1
|
Ding YY, Jin YR, Luo XF, Zhang SY, Dai TL, Ma L, Zhang ZJ, Wu ZR, Jin CX, Liu YQ. Design, Synthesis, and Antimicrobial Activity Evaluation of Novel Isocryptolepine Derivatives against Phytopathogenic Fungi and Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20831-20841. [PMID: 39284582 DOI: 10.1021/acs.jafc.4c03976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This research adopted the Fischer indole synthesis method to continue constructing a novel drug-like chemical entity based on the guidance of isocryptolepine and obtained four series of derivatives: Y, Da, Db, and Dc. The antimicrobial activity of these derivatives against plant pathogens was further evaluated. The results showed that Dc-2 had the best antifungal effect against Botrytis cinerea, and its EC50 value was up to 1.29 μg/mL. In addition, an in vivo activity test showed that the protective effect of Dc-2 on apples was 82.2% at 200 μg/mL, which was better than that of Pyrimethanil (45.4%). Meanwhile, it was found by scanning electron microscopy and transmission electron microscopy that the compound Dc-2 affected the morphology of mycelia. The compound Dc-2 was found to damage the cell membrane by PI and ROS staining. Through experiments such as leakage of cell contents, it was found that the compound Dc-2 changed the permeability of the cell membrane and caused the leakage of substances in the cell. According to the above studies, compound Dc-2 can be used as a candidate lead compound for further structural optimization and development.
Collapse
Affiliation(s)
- Yan-Yan Ding
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ya-Rui Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Xiong-Fei Luo
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Tian-Li Dai
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Li Ma
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Zheng-Rong Wu
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Cheng-Xin Jin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
- State Key Laboratory of Grassland Agro-ecosystems, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
2
|
Wagh SB, Berthold D, Majeed I, Lewis LK, Schilter D, Mertens B, Evidente A, van Otterlo WAL, Mathieu V, Kornienko A. Sphaeropsidin A C15-C16 Cross-Metathesis Analogues with Potent Anticancer Activity. ChemMedChem 2024; 19:e202400288. [PMID: 38895989 DOI: 10.1002/cmdc.202400288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
We recently discovered that sphaeropsidin A (SphA), a fungal metabolite from Diplodia cupressi, overcomes apoptosis resistance in cancer cells by inducing cellular shrinkage by impairing regulatory volume increase. Previously, we prepared a pyrene-conjugated derivative of SphA by a cross-metathesis reaction involving the phytotoxin's C15,C16-alkene. This derivative's evaluation in a cancer cell panel revealed a significant increase in potency, with the IC50 values 5-10× lower than those displayed by the original natural product. Herein, we describe the preparation and anticancer evaluation of fifteen novel C15,C16-alkene cross-metathesis analogues in which the pyrene moiety was replaced with other aromatic or non-aromatic hydrophobic groups. The idea for this replacement was to prepare a family of compounds that would not be predicted to be mutagenic compared with the original pyrene analogue. We predict several of our new compounds to be non-mutagenic, while retaining the high potency of the original pyrene-containing analogues. Examples of these potential lead compounds included those containing pentamethylphenyl and triphenylethylene pendant groups. As an additional feature of the current investigation, we prepared several deuterated pyrene-containing compounds to overcome intellectual property issues associated with non-patentability of the original pyrene derivative.
Collapse
Affiliation(s)
- Sachin B Wagh
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666, USA
| | - Dino Berthold
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Stellenbosch, Matieland, 7602, Western Cape, South Africa
| | - Iram Majeed
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666, USA
| | - L Kevin Lewis
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666, USA
| | - David Schilter
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666, USA
| | - Birgit Mertens
- Sciensano, Rue Juliette Wytsmanstraat 14, 1050, Brussels, Belgium
| | - Antonio Evidente
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/O, 70125, Bari, Italy
| | - Willem A L van Otterlo
- Department of Chemistry and Polymer Sciences, Stellenbosch University, Stellenbosch, Matieland, 7602, Western Cape, South Africa
| | - Véronique Mathieu
- Department of Pharmacotherapy and Pharmaceutics, Chemistry and Biochemistry, Faculté de Pharmacie, Université Libre de Bruxelles, Brussels, Belgium
- ULB Cancer Research Center, U-CRC, Université Libre de Bruxelles, Brussels, Belgium
| | - Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas, 78666, USA
| |
Collapse
|
3
|
Popruk S, Tummatorn J, Sreesai S, Ampawong S, Thiangtrongjit T, Tipthara P, Tarning J, Thongsornkleeb C, Ruchirawat S, Reamtong O. Inhibition of Giardia duodenalis by isocryptolepine -triazole adducts and derivatives. Int J Parasitol Drugs Drug Resist 2024; 26:100561. [PMID: 39151240 PMCID: PMC11377146 DOI: 10.1016/j.ijpddr.2024.100561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Giardia duodenalis, a widespread parasitic flagellate protozoan causing giardiasis, affects millions annually, particularly impacting children and travellers. With no effective vaccine available, treatment primarily relies on the oral administration of drugs targeting trophozoites in the small intestine. However, existing medications pose challenges due to side effects and drug resistance, necessitating the exploration of novel therapeutic options. Isocryptolepine, derived from Cryptolepis sanguinolenta, has demonstrated promising antimicrobial and anticancer properties. This study evaluated eighteen isocryptolepine-triazole adducts for their antigiardial activities and cytotoxicity, with ISO2 demonstrating potent antigiardial activity and minimal cytotoxicity on human intestinal cells. Metabolomics analysis revealed significant alterations in G. duodenalis metabolism upon ISO2 treatment, particularly affecting phospholipid metabolism. Notably, the upregulation of phytosphingosine and triglycerides, and downregulation of certain fatty acids, suggest a profound impact on membrane composition and integrity, potentially contributing to the parasite's demise. Pathway analysis highlighted glycerophospholipid metabolism, cytochrome b5 family heme/steroid binding domain, and P-type ATPase mechanisms as critical pathways affected by ISO2 treatment, underscoring its importance as a potential target for antigiardial therapy. These findings shed light on the mode of action of ISO2 against G. duodenalis and provide valuable insights for further drug development. Moreover, the study also offers a promising avenue for the exploration of isocryptolepine derivatives as novel therapeutic agents for giardiasis, addressing the urgent need for more effective and safer treatment options.
Collapse
Affiliation(s)
- Supaluk Popruk
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Ratchawithi Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Suthasinee Sreesai
- Central Equipment Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tipparat Thiangtrongjit
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phornpimon Tipthara
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand; Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
4
|
Aksenov AV, Makieva DC, Arestov RA, Arutiunov NA, Aksenov DA, Aksenov NA, Leontiev AV, Aksenova IV. Metal-Free, PPA-Mediated Fisher Indole Synthesis via Tandem Hydroamination-Cyclization Reaction between Simple Alkynes and Arylhydrazines. Int J Mol Sci 2024; 25:8750. [PMID: 39201437 PMCID: PMC11354626 DOI: 10.3390/ijms25168750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
A new variant of Fisher indole synthesis involving Bronsted acid-catalyzed hydrohydrazination of unactivated terminal and internal acetylenes with arylhydrazines is reported. The use of polyphosphoric acid alone either as the reaction medium or in the presence of a co-solvent appears to provide the required balance for activating the C-C triple bond towards the nucleophilic attack of the hydrazine moiety without unrepairable reactivity loss of the latter due to competing amino group protonation. Additionally, the formal hydration of acetylenes to the corresponding ketones occurs under the same conditions, making it an alternative approach for generating carbonyl groups from alkynes.
Collapse
Affiliation(s)
- Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., 355017 Stavropol, Russia (N.A.A.); (D.A.A.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
An JX, Zhang BQ, Liang HJ, Zhang ZJ, Liu YQ, Zhang SY. Antifungal Activity and Putative Mechanism of HWY-289, a Semisynthetic Protoberberine Derivative, against Botrytis cinerea. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7716-7726. [PMID: 38536397 DOI: 10.1021/acs.jafc.3c08858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The emergence of resistant pathogens has increased the demand for alternative fungicides. The use of natural products as chemical scaffolds is a potential method for developing fungicides. HWY-289, a semisynthetic protoberberine derivative, demonstrated broad-spectrum and potent activities against phytopathogenic fungi, particularly Botrytis cinerea (with EC50 values of 1.34 μg/mL). SEM and TEM imaging indicated that HWY-289 altered the morphology of the mycelium and the internal structure of cells. Transcriptomics revealed that it could break down cellular walls through amino acid sugar and nucleotide sugar metabolism. In addition, it substantially decreased chitinase activity and chitin synthase gene (BcCHSV) expression by 53.03 and 82.18% at 1.5 μg/mL, respectively. Moreover, this impacted the permeability and integrity of cell membranes. Finally, HWY-289 also hindered energy metabolism, resulting in a significant reduction of ATP content, ATPase activities, and key enzyme activities in the TCA cycle. Therefore, HWY-289 may be a potential candidate for the development of plant fungicides.
Collapse
Affiliation(s)
- Jun-Xia An
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Bao-Qi Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Hong-Jie Liang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhi-Jun Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, People's Republic of China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| | - Shao-Yong Zhang
- Key Laboratory of Vector Biology and Pathogen Control of Zhejiang Province, College of Life Science, Huzhou University, Huzhou 313000, China
| |
Collapse
|
6
|
Abaev VT, Aksenov NA, Aksenov DA, Aleksandrova EV, Akulova AS, Kurenkov IA, Leontiev AV, Aksenov AV. One-Pot Synthesis of Polynuclear Indole Derivatives by Friedel–Crafts Alkylation of γ-Hydroxybutyrolactams. Molecules 2023; 28:molecules28073162. [PMID: 37049924 PMCID: PMC10095734 DOI: 10.3390/molecules28073162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The Friedel–Crafts reaction of novel 3,5-diarylsubstituted 5-hydroxy-1,5-dihydro-2H-pyrrol-2-ones was used for low cost, one-pot preparation of polycyclic indole derivatives structurally similar to Ergot alkaloids.
Collapse
Affiliation(s)
- Vladimir T. Abaev
- Department of Chemistry, Biology and Biotechnology, North-Ossetian State University Named after K. L. Khetagurov, 46 Vatutin St., Vladikavkaz 362025, Russia
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Nicolai A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Dmitrii A. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Elena V. Aleksandrova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alesia S. Akulova
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Igor A. Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| | - Alexander V. Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russia
| |
Collapse
|
7
|
Grishin IY, Malyuga VV, Aksenov DА, Kirilov NK, Abakarov GM, Ovcharov SN, Sarapii AV, Aksenov NА, Aksenov AV. A sequence of acylamination and acylation reactions in polyphosphoric acid – a novel approach to the Friedländer synthesis of 2-arylquinolines. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-022-03090-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Thongsornkleeb C, Tummatorn J, Ruchirawat S. A Compilation of Synthetic Strategies to Access the Most Utilized Indoloquinoline Motifs. Chem Asian J 2022; 17:e202200040. [PMID: 35132773 DOI: 10.1002/asia.202200040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 02/07/2022] [Indexed: 11/06/2022]
Abstract
Indoloquinoline alkaloids constitute an important class of aromatic heterocycles consisting of quinoline and indole fused together in various orientations. These compounds, both natural and synthetic, often display various bioactivities which have established them to be one of the interesting medicinal targets. This class of compounds have stimulated much interest among synthetic and medicinal chemists as evidenced by growth in the number of synthetic methods to prepare and study this class of alkaloids. This review compiles the synthetic strategies and methods currently known in the literature for the construction of four important indoloquinoline skeletons.
Collapse
Affiliation(s)
| | - Jumreang Tummatorn
- Chulabhorn Research Institute, Medicinal chemistry, 54 Kamphaeng Phet 6 Talat Bang Khen, 10210, Lak Si, THAILAND
| | | |
Collapse
|
9
|
Kiren S, Mahmud Yakubu F, Mohammed H, Grimes F. A Microwave-Assisted, Two-Step Synthesis of Indolo[3,2-c]quinolines via Fischer Indolization and Oxidative Aromatization. HETEROCYCLES 2022. [DOI: 10.3987/com-22-14721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Akitake M, Noda S, Miyoshi K, Sonoda M, Tanimori S. Access to γ-Carbolines: Synthesis of Isocryptolepine. J Org Chem 2021; 86:17727-17737. [PMID: 34866396 DOI: 10.1021/acs.joc.1c02026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A new method to synthesize γ-carboline derivatives has been developed starting from 3,5-dibromo-4-pyridinamine by monoarylation using the Suzuki-Miyaura cross-coupling reaction followed by the base-mediated ring closure to pyrrole formation. Synthesis of a series of γ-carboline derivations from the 4-brominated γ-carboline 4a has been achieved by employing various coupling reactions and N-alkylations. This method has been applied for the synthesis of the antimalarial and anticancer natural product isocryptolepine. The photophysical properties of novel γ-carboline derivations are also reported.
Collapse
Affiliation(s)
- Masahiro Akitake
- Department of Applied Biological Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shizuki Noda
- Department of Applied Biological Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Kohei Miyoshi
- Department of Applied Biological Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Motohiro Sonoda
- Department of Applied Biological Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| | - Shinji Tanimori
- Department of Applied Biological Sciences, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
11
|
Rodphon W, Laohapaisan P, Supantanapong N, Reamtong O, Ngiwsara L, Lirdprapamongkol K, Thongsornkleeb C, Khunnawutmanotham N, Tummatorn J, Svasti J, Ruchirawat S. Synthesis of Isocryptolepine-Triazole Adducts and Evaluation of Their Cytotoxic Activity. ChemMedChem 2021; 16:3750-3762. [PMID: 34610210 DOI: 10.1002/cmdc.202100554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Indexed: 11/05/2022]
Abstract
Eighteen hybrid compounds between 8-bromo-2-fluoro-isocryptolepine (4) and 1,2,3-triazole were synthesized via azide rearrangement-annulation reaction. Compound 4 underwent regioselective N-propargylation and click reaction to form 8-bromo-2-fluoro-isocryptolepine-triazole hybrids 11 which were evaluated for cytotoxic activity. Compound 11 c containing 1-anisyltriazole was the most effective in inhibiting HepG2, HuCCA-1 and A549 cell lines (IC50 values of 1.65-3.07 μM) while compounds 11 a (1-phenyltriazole), 11 j (1-para-CF3 -benzyltriazole) and 11 l (1-meta-Cl-benzyltriazole) were potent inhibitors of HuCCA-1, HepG2 and A549 cell lines, respectively. Moreover, 11 l showed the lowest cytotoxicity to normal human kidney cell line. Compounds 11 c and 11 l provided improvement of cytotoxic activity over 4. Compounds 4, 11 c and 11 l were selected to investigate their mechanisms of action. The results showed that 4 could induce G2/M cell cycle arrest and was involved in the upregulation of p53 and p21 proteins. However, the mechanisms of growth inhibition by 11 c and 11 l were associated with G0/G1 cell cycle arrest and mediated by induction of oxidative stress.
Collapse
Affiliation(s)
- Warabhorn Rodphon
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Pavitra Laohapaisan
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Nantamon Supantanapong
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Thung Phayathai Subdistrict Ratchathewi, Bangkok, 10400, Thailand
| | - Lukana Ngiwsara
- Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Kriengsak Lirdprapamongkol
- Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Charnsak Thongsornkleeb
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Nisachon Khunnawutmanotham
- Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Jisnuson Svasti
- Laboratory of Biochemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Biology, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology (EHT), Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand.,Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok, 10210, Thailand
| |
Collapse
|
12
|
Aksenov DA, Arutyunov NA, Gasanova AZ, Aksenov NA, Aksenov AV, Lower C, Rubin M. Synthetic studies towards benzofuro[2,3-b]quinoline and 6H-indolo[2,3-b]quinoline cores: Total synthesis of norneocryptolepine and neocryptolepine. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Chung H, Kim J, González-Montiel GA, Ha-Yeon Cheong P, Lee HG. Modular Counter-Fischer-Indole Synthesis through Radical-Enolate Coupling. Org Lett 2021; 23:1096-1102. [PMID: 33415986 DOI: 10.1021/acs.orglett.1c00003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A single-electron transfer mediated modular indole formation reaction from a 2-iodoaniline derivative and a ketone has been developed. This transition-metal-free reaction shows a broad substrate scope and unconventional regioselectivity trends. Moreover, important functional groups for further transformation are tolerated under the reaction conditions. Density functional theory studies reveal that the reaction proceeds by metal coordination, which converts a disfavored 5-endo-trig cyclization to an accessible 7-endo-trig process.
Collapse
Affiliation(s)
- Hyunho Chung
- Department of Chemistry. College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Jeongyun Kim
- Department of Chemistry. College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Gisela A González-Montiel
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Paul Ha-Yeon Cheong
- Department of Chemistry, Oregon State University, 153 Gilbert Hall, Corvallis, Oregon 97331, United States
| | - Hong Geun Lee
- Department of Chemistry. College of Natural Sciences, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
14
|
Yoshimura T, Umeda Y, Takahashi R, Matsuo JI. Development of Nitrolactonization Mediated by Iron(III) Nitrate Nonahydrate. Chem Pharm Bull (Tokyo) 2020; 68:1220-1225. [PMID: 33268654 DOI: 10.1248/cpb.c20-00645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The nitrolactonization of alkenyl carboxylic acids mediated by Fe(NO3)3·9H2O has been developed. Nitrolactones were obtained in up to 93% yield by treatment of alkenyl carboxylic acids with Fe(NO3)3·9H2O. Mechanistic studies disclosed that the reaction proceeded through a radical intermediate generated from addition of NO2 to alkenyl carboxylic acids.
Collapse
Affiliation(s)
- Tomoyuki Yoshimura
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Yuki Umeda
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Risako Takahashi
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | - Jun-Ichi Matsuo
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| |
Collapse
|
15
|
Aksenov NA, Aksenov AV, Kirilov NK, Arutiunov NA, Aksenov DA, Maslivetc V, Zhao Z, Du L, Rubin M, Kornienko A. Nitroalkanes as electrophiles: synthesis of triazole-fused heterocycles with neuroblastoma differentiation activity. Org Biomol Chem 2020; 18:6651-6664. [PMID: 32813002 PMCID: PMC7857362 DOI: 10.1039/d0ob01007c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We discovered a reaction of nitroalkanes with 2-hydrazinylquinolines, 2-hydrazinylpyridines and bis-2,4-dihydrazinylpyrimidines in polyphosphoric acid (PPA) affording 1,2,4-triazolo[4,3-a]quinolines, 1,2,4-triazolo[4,3-a]pyridines and bis[1,2,4]triazolo[4,3-a:4',3'-c]pyrimidines, respectively. The reaction expands the scope of heterocyclic annulations involving phosphorylated nitronates, believed to be the electrophilic intermediates formed from nitroalkanes in PPA. Several of the synthesized triazoles showed promising anticancer activity by inducing differentiation in neuroblastoma cancer cells. Due to the urgent need for novel differentiation agents for neuroblastoma therapy, this finding warrants further evaluation of this class of compounds against neuroblastoma.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Verma K, Tailor YK, Khandelwal S, Agarwal M, Rushell E, Pathak S, Kumari Y, Awasthi K, Kumar M. Synthesis and characterization of terbium doped TiO
2
nanoparticles and their use as recyclable and reusable heterogeneous catalyst for efficient and environmentally sustainable synthesis of spiroannulated indolo[3,2‐
c
]quinolines‐ mimetic scaffolds of isocryptolepine. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5836] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kanchan Verma
- Department of Chemistry University of Rajasthan Jaipur India
| | | | | | - Monu Agarwal
- Department of Chemistry University of Rajasthan Jaipur India
| | - Esha Rushell
- Department of Chemistry University of Rajasthan Jaipur India
| | - Sakshi Pathak
- Department of Chemistry University of Rajasthan Jaipur India
| | - Yogita Kumari
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Kamlendra Awasthi
- Soft Materials Lab, Department of Physics Malaviya National Institute of Technology Jaipur India
| | - Mahendra Kumar
- Department of Chemistry University of Rajasthan Jaipur India
| |
Collapse
|
17
|
Thobokholt EN, Larghi EL, Bracca ABJ, Kaufman TS. Isolation and synthesis of cryptosanguinolentine (isocryptolepine), a naturally-occurring bioactive indoloquinoline alkaloid. RSC Adv 2020; 10:18978-19002. [PMID: 35518305 PMCID: PMC9054090 DOI: 10.1039/d0ra03096a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/04/2020] [Indexed: 11/28/2022] Open
Abstract
Cryptosanguinolentine (isocryptolepine) is one of the minor naturally-occurring monomeric indoloquinoline alkaloids, isolated from the West African climbing shrub Cryptolepis sanguinolenta. The natural product displays such a simple and unique skeleton, which chemists became interested in well before it was found in Nature. Because of its structure and biological activity, the natural product has been targeted for synthesis on numerous occasions, employing a wide range of different strategies. Hence, discussed here are aspects related to the isolation of isocryptolepine, as well as the various approaches toward its total synthesis.
Collapse
Affiliation(s)
- Elida N Thobokholt
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Enrique L Larghi
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Andrea B J Bracca
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| | - Teodoro S Kaufman
- Instituto de Química Rosario (IQUIR, CONICET-UNR), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario Suipacha 531 S2002LRK Rosario Argentina +54-341-4370477 +54-341-4370477
| |
Collapse
|
18
|
Aksenov NA, Gasanova AZ, Prokonov FY, Aksenov DA, Abakarov GM, Aksenov AV. Synthesis of 11H-indolo[3,2-c]quinolines by SnCl4-catalyzed cyclization of indole-3-carbaldehyde oximes. Russ Chem Bull 2020. [DOI: 10.1007/s11172-019-2697-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|