering in the rational design and biomedical applications of PPy NPs.
Collapse
|