1
|
Khan MUA, Aslam MA, Abdullah MFB, Abdal-Hay A, Gao W, Xiao Y, Stojanović GM. Recent advances of bone tissue engineering: carbohydrate and ceramic materials, fundamental properties and advanced biofabrication strategies ‒ a comprehensive review. Biomed Mater 2024; 19:052005. [PMID: 39105493 DOI: 10.1088/1748-605x/ad6b8a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/05/2024] [Indexed: 08/07/2024]
Abstract
Bone is a dynamic tissue that can always regenerate itself through remodeling to maintain biofunctionality. This tissue performs several vital physiological functions. However, bone scaffolds are required for critical-size damages and fractures, and these can be addressed by bone tissue engineering. Bone tissue engineering (BTE) has the potential to develop scaffolds for repairing critical-size damaged bone. BTE is a multidisciplinary engineered scaffold with the desired properties for repairing damaged bone tissue. Herein, we have provided an overview of the common carbohydrate polymers, fundamental structural, physicochemical, and biological properties, and fabrication techniques for bone tissue engineering. We also discussed advanced biofabrication strategies and provided the limitations and prospects by highlighting significant issues in bone tissue engineering. There are several review articles available on bone tissue engineering. However, we have provided a state-of-the-art review article that discussed recent progress and trends within the last 3-5 years by emphasizing challenges and future perspectives.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Muhammad Azhar Aslam
- Department of Physics, University of Engineering and Technology, Lahore 39161, Pakistan
| | - Mohd Faizal Bin Abdullah
- Oral and Maxillofacial Surgery Unit, School of Dental Sciences Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
- Oral and Maxillofacial Surgery Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kota Bharu, Kelantan 16150, Malaysia
| | - Abdalla Abdal-Hay
- Department of Engineering Materials and Mechanical Design, Faculty of Engineering, South Valley University, Qena 83523, Egypt
- School of Dentistry, University of Queensland, 288 Herston Road, Herston QLD 4006, Australia
| | - Wendong Gao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Yin Xiao
- School of Medicine and Dentistry , Griffith University, Gold Coast Campus, Brisbane, Queensland 4222, Australia
| | - Goran M Stojanović
- Faculty of Technical Sciences, University of Novi Sad, T. D. Obradovica 6, 21000 Novi Sad, Serbia
| |
Collapse
|
2
|
Zhang M, Xu F, Cao J, Dou Q, Wang J, Wang J, Yang L, Chen W. Research advances of nanomaterials for the acceleration of fracture healing. Bioact Mater 2024; 31:368-394. [PMID: 37663621 PMCID: PMC10474571 DOI: 10.1016/j.bioactmat.2023.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/05/2023] Open
Abstract
The bone fracture cases have been increasing yearly, accompanied by the increased number of patients experiencing non-union or delayed union after their bone fracture. Although clinical materials facilitate fracture healing (e.g., metallic and composite materials), they cannot fulfill the requirements due to the slow degradation rate, limited osteogenic activity, inadequate osseointegration ability, and suboptimal mechanical properties. Since early 2000, nanomaterials successfully mimic the nanoscale features of bones and offer unique properties, receiving extensive attention. This paper reviews the achievements of nanomaterials in treating bone fracture (e.g., the intrinsic properties of nanomaterials, nanomaterials for bone defect filling, and nanoscale drug delivery systems in treating fracture delayed union). Furthermore, we discuss the perspectives on the challenges and future directions of developing nanomaterials to accelerate fracture healing.
Collapse
Affiliation(s)
- Mo Zhang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Fan Xu
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jingcheng Cao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Qingqing Dou
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Juan Wang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| | - Jing Wang
- School of Pharmacy, Key Laboratory of Innovative Drug Development and Evaluation, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lei Yang
- Center for Health Sciences and Engineering, Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300131, PR China
| | - Wei Chen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- Key Laboratory of Biomechanics of Hebei Province, Orthopaedic Research Institution of Hebei Province, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
- NHC Key Laboratory of Intelligent Orthopaedic Equipment, The Third Hospital of Hebei Medical University, No.139 Ziqiang Road, Shijiazhuang, 050051, PR China
| |
Collapse
|
3
|
Han X, Xue Y, Lou R, Ding S, Wang S. Facile and efficient chitosan-based hygroscopic aerogel for air dehumidification. Int J Biol Macromol 2023; 251:126191. [PMID: 37573918 DOI: 10.1016/j.ijbiomac.2023.126191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/29/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Sorption dehumidification, as an energy-saving and eco-friendly approach, has been emerging in application for air dehumidification. Here, a prospective method is proposed to prepare biomass-based hygroscopic aerogels that are easily applicable, sustainable, high-efficient, and recyclable. The chitosan-based aerogel with a porous and hydrophilic network acts as the carrier and water reservoir for the uniformly distributed lithium chloride hygroscopic salt, and provides the hygroscopic salt with more liberal water channels to facilitate moisture capture and transfer. As a consequence, the prepared chitosan/polyvinyl alcohol@lithium chloride (chitosan/PVA@LiCl) hygroscopic aerogel exhibits an excellent moisture absorption capacity of up to 2.77 g g-1 at a relative humidity of 90 %. Meanwhile, as the chitosan/PVA@LiCl aerogel is set in a closed space about 2200 times larger than its own volume, the relative humidity can be reduced from 90 % to 32 % within 2 h, and further lower to 25 % after 4 h. Furthermore, combined with multi-walled carbon nanotubes, the photothermal hygroscopic aerogel is obtained that can rapidly desorb water under sunlight, thus to realize energy-free cycle. Overall, the renewable biomass-based aerogel materials with the advantages of simple preparation and excellent hygroscopic performance provides a new path for the development of sorption dehumidification technology.
Collapse
Affiliation(s)
- Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yiwen Xue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Rui Lou
- College of Physics and Energy, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Shaoqiu Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
4
|
Chen J, Xing Y, Bai X, Xue M, Shi Q, Li B. Strong Bioactive Glass-Based Hybrid Implants with Good Biomineralization Activity Used to Reduce Formation Duration and Improve Biomechanics of Bone Regeneration. Polymers (Basel) 2023; 15:3497. [PMID: 37688122 PMCID: PMC10489730 DOI: 10.3390/polym15173497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/21/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
Developing bioactive implants with strong mechanical properties and biomineralization activity is critical in bone repair. In this work, modified cellulose nanofiber (mCNF)-reinforced bioactive glass (BG)-polycaprolactone (PCL) hybrids (mCNF-BP) with strong biomechanics and good apatite formation ability were reported. Incorporating mCNFs shortens the forming duration of the hybrid films and enhances the biomechanical performance and in vitro apatite-formation capability. The optimized biomechanical performance of the optimal hybrid materials is produced at a relatively high mCNF content (1.0 wt%), including a considerably higher modulus of elasticity (948.65 ± 74.06 MPa). In addition, the biomineralization activity of mCNF-BP hybrids is also tailored with the increase in the mCNF contents. The mCNF-BP with 1.5 wt% and 2.0 wt% mCNFs demonstrate the best biomineralization activity after immersing in simulated body fluid for 3 days. This study suggests that mCNFs are efficient bioactive additive to reinforce BG-based hybrids' mechanical properties and biomineralization activity.
Collapse
Affiliation(s)
- Jing Chen
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Yonglei Xing
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, National Demonstration Center for Experimental Chemistry Education, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Xiaozhuan Bai
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Min Xue
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Qi Shi
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| | - Beibei Li
- The Key Laboratory for Surface Engineering and Remanufacturing in Shaanxi Province, School of Chemical Engineering, Xi’an University, Xi’an 710065, China; (X.B.); (M.X.); (Q.S.); (B.L.)
| |
Collapse
|
5
|
Shah SWA, Xu Q, Ullah MW, Zahoor, Sethupathy S, Morales GM, Sun J, Zhu D. Lignin-based additive materials: A review of current status, challenges, and future perspectives. ADDITIVE MANUFACTURING 2023; 74:103711. [DOI: 10.1016/j.addma.2023.103711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
|
6
|
Abbasi Moud A. Advanced cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) aerogels: Bottom-up assembly perspective for production of adsorbents. Int J Biol Macromol 2022; 222:1-29. [PMID: 36156339 DOI: 10.1016/j.ijbiomac.2022.09.148] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/04/2022] [Accepted: 09/16/2022] [Indexed: 12/25/2022]
Abstract
The most common and abundant polymer in nature is the linear polysaccharide cellulose, but processing it requires a new approach since cellulose degrades before melting and does not dissolve in ordinary organic solvents. Cellulose aerogels are exceptionally porous (>90 %), have a high specific surface area, and have low bulk density (0.0085 mg/cm3), making them suitable for a variety of sophisticated applications including but not limited to adsorbents. The production of materials with different qualities from the nanocellulose based aerogels is possible thanks to the ease with which other chemicals may be included into the structure of nanocellulose based aerogels; despite processing challenges, cellulose can nevertheless be formed into useful, value-added products using a variety of traditional and cutting-edge techniques. To improve the adsorption of these aerogels, rheology, 3-D printing, surface modification, employment of metal organic frameworks, freezing temperature, and freeze casting techniques were all investigated and included. In addition to exploring venues for creation of aerogels, their integration with CNC liquid crystal formation were also explored and examined to pursue "smart adsorbent aerogels". The objective of this endeavour is to provide a concise and in-depth evaluation of recent findings about the conception and understanding of nanocellulose aerogel employing a variety of technologies and examination of intricacies involved in enhancing adsorption properties of these aerogels.
Collapse
Affiliation(s)
- Aref Abbasi Moud
- Department of Chemical and Biological Engineering, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
7
|
Nguyen VT, Ha LQ, Nguyen TDL, Ly PH, Nguyen DM, Hoang D. Nanocellulose and Graphene Oxide Aerogels for Adsorption and Removal Methylene Blue from an Aqueous Environment. ACS OMEGA 2022; 7:1003-1013. [PMID: 35036764 PMCID: PMC8756800 DOI: 10.1021/acsomega.1c05586] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/08/2021] [Indexed: 05/12/2023]
Abstract
The characteristics of aerogel materials such as the low density and large surface area enable them to adsorb large amounts of substances, so they show great potential for application in industrial wastewater treatment. Herein, using a combination of completely environmentally friendly materials such as cellulose nanofibers (CNFs) extracted from the petioles of the nipa palm tree and graphene oxide (GO) fabricated by simple solvent evaporation, a composite aerogel was prepared by a freeze-drying method. The obtained aerogel possessed a light density of 0.0264 g/cm3 and a porosity of more than 98.2%. It was able to withstand a weight as much as 2500 times with the maximum force (1479.5 N) to break up 0.2 g of an aerogel by compression strength testing and was stable in the aquatic environment, enabling it to be reused five times with an adsorption capacity over 90%. The CNF/GO aerogel can recover higher than 85% after 30 consecutive compression recovery cycles, which is convenient for the reusability of this material in wastewater treatments. The obtained aerogel also showed a good interaction between the component phases, a high thermal stability, a 3D network structure combined with thin walls and pores with a large specific surface area. In addition, the aerogel also exhibited a fast adsorption rate for methylene blue (MB) adsorption, a type of waste from the textile industry that pollutes water sources, and it can adsorb more than 99% MB in water in less than 20 min. The excellent adsorption of MB onto the CNF/GO aerogel was driven by electrostatic interactions, which agreed with the pseudo-second-order kinetic model with a correlation coefficient R 2 = 0.9978. The initial results show that the CNF/GO aerogel is a highly durable "green" light material that might be applied in the treatment of domestic organic waste water and is completely recoverable and reusable.
Collapse
Affiliation(s)
- Vy T. Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Lam Q. Ha
- Faculty
of Applied Sciences, HCMC University of
Technology and Education, Ho Chi
Minh City 700000, Vietnam
| | - Tu D. L. Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Phuong H. Ly
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| | - Dang Mao Nguyen
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Laboratoire
Innovation Matériau Bois Habitat Apprentissage (LIMBHA), Ecole Supérieure du Bois, 7 Rue Christian Pauc, 44306 Nantes, France
| | - DongQuy Hoang
- Faculty
of Materials Science and Technology, University
of Science, Ho Chi
Minh City 700000, Vietnam
- Vietnam
National University, Ho Chi Minh
City 700000, Vietnam
| |
Collapse
|
8
|
Khan MUA, Haider S, Raza MA, Shah SA, Razak SIA, Kadir MRA, Subhan F, Haider A. Smart and pH-sensitive rGO/Arabinoxylan/chitosan composite for wound dressing: In-vitro drug delivery, antibacterial activity, and biological activities. Int J Biol Macromol 2021; 192:820-831. [PMID: 34648803 DOI: 10.1016/j.ijbiomac.2021.10.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 12/29/2022]
Abstract
Carbohydrate polymers are biological macromolecules that have sparked a lot of interest in wound healing due to their outstanding antibacterial properties and sustained drug release. Arabinoxylan (ARX), Chitosan (CS), and reduced graphene oxide (rGO) sheets were combined and crosslinked using tetraethyl orthosilicate (TEOS) as a crosslinker to fabricate composite hydrogels and assess their potential in wound dressing for skin wound healing. Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM), and biological assays were used to evaluate the composite hydrogels. FTIR validated the effective fabrication of the composite hydrogels. The rough morphologies of the composite hydrogels were revealed by SEM and AFM (as evident from the Ra values). ATC-4 was discovered to have the roughest surface. TEM revealed strong homogeneous anchoring of the rGO to the polymer matrix. However, with higher amount of rGO agglomeration was detected. The % swelling at various pHs (1-13) revealed that the hydrogels were pH-sensitive. The controlled release profile for the antibacterial drug (Silver sulfadiazine) evaluated at various pH values (4.5, 6.8, and 7.4) in PBS solution and 37 °C using the Franz diffusion method revealed maximal drug release at pH 7.4 and 37 °C. The antibacterial efficacy of the composite hydrogels against pathogens that cause serious skin diseases varied. The MC3T3-E1 cell adhered, proliferated, and differentiated well on the composite hydrogels. MC3T3-E1 cell also illustrated excellent viability (91%) and proper cylindrical morphologies on the composite hydrogels. Hence, the composite hydrogels based on ARX, CS, and rGO are promising biomaterials for treating and caring for skin wounds.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- Department of Polymer Engineering and Technology, University of Punjab, Quaid-e-Azam Campus, P.O. Box. 54590, Lahore, Pakistan; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; Department of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan.
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, P.O BOX 800, Riyadh 11421, Saudi Arabia
| | - Mohsin Ali Raza
- Department of Metallurgy and Materials Engineering, University of the Punjab, Lahore, Pakistan
| | - Saqlain A Shah
- Nanotechnology Lab, Department of Physics, Forman Christian College (University) Lahore, Pakistan
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; Centre for Advanced Composite Materials Universiti Teknologi Malaysia Skudai, Johor, Malaysia
| | - Mohammad Rafiq Abdul Kadir
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia
| | - Fazli Subhan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan.
| |
Collapse
|
9
|
Recent advances in lignin-based porous materials for pollutants removal from wastewater. Int J Biol Macromol 2021; 187:880-891. [PMID: 34329666 DOI: 10.1016/j.ijbiomac.2021.07.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/14/2021] [Accepted: 07/22/2021] [Indexed: 01/03/2023]
Abstract
Water pollution is one of the most serious threats facing mankind today and has obtained widespread attention. Significant advances have been made in the past decades to apply porous materials in wastewater treatment, due to their large specific surface areas (SBET) for interaction with the aimed ions or molecules. However, the majority of porous materials are prepared from fossil-based resources and still possess some drawbacks, such as high cost and non-degradability, which inevitably cause secondary pollution to the environment from their production to disposal. Lignin is the most abundant and the only scalable renewable aromatic resource on earth. Due to its unique physicochemical properties including high carbon content, plentiful functional groups and environmental friendliness, the lignin-based porous materials (LPMs) have shown promising prospects in efficient removal of soluble pollutants from wastewater. In this review, we firstly described the structural and chemical basis of LPMs, following presented the recent progress in the decontamination of heavy metal ions, organic dyes, antibiotics, anions and radionuclides from aqueous systems. Additionally, the outlook was provided to promote more practical implementation of LPMs in the near future.
Collapse
|
10
|
Wang J, Zhang D, Chu F. Wood-Derived Functional Polymeric Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2001135. [PMID: 32578276 DOI: 10.1002/adma.202001135] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/26/2020] [Accepted: 03/26/2020] [Indexed: 05/12/2023]
Abstract
In recent years, tremendous efforts have been dedicated to developing wood-derived functional polymeric materials due to their distinctive properties, including environmental friendliness, renewability, and biodegradability. Thus, the uniqueness of the main components in wood (cellulose and lignin) has attracted enormous interest for both fundamental research and practical applications. Herein, the emerging field of wood-derived functional polymeric materials fabricated by means of macromolecular engineering is reviewed, covering the basic structures and properties of the main components, the design principle to utilize these main components, and the resulting wood-derived functional polymeric materials in terms of elastomers, hydrogels, aerogels, and nanoparticles. In detail, the natural features of wood components and their significant roles in the fabrication of materials are emphasized. Furthermore, the utilization of controlled/living polymerization, click chemistry, dynamic bonds chemistry, etc., for the modification is specifically discussed from the perspective of molecular design, together with their sequential assembly into different morphologies. The functionalities of wood-derived polymeric materials are mainly focused on self-healing and shape-memory abilities, adsorption, conduction, etc. Finally, the main challenges of wood-derived functional polymeric materials fabricated by macromolecular engineering are presented, as well as the potential solutions or directions to develop green and scalable wood-derived functional polymeric materials.
Collapse
Affiliation(s)
- Jifu Wang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Fuxiang Chu
- Institute of Chemical Industry of Forest Products, CAF, National Engineering Lab for Biomass Chemical Utilization, Key and Open Lab of Forest Chemical Engineering, SFA, Key Lab of Biomass Energy and Material, Jiangsu Province, No 16, Suojin Wucun, Nanjing, 210042, China
- Institute of Forest New Technology, CAF, No 1, Dongxiaofu Haidian, Beijing, 100091, China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
11
|
Zhang S, Zhao L, Shan C, Shi Y, Ma K, Wu J. Exploring the biosynthetic pathway of lignin in Acorus tatarinowii Schott using de novo leaf and rhizome transcriptome analysis. Biosci Rep 2021; 41:BSR20210006. [PMID: 34076245 PMCID: PMC8200657 DOI: 10.1042/bsr20210006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 01/02/2023] Open
Abstract
Acorus tatarinowii Schott is a well-known Chinese traditional herb. Lignin is the major biologically active ingredient and exerts a broad range of pharmacological effects: it is an antitumor, antioxidant and bacteriostatic agent, and protects the cardiovascular system. In the present study, the transcriptomes of the leaf and rhizome tissues of A. tatarinowii Schott were obtained using the BGISEQ-500 platform. A total of 141777 unigenes were successfully assembled, of which 76714 were annotated in public databases. Further analysis of the lignin biosynthesis pathway revealed a total of 107 unigenes encoding 8 key enzymes, which were involved in this pathway. Furthermore, the expression of the key genes involved in lignin synthesis in different tissues was identified by quantitative real-time PCR. Analysis of the differentially expressed genes (DEGs) showed that most of the up-regulated unigenes were enriched in rhizome tissues. In addition, 2426 unigenes were annotated to the transcriptome factor (TF) family. Moreover, 16 TFs regulating the same key enzyme (peroxidase) were involved in the lignin synthesis pathway. The alignment of peroxidase amino acid sequences and the analysis of the structural characteristics revealed that the key peroxidase enzyme had well-conserved sequences, spatial structures, and active sites. The present study is the first to provide comprehensive genetic information on A. tatarinowii Schott at the transcriptional level, and will facilitate our understanding of the lignin biosynthesis pathway.
Collapse
Affiliation(s)
- Shengxiang Zhang
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Liqiang Zhao
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Chunmiao Shan
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Yuanyuan Shi
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Kelong Ma
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiawen Wu
- Anhui University of Chinese Medicine and Anhui Academy of Chinese Medicine, Hefei 230038, China
- Key Laboratory of Xin’an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
- Synergetic Innovation Center of Anhui Authentic Chinese Medicine Quality Improvement, Hefei 230012, China
| |
Collapse
|
12
|
Eivazzadeh-Keihan R, Moghim Aliabadi HA, Radinekiyan F, Sobhani M, Farzane Khalili, Maleki A, Madanchi H, Mahdavi M, Shalan AE. Investigation of the biological activity, mechanical properties and wound healing application of a novel scaffold based on lignin-agarose hydrogel and silk fibroin embedded zinc chromite nanoparticles. RSC Adv 2021; 11:17914-17923. [PMID: 35480185 PMCID: PMC9033182 DOI: 10.1039/d1ra01300a] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Given the important aspects of wound healing approaches, in this work, an innovative biocompatible nanobiocomposite scaffold was designed and prepared based on cross-linked lignin-agarose hydrogel, extracted silk fibroin solution, and zinc chromite (ZnCr2O4) nanoparticles. Considering the cell viability technique, red blood cell hemolysis in addition to anti-biofilm assays, it was determined that after three days, the toxicity of the cross-linked lignin-agarose/SF/ZnCr2O4 nanobiocomposite was less than 13%. Moreover, the small hemolytic effect (1.67%) and high level of prevention in forming a P. aeruginosa biofilm with low OD value (0.18) showed signs of considerable hemocompatibility and antibacterial activity. Besides, according to an in vivo assay study, the wounds of mice treated with the cross-linked lignin-agarose/SF/ZnCr2O4 nanobiocomposite scaffold were almost completely healed in five days. Aside from these biological tests, the structural features were evaluated by FT-IR, EDX, FE-SEM, and TG analyses, as well as swelling ratio, rheological, and compressive mechanical study tests. Additionally, it was concluded that adding silk fibroin and ZnCr2O4 nanoparticles could enhance the mechanical tensile properties of cross-linked lignin-agarose hydrogel, and also an elastic network was characterized for this designed nanobiocomposite.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hooman Aghamirza Moghim Aliabadi
- Faculty of Chemistry, K. N. Toosi University of Technology Tehran Iran
- Protein Chemistry Laboratory, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Fateme Radinekiyan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Mohammad Sobhani
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Farzane Khalili
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology Tehran 16846-13114 Iran +98-21-73021584 +98-21-73228313
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences Semnan Iran
- Drug Design and Bioinformatics Unit, Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran Tehran Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences Tehran Iran
| | - Ahmed Esmail Shalan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Martina Casiano, UPV/EHU Science Park Barrio Sarriena s/n Leioa 48940 Spain
- Central Metallurgical Research and Development Institute (CMRDI) P. O. Box 87 Helwan Cairo 11421 Egypt
| |
Collapse
|
13
|
Kumar R, Butreddy A, Kommineni N, Reddy PG, Bunekar N, Sarkar C, Dutt S, Mishra VK, Aadil KR, Mishra YK, Oupicky D, Kaushik A. Lignin: Drug/Gene Delivery and Tissue Engineering Applications. Int J Nanomedicine 2021; 16:2419-2441. [PMID: 33814908 PMCID: PMC8009556 DOI: 10.2147/ijn.s303462] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/05/2021] [Indexed: 02/06/2023] Open
Abstract
Lignin is an abundant renewable natural biopolymer. Moreover, a significant development in lignin pretreatment and processing technologies has opened a new window to explore lignin and lignin-based bionanomaterials. In the last decade, lignin has been widely explored in different applications such as drug and gene delivery, tissue engineering, food science, water purification, biofuels, environmental, pharmaceuticals, nutraceutical, catalysis, and other interesting low-value-added energy applications. The complex nature and antioxidant, antimicrobial, and biocompatibility of lignin attracted its use in various biomedical applications because of ease of functionalization, availability of diverse functional sites, tunable physicochemical and mechanical properties. In addition to it, its diverse properties such as reactivity towards oxygen radical, metal chelation, renewable nature, biodegradability, favorable interaction with cells, nature to mimic the extracellular environment, and ease of nanoparticles preparation make it a very interesting material for biomedical use. Tremendous progress has been made in drug delivery and tissue engineering in recent years. However, still, it remains challenging to identify an ideal and compatible nanomaterial for biomedical applications. In this review, recent progress of lignin towards biomedical applications especially in drug delivery and in tissue engineering along with challenges, future possibilities have been comprehensively reviewed.
Collapse
Affiliation(s)
- Raj Kumar
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Arun Butreddy
- Formulation R&D, Biological E. Limited, IKP Knowledge Park, Hyderabad, Telangana State, 500078, India
| | - Nagavendra Kommineni
- College of Pharmacy and Pharmaceutical Sciences, Florida Agricultural and Mechanical University, Tallahassee, FL, 32307, USA
| | - Pulikanti Guruprasad Reddy
- Department of Chemistry, Indian Institute of Science Education and Research (IISER)-Tirupati, Tirupati, 517507, Andhra Pradesh, India
| | - Naveen Bunekar
- Department of Chemistry, Chung Yuan Christian University, Chung Li, 32023, Taiwan
| | - Chandrani Sarkar
- Department of Chemistry, Mahila College, Kolhan University, Chaibasa, Jharkhand, 833202, India
| | - Sunil Dutt
- Department of Chemistry, Govt. Post Graduate College, Una, Himachal Pradesh, India
| | | | - Keshaw Ram Aadil
- Center for Basic Sciences, Pt. Ravishankar Shukla University, Raipur, 492010, Chhattishgarh, India
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Sønderborg, 6400, Denmark
| | - David Oupicky
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health Systems Engineering, Department of Natural Sciences, Division of Sciences, Art, & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805, USA
| |
Collapse
|
14
|
Melro E, Filipe A, Sousa D, Medronho B, Romano A. Revisiting lignin: a tour through its structural features, characterization methods and applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj06234k] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A pedagogical overview of the main extraction procedures and structural features, characterization methods and state-of-the-art applications.
Collapse
Affiliation(s)
- Elodie Melro
- University of Coimbra
- CQC
- Department of Chemistry
- Rua Larga
- 3004-535 Coimbra
| | - Alexandra Filipe
- CIEPQPF
- Department of Chemical Engineering
- University of Coimbra
- Pólo II – R. Silvio Lima
- 3030-790 Coimbra
| | - Dora Sousa
- c5Lab – Edifício Central Park
- Rua Central Park 6
- 2795-242 Linda-a-Velha
- Portugal
| | - Bruno Medronho
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| | - Anabela Romano
- MED – Mediterranean Institute for Agriculture
- Environment and Development
- Universidade do Algarve
- Faculdade de Ciências e Tecnologia
- Campus de Gambelas
| |
Collapse
|
15
|
Shavandi A, Hosseini S, Okoro OV, Nie L, Eghbali Babadi F, Melchels F. 3D Bioprinting of Lignocellulosic Biomaterials. Adv Healthc Mater 2020; 9:e2001472. [PMID: 33103365 DOI: 10.1002/adhm.202001472] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/01/2020] [Indexed: 01/21/2023]
Abstract
The interest in bioprinting of sustainable biomaterials is rapidly growing, and lignocellulosic biomaterials have a unique role in this development. Lignocellulosic materials are biocompatible and possess tunable mechanical properties, and therefore promising for use in the field of 3D-printed biomaterials. This review aims to spotlight the recent progress on the application of different lignocellulosic materials (cellulose, hemicellulose, and lignin) from various sources (wood, bacteria, and fungi) in different forms (including nanocrystals and nanofibers in 3D bioprinting). Their crystallinity, leading to water insolubility and the presence of suspended nanostructures, makes these polymers stand out among hydrogel-forming biomaterials. These unique structures give rise to favorable properties such as high ink viscosity and strength and toughness of the final hydrogel, even when used at low concentrations. In this review, the application of lignocellulosic polymers with other components in inks is reported for 3D bioprinting and identified supercritical CO2 as a potential sterilization method for 3D-printed cellulosic materials. This review also focuses on the areas of potential development by highlighting the opportunities and unmet challenges such as the need for standardization of the production, biocompatibility, and biodegradability of the cellulosic materials that underscore the direction of future research into the 3D biofabrication of cellulose-based biomaterials.
Collapse
Affiliation(s)
- Amin Shavandi
- BioMatter–Biomass Transformation Lab (BTL), École Polytechnique de Bruxelles Université Libre de Bruxelles Avenue F.D. Roosevelt, 50‐CP 165/61 Brussels 1050 Belgium
| | - Soraya Hosseini
- Department of Chemical Engineering National Chung Cheng University Chiayi 62102 Taiwan
| | - Oseweuba Valentine Okoro
- Department of Process Engineering Stellenbosch University Private Bag X1 Matieland 7602 South Africa
| | - Lei Nie
- College of Life Sciences Xinyang Normal University Xinyang 464000 China
| | - Farahnaz Eghbali Babadi
- Bio‐Circular‐Green‐economy Technology & Engineering Center BCGeTEC Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Phayathai Road Bangkok 10330 Thailand
| | - Ferry Melchels
- Institute of Biological Chemistry, Biophysics and Bioengineering School of Engineering and Physical Sciences Heriot‐Watt University Edinburgh EH14 4AS UK
| |
Collapse
|
16
|
Budtova T, Aguilera DA, Beluns S, Berglund L, Chartier C, Espinosa E, Gaidukovs S, Klimek-Kopyra A, Kmita A, Lachowicz D, Liebner F, Platnieks O, Rodríguez A, Tinoco Navarro LK, Zou F, Buwalda SJ. Biorefinery Approach for Aerogels. Polymers (Basel) 2020; 12:E2779. [PMID: 33255498 PMCID: PMC7760295 DOI: 10.3390/polym12122779] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/21/2020] [Indexed: 12/30/2022] Open
Abstract
According to the International Energy Agency, biorefinery is "the sustainable processing of biomass into a spectrum of marketable bio-based products (chemicals, materials) and bioenergy (fuels, power, heat)". In this review, we survey how the biorefinery approach can be applied to highly porous and nanostructured materials, namely aerogels. Historically, aerogels were first developed using inorganic matter. Subsequently, synthetic polymers were also employed. At the beginning of the 21st century, new aerogels were created based on biomass. Which sources of biomass can be used to make aerogels and how? This review answers these questions, paying special attention to bio-aerogels' environmental and biomedical applications. The article is a result of fruitful exchanges in the frame of the European project COST Action "CA 18125 AERoGELS: Advanced Engineering and Research of aeroGels for Environment and Life Sciences".
Collapse
Affiliation(s)
- Tatiana Budtova
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Daniel Antonio Aguilera
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sergejs Beluns
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Linn Berglund
- Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, SE-971 87 Luleå, Sweden;
| | - Coraline Chartier
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Eduardo Espinosa
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Sergejs Gaidukovs
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Agnieszka Klimek-Kopyra
- Department of Agroecology and Plant Production, Faculty of Agriculture and Economics, University of Agriculture, Aleja Mickieiwcza 21, 31-120 Kraków, Poland;
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland; (A.K.); (D.L.)
| | - Falk Liebner
- Department of Chemistry, Institute for Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Straße 24, A-3430 Tulln an der Donau, Austria;
| | - Oskars Platnieks
- Faculty of Materials Science and Applied Chemistry, Institute of Polymer Materials, Riga Technical University, P.Valdena 3/7, LV, 1048 Riga, Latvia; (S.B.); (S.G.); (O.P.)
| | - Alejandro Rodríguez
- Bioagres Group, Chemical Engineering Department, Faculty of Science, Universidad de Córdoba, Campus of Rabanales, 14014 Córdoba, Spain; (E.E.); (A.R.)
| | - Lizeth Katherine Tinoco Navarro
- CEITEC-VUT Central European Institute of Technology—Brno university of Technology, Purkyňova 123, 612 00 Brno-Královo Pole, Czech Republic;
| | - Fangxin Zou
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| | - Sytze J. Buwalda
- MINES ParisTech, Center for Materials Forming (CEMEF), PSL Research University, UMR CNRS 7635, CS 10207, 06904 Sophia Antipolis, France; (D.A.A.); (C.C.); (F.Z.)
| |
Collapse
|
17
|
Structural modifications to water-soluble wheat bran arabinoxylan through milling and extrusion. Carbohydr Polym 2020; 240:116328. [PMID: 32475586 DOI: 10.1016/j.carbpol.2020.116328] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/25/2020] [Accepted: 04/15/2020] [Indexed: 01/01/2023]
Abstract
Feruloylated arabinoxylan (AX) is one of the most predominant dietary fiber in cereal grains. In recent decades, soluble AX has gained interest, as a result of its well-established health benefits. Apart from enzymatic degradation during cereal storage, food processing causes AX degradation. These reactions lead to structural modifications and influence both the AX functionalities and its health promoting effects. The aim of this study was to investigate the structural modifications and related property changes of health promoting water-extractable (WE) wheat bran AX through grain milling and extrusion. Multi-detector HPSEC revealed a correlation between Mw, conformational changes and the related viscosity behaviour depending on the processing type. Processing caused molecular degradation of insoluble high Mw AX, which increased the solubility significantly. Moreover, extrusion leaded to a more heterogenic AX fine structure. The detailed characterization of processed dietary fiber may help to facilitate the optimized incorporation of AX in health-promoting foods.
Collapse
|
18
|
Eivazzadeh-Keihan R, Maleki A, de la Guardia M, Bani MS, Chenab KK, Pashazadeh-Panahi P, Baradaran B, Mokhtarzadeh A, Hamblin MR. Carbon based nanomaterials for tissue engineering of bone: Building new bone on small black scaffolds: A review. J Adv Res 2019; 18:185-201. [PMID: 31032119 PMCID: PMC6479020 DOI: 10.1016/j.jare.2019.03.011] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/23/2019] [Accepted: 03/23/2019] [Indexed: 01/29/2023] Open
Abstract
Tissue engineering is a rapidly-growing approach to replace and repair damaged and defective tissues in the human body. Every year, a large number of people require bone replacements for skeletal defects caused by accident or disease that cannot heal on their own. In the last decades, tissue engineering of bone has attracted much attention from biomedical scientists in academic and commercial laboratories. A vast range of biocompatible advanced materials has been used to form scaffolds upon which new bone can form. Carbon nanomaterial-based scaffolds are a key example, with the advantages of being biologically compatible, mechanically stable, and commercially available. They show remarkable ability to affect bone tissue regeneration, efficient cell proliferation and osteogenic differentiation. Basically, scaffolds are templates for growth, proliferation, regeneration, adhesion, and differentiation processes of bone stem cells that play a truly critical role in bone tissue engineering. The appropriate scaffold should supply a microenvironment for bone cells that is most similar to natural bone in the human body. A variety of carbon nanomaterials, such as graphene oxide (GO), carbon nanotubes (CNTs), fullerenes, carbon dots (CDs), nanodiamonds and their derivatives that are able to act as scaffolds for bone tissue engineering, are covered in this review. Broadly, the ability of the family of carbon nanomaterial-based scaffolds and their critical role in bone tissue engineering research are discussed. The significant stimulating effects on cell growth, low cytotoxicity, efficient nutrient delivery in the scaffold microenvironment, suitable functionalized chemical structures to facilitate cell-cell communication, and improvement in cell spreading are the main advantages of carbon nanomaterial-based scaffolds for bone tissue engineering.
Collapse
Affiliation(s)
- Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Miguel de la Guardia
- Department of Analytical Chemistry, University of Valencia, Dr. Moliner 50, 46100, Burjassot, Valencia, Spain
| | - Milad Salimi Bani
- Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Karim Khanmohammadi Chenab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Paria Pashazadeh-Panahi
- Department of Biochemistry and Biophysics, Metabolic Disorders Research Center, Gorgan Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Golestan Province, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Biotechnology, Higher Education Institute of Rab-Rashid, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA
| |
Collapse
|