1
|
Zhao XY, Wang JQ, Neely GG, Shi YC, Wang QP. Natural compounds as obesity pharmacotherapies. Phytother Res 2024; 38:797-838. [PMID: 38083970 DOI: 10.1002/ptr.8083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/20/2023] [Accepted: 11/22/2023] [Indexed: 02/15/2024]
Abstract
Obesity has become a serious global public health problem, affecting over 988 million people worldwide. Nevertheless, current pharmacotherapies have proven inadequate. Natural compounds have garnered significant attention due to their potential antiobesity effects. Over the past three decades, ca. 50 natural compounds have been evaluated for the preventive and/or therapeutic effects on obesity in animals and humans. However, variations in the antiobesity efficacies among these natural compounds have been substantial, owing to differences in experimental designs, including variations in animal models, dosages, treatment durations, and administration methods. The feasibility of employing these natural compounds as pharmacotherapies for obesity remained uncertain. In this review, we systematically summarized the antiobesity efficacy and mechanisms of action of each natural compound in animal models. This comprehensive review furnishes valuable insights for the development of antiobesity medications based on natural compounds.
Collapse
Affiliation(s)
- Xin-Yuan Zhao
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Ji-Qiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - G Gregory Neely
- The Dr. John and Anne Chong Laboratory for Functional Genomics, Charles Perkins Centre and School of Life & Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Yan-Chuan Shi
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Qiao-Ping Wang
- Laboratory of Metabolism and Aging, School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Medical Center for Comprehensive Weight Control, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Diabetology, Guangzhou Key Laboratory of Mechanistic and Translational Obesity Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Liang Z, Liu K, Li R, Ma B, Zheng W, Yang S, Zhang G, Zhao Y, Chen J, Zhao M. An instant beverage rich in nutrients and secondary metabolites manufactured from stems and leaves of Panax notoginseng. Front Nutr 2022; 9:1058639. [PMID: 36570153 PMCID: PMC9767984 DOI: 10.3389/fnut.2022.1058639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Radix Notoginseng, one of the most famous Chinese traditional medicines, is the dried root of Panax notoginseng (Araliaceae). Stems and leaves of P. notoginseng (SLPN) are rich in secondary metabolites and nutrients, and authorized as a food resource, however, its utilization needs further research. Methods A SLPN-instant beverage was manufactured from SLPN through optimization by response surface design with 21-fold of 48.50% ethanol for 39 h, and this extraction was repeated twice; the extraction solution was concentrated to 1/3 volume using a vacuum rotatory evaporator at 45°C, and then spray dried at 110°C. Nutritional components including 14 amino acids, ten mineral elements, 15 vitamins were detected in the SLPN-instant beverage; forty-three triterpenoid saponins, e.g., ginsenoside La, ginsenoside Rb3, notoginsenoside R1, and two flavonoid glycosides, as well as dencichine were identified by UPLC-MS. Results The extraction rate of SLPN-instant beverage was 37.89 ± 0.02%. The majority nutrients were Gly (2.10 ± 0.63 mg/g), His (1.23 ± 0.07 mg/g), α-VE (18.89 ± 1.87 μg/g), β-VE (17.53 ± 1.98 μg/g), potassium (49.26 ± 2.70 mg/g), calcium (6.73 ± 0.27 mg/g). The total saponin of the SLPN-instant beverage was 403.05 ± 34.98 mg/g, majority was notoginsenoside Fd and with contents of 227 ± 2.02 mg/g. In addition, catechin and γ-aminobutyric acid were detected with levels of 24.57 ± 0.21 mg/g and 7.50 ± 1.85 mg/g, respectively. The SLPN-instant beverage showed good antioxidant activities with half maximal inhibitory concentration (IC50) for scavenging hydroxyl (OH-) radicals, superoxide anion (O2-) radicals, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonate) (ABTS+) radicals were 0.1954, 0.2314, 0.4083, and 0.3874 mg/mL, respectively. Conclusion We optimized an analytical method for in depth analysis of the newly authorized food resource SLPN. Together, an instant beverage with antioxidant activity, rich in nutrients and secondary metabolites, was manufactured from SLPN, which may improve the utilization of SLPN.
Collapse
Affiliation(s)
- Zhengwei Liang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Kunyi Liu
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Wuliangye Technology and Food Engineering, Yibin Vocational and Technical College, Yibin, Sichuan, China
| | - Ruoyu Li
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Baiping Ma
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zheng
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Shengchao Yang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Guanghui Zhang
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China
| | - Yinhe Zhao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Junwen Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, Yunnan, China,Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,*Correspondence: Junwen Chen,
| | - Ming Zhao
- Yunnan Characteristic Plant Extraction Laboratory, Kunming, Yunnan, China,The Key Laboratory of Medicinal Plant Biology of Yunnan Province, National Local Joint Engineering Research Center on Germplasm Innovation and Utilization of Chinese Medicinal Materials in Southwestern, Kunming, Yunnan, China,College of Tea Science, Yunnan Agricultural University, Kunming, Yunnan, China,Ming Zhao,
| |
Collapse
|
3
|
Production of Minor Ginsenosides from Panax notoginseng Flowers by Cladosporium xylophilum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196615. [PMID: 36235151 PMCID: PMC9572572 DOI: 10.3390/molecules27196615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
Abstract
Panax notoginseng flowers have the highest content of saponins compared to the other parts of Panax notoginseng, but minor ginsenosides have higher pharmacological activity than the main natural ginsenosides. Therefore, this study focused on the transformation of the main ginsenosides in Panax notoginseng flowers to minor ginsenosides using the fungus of Cladosporium xylophilum isolated from soil. The main ginsenosides Rb1, Rb2, Rb3, and Rc and the notoginsenoside Fa in Panax notoginseng flowers were transformed into the ginsenosides F2 and Rd2, the notoginsenosides Fd and Fe, and the ginsenoside R7; the conversion rates were 100, 100, 100, 88.5, and 100%, respectively. The transformation products were studied by TLC, HPLC, and MS analyses, and the biotransformation pathways of the major ginsenosides were proposed. In addition, the purified enzyme of the fungus was prepared with the molecular weight of 66.4 kDa. The transformation of the monomer ginsenosides by the crude enzyme is consistent with that by the fungus. Additionally, three saponins were isolated from the transformation products and identified as the ginsenoside Rd2 and the notoginsenosides Fe and Fd by NMR and MS analyses. This study provided a unique and powerful microbial strain for efficiently transformating major ginsenosides in P. notoginseng flowers to minor ginsenosides, which will help raise the functional and economic value of the P. notoginseng flower.
Collapse
|
4
|
Ai K, Yuan D, Zheng J. Experimental Research on the Antitumor Effect of Human Gastric Cancer Cells Transplanted in Nude Mice Based on Deep Learning Combined with Spleen-Invigorating Chinese Medicine. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3010901. [PMID: 35190750 PMCID: PMC8858057 DOI: 10.1155/2022/3010901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/03/2022] [Accepted: 01/28/2022] [Indexed: 12/26/2022]
Abstract
Gastric cancer is still the fifth most common malignant tumor in the world and has the fourth highest mortality rate in the world. Gastric cancer is difficult to treat because of its unobvious onset, low resection rate, and rapid deterioration. Therefore, humans have been working hard to combat gastric cancer. At present, the most commonly used treatment method is radiotherapy. However, this method will damage the normal tissues of the irradiated area while treating malignant tumor cells. It not only has side effects of damage to the patient's skin and mucous membranes but also needs high-rate radiotherapy and has high cost for chemotherapy. In order to solve these problems, it is necessary to find new treatment methods. This article proposes the use of Chinese medicine to invigorate the spleen to inhibit human gastric cancer cells. This article combines modern machine learning technology with traditional Chinese medicine and combines traditional Chinese medicine physiotherapy with Western medicine nude mouse transplantation experiments. The treatment of tumors in Chinese medicine is based on the theory of Chinese medicine and has different characteristics. Western medicine has the advantage of permanently injuring patients. The process of the experiment is to transplant human-derived gastric cancer cells into nude mice. After grouping treatments and obtaining comparative data, deep learning techniques are used to analyze the properties of Chinese medicines for strengthening the spleen and to compare the properties of Chinese medicines for strengthening the spleen. The experimental results showed that the tumor inhibition rate of mice using fluorouracil was 18%, the tumor inhibition rate of mice using low-dose Chinese medicine was 16%, and the tumor inhibition rate of mice using high-dose Chinese medicine reached 52%. 80 days after the experiment, the survival rate of mice using high-dose Chinese medicine is 100% higher than that of mice without treatment.
Collapse
Affiliation(s)
- Ke Ai
- Medical College, China Three Gorges University, Yichang, 443000 Hubei, China
| | - Ding Yuan
- Medical College, China Three Gorges University, Yichang, 443000 Hubei, China
- Third-Grade Pharmacological Laboratory on TCM Approved by the State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443000 Hubei, China
| | - Jie Zheng
- Medical College, China Three Gorges University, Yichang, 443000 Hubei, China
| |
Collapse
|
5
|
Liu L, Xu FR, Wang YZ. Traditional uses, chemical diversity and biological activities of Panax L. (Araliaceae): A review. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:112792. [PMID: 32311488 DOI: 10.1016/j.jep.2020.112792] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/22/2020] [Accepted: 03/22/2020] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Panax L. (Araliaceae) is globally-recognized plant resource suitable for the globalization of traditional Chinese medicines. It has traditionally been used as tonic agents in various ethnomedicinal systems of East Asia, especially in China. It is often used to regulate bodily functions and considered as adjuvant therapy for tumor, resuscitation of traumatic hemorrhagic shock, etc. AIM OF THIS REVIEW: This review systematically summarized the information on distributions, botanical characteristics, traditional uses, chemical components and biological activities of the genus Panax, in order to explore and exploit the therapeutic potential of this plant. MATERIALS AND METHODS The available information about genus Panax was collected via the online search on Web of Science, Google Scholar, PubMed, Baidu Scholar, Science Direct, China National Knowledge Infrastructure and Springer search. The keywords used include Panax, saponin, secondary metabolites, chemical components, biological activity, pharmacology, traditional medicinal uses, safety and other related words. The Plant List (www.theplantlist.org) and Catalogue of Life: 2019 Annual Checklist (www.catalogueoflife.org/col/) databases were used to provide the scientific names, subspecies classification and distribution information of Panax. RESULTS Panax is widely assessed concerning its phytochemistry and biological activities. To date, at least 748 chemical compounds from genus Panax were isolated, including saponins, flavonoids, polysaccharides, steroids and phenols. Among them, triterpenoid saponins and polysaccharides were the representative active ingredients of Panax plants, which have been widely investigated. Modern pharmacological studies showed that these compounds exhibited a wide range of biological activities in vitro and in vivo including antineoplastic, anti-inflammatory, hepatorenal protective, neuroprotective, immunoregulatory, cardioprotective and antidiabetic activities. Many studies also confirmed that the mechanisms of organ-protective were closely related to molecular signaling pathways, the expression of related proteins and antioxidant reactions. To sum up, genus Panax has high medicinal and social value, deserving further investigation. CONCLUSIONS The genus Panax is very promising to be fully utilized in the development of nutraceutical and pharmaceutical products. However, there is a lack of in-depth studies on ethnomedicinal uses of Panax plants. In addition, further studies of single chemical component should be performed based on the diversity of chemical structure, significant biological activities and clinical application. If the bioactive molecules and multicomponent interactions are discovered, it will be of great significance to the clinical application of Panax plants. It is an urgent requirement to carry out detailed phytochemical, pharmacology and clinical research on Panax classical prescriptions for the establishment of modern medication guidelines. Exploring the molecular basis of herbal synergistic actions may provide a new understanding of the complex disease mechanisms and accelerate the process of pharmaceutical development.
Collapse
Affiliation(s)
- Lu Liu
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China; College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China
| | - Fu-Rong Xu
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yuan-Zhong Wang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| |
Collapse
|