1
|
Chukanov NV, Aksenov SM. Structural Features, Chemical Diversity, and Physical Properties of Microporous Sodalite-Type Materials: A Review. Int J Mol Sci 2024; 25:10218. [PMID: 39337703 PMCID: PMC11432373 DOI: 10.3390/ijms251810218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
This review contains data on a wide class of microporous materials with frameworks belonging to the sodalite topological type. Various methods for the synthesis of these materials, their structural and crystal chemical features, as well as physical and chemical properties are discussed. Specific properties of sodalite-related materials make it possible to consider they as thermally stable ionic conductors, catalysts and catalyst carriers, sorbents, ion exchangers for water purification, matrices for the immobilization of radionuclides and heavy metals, hydrogen and methane storage, and stabilization of chromophores and phosphors. It has been shown that the diversity of properties of sodalite-type materials is associated with the chemical diversity of their frameworks and extra-framework components, as well as with the high elasticity of the framework.
Collapse
Affiliation(s)
- Nikita V. Chukanov
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Faculty of Geology, Moscow State University, Moscow 119991, Russia
| | - Sergey M. Aksenov
- Laboratory of Arctic Mineralogy and Material Sciences, Federal Research Center Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia
- Geological Institute, Federal Research Center Kola Science Centre, Russian Academy of Sciences, Apatity 184209, Russia
- Institute of the Earth’s Crust, Siberian Branch, Russian Academy of Sciences, Irkutsk 664033, Russia
| |
Collapse
|
2
|
Li CN, Xu WG, Liu L, Han ZB. Defect engineering improves CO 2/N 2 and CH 4/N 2 separation performance of MOF-801. Dalton Trans 2024; 53:5356-5359. [PMID: 38445433 DOI: 10.1039/d3dt04009g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
A defect engineering modification method is reported to improve the CO2/N2 and CH4/N2 separation performance of MOF-801, owing to skeleton shrinkage caused by defect modification, Zr-FA0.5 shows excellent gas separation performance compared with the prototype MOF.
Collapse
Affiliation(s)
- Chen-Ning Li
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Wei-Guo Xu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Lin Liu
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| | - Zheng-Bo Han
- College of Chemistry, Liaoning University, Shenyang 110036, P. R. China.
| |
Collapse
|
3
|
Gäumann P, Ferri D, Sheptyakov D, van Bokhoven JA, Rzepka P, Ranocchiari M. In Situ Neutron Diffraction of Zn-MOF-74 Reveals Nanoconfinement-Induced Effects on Adsorbed Propene. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:16636-16644. [PMID: 37646009 PMCID: PMC10461295 DOI: 10.1021/acs.jpcc.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Indexed: 09/01/2023]
Abstract
Even though confinement was identified as a common element of selective catalysis and simulations predicted enhanced properties of adsorbates within microporous materials, experimental results on the characterization of the adsorbed phase are still rare. In this study, we provide experimental evidence of the increase of propene density in the channels of Zn-MOF-74 by 16(2)% compared to the liquid phase. The ordered propene molecules adsorbed within the pores of the MOF have been localized by in situ neutron powder diffraction, and the results are supported by adsorption studies. The formation of a second adsorbate layer, paired with nanoconfinement-induced short intermolecular distances, causes the efficient packing of the propene molecules and results in an increase of olefin density.
Collapse
Affiliation(s)
- Patrick Gäumann
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Davide Ferri
- Bioenergy
and Catalysis Laboratory, Paul Scherrer
Institut, CH-5232 Villigen, Switzerland
| | - Denis Sheptyakov
- Laboratory
for Neutron Scattering and Imaging, Paul
Scherrer Institut, CH-5232 Villigen, Switzerland
| | - Jeroen A. van Bokhoven
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute
of Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Przemyslaw Rzepka
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
- Institute
of Chemical and Bioengineering, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marco Ranocchiari
- Laboratory
of Catalysis and Sustainable Chemistry, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
4
|
Zheng B, Oliveira FL, Neumann Barros Ferreira R, Steiner M, Hamann H, Gu GX, Luan B. Quantum Informed Machine-Learning Potentials for Molecular Dynamics Simulations of CO 2's Chemisorption and Diffusion in Mg-MOF-74. ACS NANO 2023; 17:5579-5587. [PMID: 36883740 DOI: 10.1021/acsnano.2c11102] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Among various porous solids for gas separation and purification, metal-organic frameworks (MOFs) are promising materials that potentially combine high CO2 uptake and CO2/N2 selectivity. So far, within the hundreds of thousands of MOF structures known today, it remains a challenge to computationally identify the best suited species. First principle-based simulations of CO2 adsorption in MOFs would provide the necessary accuracy; however, they are impractical due to the high computational cost. Classical force field-based simulations would be computationally feasible; however, they do not provide sufficient accuracy. Thus, the entropy contribution that requires both accurate force fields and sufficiently long computing time for sampling is difficult to obtain in simulations. Here, we report quantum-informed machine-learning force fields (QMLFFs) for atomistic simulations of CO2 in MOFs. We demonstrate that the method has a much higher computational efficiency (∼1000×) than the first-principle one while maintaining the quantum-level accuracy. As a proof of concept, we show that the QMLFF-based molecular dynamics simulations of CO2 in Mg-MOF-74 can predict the binding free energy landscape and the diffusion coefficient close to experimental values. The combination of machine learning and atomistic simulation helps achieve more accurate and efficient in silico evaluations of the chemisorption and diffusion of gas molecules in MOFs.
Collapse
Affiliation(s)
- Bowen Zheng
- IBM Research, Yorktown Heights, New York 10598, United States
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Felipe Lopes Oliveira
- IBM Research, Av. República do Chile, 330, CEP 20031-170 Rio de Janeiro, RJ, Brazil
- Department of Organic Chemistry, Instituto de Química, Universidade Federal do Rio de Janeiro, CEP 21941-909 Rio de Janeiro, RJ, Brazil
| | | | - Mathias Steiner
- IBM Research, Av. República do Chile, 330, CEP 20031-170 Rio de Janeiro, RJ, Brazil
| | - Hendrik Hamann
- IBM Research, Yorktown Heights, New York 10598, United States
| | - Grace X Gu
- Department of Mechanical Engineering, University of California, Berkeley, California 94720, United States
| | - Binquan Luan
- IBM Research, Yorktown Heights, New York 10598, United States
| |
Collapse
|
5
|
Jose R, Bangar G, Pal S, Rajaraman G. Role of molecular modelling in the development of metal-organic framework for gas adsorption applications. J CHEM SCI 2023; 135:19. [PMID: 36938494 PMCID: PMC10011768 DOI: 10.1007/s12039-022-02130-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 10/31/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2023]
Abstract
More than 47,000 articles have been published in the area of Metal-Organic Framework since its seminal discovery in 1995, exemplifying the intense research carried out in this short span of time. Among other applications, gas adsorption and storage are perceived as central to the MOFs research, and more than 10,000 MOFs structures are reported to date to utilize them for various gas storage/separation applications. Molecular modeling, particularly based on density functional theory, played a key role in (i) understanding the nature of interactions between the gas and the MOFs geometry (ii) establishing various binding pockets and relative binding energies, and (iii) offering design clues to improve the gas uptake capacity of existing MOF architectures. In this review, we have looked at various MOFs that are studied thoroughly using DFT/periodic DFT (pDFT) methods for CO2, H2, O2, and CH4 gases to provide a birds-eye-view on how various exchange-correlation functionals perform in estimating the binding energy for various gases and how factors such as nature of the (i) metal ion, (ii) linkers, (iii) ligand, (iv) spin state and (v) spin-couplings play a role in this process with selected examples. While there is still room for improvement, the rewards offered by the molecular modelling of MOFs were already substantial that we advocate experimental and theoretical studies to go hand-in-hand to undercut the trial-and-error approach that is often perceived in the selection of MOFs and gas partners in this area. Graphical abstract The importance of density functional theory-based molecular modeling studies in offering design clues to improve the gas adsorption and storage capacity of existing MOF architectures is discussed here. The use of DFT-based investigation in conjunction with experimental synthesis is an imperative tool in designing new-generation MOFs with enhanced uptake capacity.
Collapse
Affiliation(s)
- Reshma Jose
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Garima Bangar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Sourav Pal
- Department of Chemistry, Ashoka University, Sonepat, Haryana 131029 India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
6
|
Lee H, Oh J, Koo JY, Ohtsu H, Jin HM, Kim S, Lee JS, Kim H, Choi HC, Oh Y, Yoon SM. Hierarchical Metal-Organic Aerogel as a Highly Selective and Sustainable CO 2 Adsorbent. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46682-46694. [PMID: 36201338 DOI: 10.1021/acsami.2c14453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Typical amorphous aerogels pose great potential for CO2 adsorbents with high surface areas and facile diffusion, but they lack well-defined porosity and specific selectivity, inhibiting utilization of their full functionality. To assign well-defined porous structures to aerogels, a hierarchical metal-organic aerogel (HMOA) is designed, which consists of well-defined micropores (d ∼ 1 nm) by coordinative integration with chromium(III) and organic ligands. Due to its hierarchical structure with intrinsically flexible coordination, the HMOA has excellent porous features of a high surface area and a reusable surface with appropriate binding energy for CO2 adsorption. The HMOA features high CO2 adsorption capacity, high CO2/N2 IAST selectivity, and vacuum-induced surface regenerability (100% through 20 cycles). Further, the HMOA could be prepared via simple ambient drying methods while retaining the microporous network. This unique surface-tension-resistant micropore formation and flexible coordination systems of HMOA make it a potential candidate for a CO2 adsorbent with industrial scalability and reproducibility.
Collapse
Affiliation(s)
- Heehyeon Lee
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Jongwon Oh
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk54538, Republic of Korea
| | - Jin Young Koo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Hiroyoshi Ohtsu
- School of Science, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo152-8550, Japan
| | - Hyeong Min Jin
- Neutron Science Center, Korea Atomic Energy Research Institute, 111, Daedeok-daero 989 beon-gil, Yuseong-gu, Daejeon34057, Republic of Korea
- Department of Organic Materials Engineering, Chungnam National University, Daejeon34134, Republic of Korea
| | - Soyoung Kim
- Analysis and Assessment Group, Research Institute of Industrial Science and Technology, Pohang37673, Republic of Korea
| | - Jae-Seung Lee
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
| | - Hyunchul Kim
- Department of Materials Science and Engineering, Korea University, Seoul02841, Republic of Korea
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Hee Cheul Choi
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Nam-Gu, Pohang37673, Republic of Korea
| | - Youngtak Oh
- Center for Sustainable Environment Research, Korea Institute of Science and Technology (KIST), Seoul02792, Republic of Korea
| | - Seok Min Yoon
- Department of Chemistry, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk54538, Republic of Korea
- Wonkwang Materials Institute of Science and Technology, 460 Iksandae-ro, Iksan, Jeonbuk54538, Republic of Korea
| |
Collapse
|
7
|
Jaramillo DE, Jaffe A, Snyder BER, Smith A, Taw E, Rohde RC, Dods MN, DeSnoo W, Meihaus KR, Harris TD, Neaton JB, Long JR. Metal-organic frameworks as O 2-selective adsorbents for air separations. Chem Sci 2022; 13:10216-10237. [PMID: 36277628 PMCID: PMC9473493 DOI: 10.1039/d2sc03577d] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 07/21/2022] [Indexed: 02/05/2023] Open
Abstract
Oxygen is a critical gas in numerous industries and is produced globally on a gigatonne scale, primarily through energy-intensive cryogenic distillation of air. The realization of large-scale adsorption-based air separations could enable a significant reduction in associated worldwide energy consumption and would constitute an important component of broader efforts to combat climate change. Certain small-scale air separations are carried out using N2-selective adsorbents, although the low capacities, poor selectivities, and high regeneration energies associated with these materials limit the extent of their usage. In contrast, the realization of O2-selective adsorbents may facilitate more widespread adoption of adsorptive air separations, which could enable the decentralization of O2 production and utilization and advance new uses for O2. Here, we present a detailed evaluation of the potential of metal-organic frameworks (MOFs) to serve as O2-selective adsorbents for air separations. Drawing insights from biological and molecular systems that selectively bind O2, we survey the field of O2-selective MOFs, highlighting progress and identifying promising areas for future exploration. As a guide for further research, the importance of moving beyond the traditional evaluation of O2 adsorption enthalpy, ΔH, is emphasized, and the free energy of O2 adsorption, ΔG, is discussed as the key metric for understanding and predicting MOF performance under practical conditions. Based on a proof-of-concept assessment of O2 binding carried out for eight different MOFs using experimentally derived capacities and thermodynamic parameters, we identify two existing materials and one proposed framework with nearly optimal ΔG values for operation under user-defined conditions. While enhancements are still needed in other material properties, the insights from the assessments herein serve as a guide for future materials design and evaluation. Computational approaches based on density functional theory with periodic boundary conditions are also discussed as complementary to experimental efforts, and new predictions enable identification of additional promising MOF systems for investigation.
Collapse
Affiliation(s)
- David E Jaramillo
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Adam Jaffe
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Benjamin E R Snyder
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Alex Smith
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Eric Taw
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| | - Rachel C Rohde
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Matthew N Dods
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - William DeSnoo
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
| | - Katie R Meihaus
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - T David Harris
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
| | - Jeffrey B Neaton
- Department of Physics, University of California Berkeley Berkeley California 94720 USA
- Molecular Foundry, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
- Kavli Nanosciences Institute at Berkeley Berkeley California 94720 USA
| | - Jeffrey R Long
- Department of Chemistry, University of California Berkeley Berkeley California 94720 USA
- Department of Chemical and Biomolecular Engineering, University of California Berkeley Berkeley California 94720 USA
- Materials Science Division, Lawrence Berkeley National Laboratory Berkeley California 94720 USA
| |
Collapse
|
8
|
Colorado-Peralta R, María Rivera-Villanueva J, Manuel Mora-Hernández J, Morales-Morales D, Ángel Alfonso-Herrera L. An overview of the role of supramolecular interactions in gas storage using MOFs. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Crystal Chemistry, Isomorphism, and Thermal Conversions of Extra-Framework Components in Sodalite-Group Minerals. MINERALS 2022. [DOI: 10.3390/min12070887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Isomorphic substitutions of extra-framework components in sodalite-group aluminosilicate minerals and their thermal conversions have been investigated using infrared, Raman, electron spin resonance (ESR), as well as ultraviolet, visible and near infrared (UV–Vis–near IR) absorption spectroscopy methods and involving chemical and X-ray diffraction data. Sodalite-related minerals from gem lazurite deposits (haüyne, lazurite, and slyudyankaite) are characterized by wide variations in S-bearing extra-framework components including SO42− and various polysulfide groups (S2●−, S3●−, S4●− radical anions, and S4 and S6 neutral molecules) as well as the presence of CO2 molecules. Heating at 700 °C under reducing conditions results in the transformation of initial S-bearing groups SO42− and S3●− to a mixture of S2−, HS−, S2●−, and S4●− and transformation of CO2 to a mixture of CO32− and C2O42− or HC2O4− anionic groups. Further heating at 800 °C in air results in the decomposition of carbonate and oxalate groups, restoration of the SO42− and S3●− groups, and a sharp transformation of the framework. The HS− anion is stable only under reducing conditions, whereas the S3●− radical anion is the most stable polysulfide group. The HS−-dominant sodalite-group mineral sapozhnikovite forms a wide solid-solution series with sodalite. The conditions required for the formation of HS−- and CO20-bearing sodalite-group minerals are discussed.
Collapse
|
10
|
Kollias L, Rousseau R, Glezakou VA, Salvalaglio M. Understanding Metal-Organic Framework Nucleation from a Solution with Evolving Graphs. J Am Chem Soc 2022; 144:11099-11109. [PMID: 35709413 DOI: 10.1021/jacs.1c13508] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
A mechanistic understanding of metal-organic framework (MOF) synthesis and scale-up remains underexplored due to the complex nature of the interactions of their building blocks. In this work, we investigate the collective assembly of building units at the early stages of MOF nucleation, using MIL-101(Cr) as a prototypical example. Using large-scale molecular dynamics simulations, we observe that the choice of solvent (water and N,N-dimethylformamide), the introduction of ions (Na+ and F-) and the relative populations of MIL-101(Cr) half-secondary building unit (half-SBU) isomers have a strong influence on the cluster formation process. Additionally, the shape, size, nucleation and growth rates, crystallinity, and short and long-range order largely vary depending on the synthesis conditions. We evaluate these properties as they naturally emerge when interpreting the self-assembly of MOF nuclei as the time evolution of an undirected graph. Solution-induced conformational complexity and ionic concentration have a dramatic effect on the morphology of clusters emerging during assembly. While pure solvents lead to the rapid formation of a small number of large clusters, the presence of ions in aqueous solutions results in smaller clusters and slower nucleation. This diversity is captured by the key features of the graph representation. Principle component analysis on graph properties reveals that only a small number of molecular descriptors is needed to deconvolute MOF self-assembly. Descriptors such as the average coordination number between half-SBUs and fractal dimension are of particulalr interest as they can be can be followed experimentally by techniques like by time-resolved spectroscopy. Ultimately, graph theory emerges as an approach that can be used to understand complex processes revealing molecular descriptors accessible by both simulation and experiment.
Collapse
Affiliation(s)
- Loukas Kollias
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Roger Rousseau
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Vassiliki-Alexandra Glezakou
- Basic and Applied Molecular Foundations, Pacific Northwest National Laboratory, Richland, Washington 99352 United States
| | - Matteo Salvalaglio
- Thomas Young Centre and Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom
| |
Collapse
|
11
|
Röß-Ohlenroth R, Hirrle M, Kraft M, Kalytta-Mewes A, Jesche A, Krug von Nidda HA, Volkmer D. Synthesis, Thermal Stability and Magnetic Properties of an Interpenetrated Mn(II) Triazolate Coordination Framework. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Marcel Hirrle
- University of Augsburg: Universitat Augsburg GERMANY
| | - Maryana Kraft
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Anton Jesche
- University of Augsburg: Universitat Augsburg GERMANY
| | | | - Dirk Volkmer
- Augsburg University Institute of Physics Universitaetsstrasse 1 D-96159 Augsburg GERMANY
| |
Collapse
|
12
|
Kochetygov I, Justin A, Asgari M, Yang S, Karve V, Schertenleib T, Stoian D, Oveisi E, Mensi M, Queen WL. 3D vs. turbostratic: controlling metal-organic framework dimensionality via N-heterocyclic carbene chemistry. Chem Sci 2022; 13:6418-6428. [PMID: 35733888 PMCID: PMC9159099 DOI: 10.1039/d2sc01041k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/09/2022] [Indexed: 11/29/2022] Open
Abstract
Using azolium-based ligands for the construction of metal-organic frameworks (MOFs) is a viable strategy to immobilize catalytically active N-heterocyclic carbenes (NHC) or NHC-derived species inside MOF pores. Thus, in the present work, a novel copper MOF referred to as Cu-Sp5-BF4, is constructed using an imidazolinium ligand, H2Sp5-BF4, 1,3-bis(4-carboxyphenyl)-4,5-dihydro-1H-imidazole-3-ium tetrafluoroborate. The resulting framework, which offers large pore apertures, enables the post-synthetic modification of the C2 carbon on the ligand backbone with methoxide units. A combination of X-ray diffraction (XRD), solid-state nuclear magnetic resonance (ssNMR) and electron microscopy (EM), are used to show that the post-synthetic methoxide modification alters the dimensionality of the material, forming a turbostratic phase, an event that further improves the accessibility of the NHC sites promoting a second modification step that is carried out via grafting iridium to the NHC. A combination of X-ray absorption spectroscopy (XAS) and X-ray photoelectron spectroscopy (XPS) methods are used to shed light on the iridium speciation, and the catalytic activity of the Ir-NHC containing MOF is demonstrated using a model reaction, stilbene hydrogenation.
Collapse
Affiliation(s)
- Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Anita Justin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
- Department of Chemical Engineering & Biotechnology, University of Cambridge Philippa Fawcett Drive Cambridge CB3 0AS UK
| | - Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
- College of Energy, Xiamen University Xiamen Fujian 361102 China
| | - Vikram Karve
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Till Schertenleib
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Dragos Stoian
- Swiss-Norwegian Beamlines, ESRF BP 220 Grenoble 38043 France
| | - Emad Oveisi
- Interdisciplinary Centre for Electron Microscopy (CIME), École Polytechnique Fédérale de Lausanne (EPFL) CH-1015 Lausanne Switzerland
| | - Mounir Mensi
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) CH-1951 Sion Switzerland
| |
Collapse
|
13
|
Cuadra-Rodríguez D, Qi XL, Barroso-Solares S, Rodríguez Pérez MÁ, Pinto J. Microcellular foams production from nanocomposites based on PS using MOF nanoparticles with enhanced CO 2 properties as nucleating agent. J CELL PLAST 2022. [DOI: 10.1177/0021955x221087599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The use of metal-organic frameworks (MOF) nanoparticles as nucleating agents in gas dissolution foaming processes is presented. In this work, MOF nanoparticles with three different particle sizes were synthetized and introduced in film composites based on polystyrene at 1 wt.%. The addition of nanoparticles with high affinity to CO2, which is the gas used as a physical blowing agent, can contribute to increase the nucleation efficiency in comparison with the classical heterogeneous route using non CO2-philic particles. Nanoparticles dispersion in solids and cellular structure in foams were studied as a function of the particle size and foaming parameters, studying for first time the impact of MOF nanoparticles on the nucleation by gas dissolution foaming. Nucleation efficiencies in the order of 10−2 were achieved for PS/MOF composites. In addition, the thermal stability of the cellular structure in the composites was enhanced regarding to PS matrix, preserving the cellular structure regardless the foaming temperature. Therefore, MOF nanoparticles have emerged as promising nucleating agents in foaming procedures.
Collapse
Affiliation(s)
| | - Xiao-Lin Qi
- IMDEA Materials Institute, Getafe, Madrid, Spain
| | | | | | - Javier Pinto
- Condensed Matter Physics Department, University of Valladolid, Valladolid, Spain
| |
Collapse
|
14
|
Counter-Intuitive Magneto-Water-Wetting Effect to CO 2 Adsorption at Room Temperature Using MgO/Mg(OH) 2 Nanocomposites. MATERIALS 2022; 15:ma15030983. [PMID: 35160943 PMCID: PMC8838735 DOI: 10.3390/ma15030983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 01/27/2023]
Abstract
MgO/Mg(OH)2-based materials have been intensively explored for CO2 adsorption due to their high theoretical but low practical CO2 capture efficiency. Our previous study on the effect of H2O wetting on CO2 adsorption in MgO/Mg(OH)2 nanostructures found that the presence of H2O molecules significantly increases (decreases) CO2 adsorption on the MgO (Mg(OH)2) surface. Furthermore, the magneto-water-wetting technique is used to improve the CO2 capture efficiency of various nanofluids by increasing the mass transfer efficiency of nanobeads. However, the influence of magneto-wetting to the CO2 adsorption at nanobead surfaces remains unknown. The effect of magneto-water-wetting on CO2 adsorption on MgO/Mg(OH)2 nanocomposites was investigated experimentally in this study. Contrary to popular belief, magneto-water-wetting does not always increase CO2 adsorption; in fact, if Mg(OH)2 dominates in the nanocomposite, it can actually decrease CO2 adsorption. As a result of our structural research, we hypothesized that the creation of a thin H2O layer between nanograins prevents CO2 from flowing through, hence slowing down CO2 adsorption during the carbon-hydration aging process. Finally, the magneto-water-wetting technique can be used to control the carbon-hydration process and uncover both novel insights and discoveries of CO2 capture from air at room temperature to guide the design and development of ferrofluid devices for biomedical and energy applications.
Collapse
|
15
|
Korolev VV, Nevolin YM, Manz TA, Protsenko PV. Parametrization of Nonbonded Force Field Terms for Metal-Organic Frameworks Using Machine Learning Approach. J Chem Inf Model 2021; 61:5774-5784. [PMID: 34787430 DOI: 10.1021/acs.jcim.1c01124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The enormous structural and chemical diversity of metal-organic frameworks (MOFs) forces researchers to actively use simulation techniques as often as experiments. MOFs are widely known for their outstanding adsorption properties, so a precise description of the host-guest interactions is essential for high-throughput screening aimed at ranking the most promising candidates. However, highly accurate ab initio calculations cannot be routinely applied to model thousands of structures due to the demanding computational costs. Furthermore, methods based on force field (FF) parametrization suffer from low transferability. To resolve this accuracy-efficiency dilemma, we applied a machine learning (ML) approach: extreme gradient boosting. The trained models reproduced the atom-in-material quantities, including partial charges, polarizabilities, dispersion coefficients, quantum Drude oscillator, and electron cloud parameters, with accuracy similar to the reference data set. The aforementioned FF precursors make it possible to thoroughly describe noncovalent interactions typical for MOF-adsorbate systems: electrostatic, dispersion, polarization, and short-range repulsion. The presented approach can also readily facilitate hybrid atomistic simulation/ML workflows.
Collapse
Affiliation(s)
- Vadim V Korolev
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Yuriy M Nevolin
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Thomas A Manz
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, New Mexico 88003-8001, United States
| | - Pavel V Protsenko
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
16
|
Efficient production of polymer-grade propylene from the propane/propylene binary mixture using Cu-MOF-74 framework. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Justin A, Espín J, Kochetygov I, Asgari M, Trukhina O, Queen WL. A Two Step Postsynthetic Modification Strategy: Appending Short Chain Polyamines to Zn-NH 2-BDC MOF for Enhanced CO 2 Adsorption. Inorg Chem 2021; 60:11720-11729. [PMID: 34264652 DOI: 10.1021/acs.inorgchem.1c01216] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Functionalizing metal-organic frameworks (MOFs) with amines is a commonly used strategy to enhance their performance in CO2 capture applications. As such, in this work, a two-step strategy to covalently functionalize NH2-containing MOFs with short chain polyamines was developed. In the first step, the parent MOF, Zn4O(NH2-BDC)3, was exposed to bromoacetyl bromide (BrAcBr), which readily reacts with pendant -NH2 groups on the 2-amino-1,4-benzenedicarboxylate (NH2-BDC2-) ligand. 1H NMR of the digested MOF sample revealed that as much as 90% of the MOF ligands could be functionalized in the first step. Next, the MOF samples 60% of the ligands functionalized with acetyl bromide, Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, was exposed to several short chain amines including ethylenediamine (ED), diethylenetriamine (DETA), and tris(2-aminoethyl)amine (TAEA). Subsequent digested 1H NMR analysis indicated that a total of 30%, 28%, and 19% of the MOF ligands were successfully grafted to ED, DETA, and TAEA, respectively. Next, the CO2 adsorption properties of the amine grafted MOFs were studied. The best performing material, TAEA-appended-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8, exhibits a zero-coverage isosteric heat of CO2 adsorption of -62.5 kJ/mol, a value that is considerably higher than the one observed for the parent framework, -21 kJ/mol. Although the boosted CO2 affinity only leads to a slight increase in the CO2 adsorption capacity in the low-pressure regime (0.15 bar), which is of interest in postcombustion carbon dioxide capture, the CO2/N2 (15/85) selectivity at 313 K is 143, a value that is ∼35 times higher than the one observed for Zn4O(NH2-BDC)3, 4.1. Such enhancements are attributed to accessible primary amines, which were grafted to the MOF ligand. This hypothesis was further supported via in situ DRIFTS measurements of TAEA-Ac-Zn4O(NH2-BDC)1.2(BrAcNH-BDC)1.8 after exposure to CO2, which revealed the chemisorption of CO2 via the formation of hydrogen bonded carbamates/carbamic acid and CO2δ- species; the latter are adducts formed between CO2 and [amineH]+Br- salts that are produced during the amine grafting step.
Collapse
Affiliation(s)
- Anita Justin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Jordi Espín
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| |
Collapse
|
18
|
Abstract
X-ray crystallography is an invaluable tool in design and development of organometallic catalysis, but application typically requires species to display sufficiently high solution concentrations and lifetimes for single crystalline samples to be obtained. In crystallo organometallic chemistry relies on chemical reactions that proceed within the single-crystal environment to access crystalline samples of reactive organometallic fragments that are unavailable by alternate means. This highlight describes approaches to in crystallo organometallic chemistry including (a) solid-gas reactions between transition metal complexes in molecular crystals and diffusing small molecules, (b) reactions of organometallic complexes within the extended lattices of metal-organic frameworks (MOFs), and (c) intracrystalline photochemical transformations to generate reactive organometallic fragments. Application of these methods has enabled characterization of catalytically important transient species, including σ-alkane adducts of transition metals, metal alkyl intermediates implicated in metal-catalyzed carbonylations, and reactive M-L multiply bonded species involved in C-H functionalization chemistry. Opportunities and challenges for in crystallo organometallic chemistry are discussed.
Collapse
Affiliation(s)
- Kaleb A Reid
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| | - David C Powers
- Department of Chemistry, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
19
|
Miguel-Casañ E, Andres-Garcia E, Calbo J, Giménez-Marqués M, Mínguez Espallargas G. Selective CO 2 Sorption Using Compartmentalized Coordination Polymers with Discrete Voids*. Chemistry 2021; 27:4653-4659. [PMID: 33337561 DOI: 10.1002/chem.202004845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Indexed: 11/08/2022]
Abstract
Carbon capture and storage with porous materials is one of the most promising technologies to minimize CO2 release into the atmosphere. Here, we report a family of compartmentalized coordination polymers (CCPs) capable of capturing gas molecules in a selective manner based on two novel tetrazole-based ligands. Crystal structures have been modelled theoretically under the Density Functional Theory (DFT) revealing the presence of discrete voids of 380 Å3 . Single gas adsorption isotherms of N2 , CH4 and CO2 have been measured, obtaining a loading capacity of 0.6, 1.7 and 2.2 molecules/void at 10 bar and at 298 K for the best performing material. Moreover, they present excellent selectivity and regenerability for CO2 in mixtures with CH4 and N2 in comparison with other reported materials, as evidenced by dynamic breakthrough gas experiments. These frameworks are therefore great candidates for separation of gas mixtures in the chemical engineering industry.
Collapse
Affiliation(s)
- Eugenia Miguel-Casañ
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Eduardo Andres-Garcia
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Joaquín Calbo
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | - Mónica Giménez-Marqués
- Instituto de Ciencia Molecular (ICMol), c/ Catedrático José Beltran, 2, 46980, Paterna, Spain
| | | |
Collapse
|
20
|
Dietzel PDC, Georgiev PA, Frøseth M, Johnsen RE, Fjellvåg H, Blom R. Effect of Larger Pore Size on the Sorption Properties of Isoreticular Metal-Organic Frameworks with High Number of Open Metal Sites. Chemistry 2020; 26:13523-13531. [PMID: 32428361 PMCID: PMC7702128 DOI: 10.1002/chem.202001825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Indexed: 01/08/2023]
Abstract
Four isostructural CPO-54-M metal-organic frameworks based on the larger organic linker 1,5-dihydroxynaphthalene-2,6-dicarboxylic acid and divalent cations (M=Mn, Mg, Ni, Co) are shown to be isoreticular to the CPO-27 (MOF-74) materials. Desolvated CPO-54-Mn contains a very high concentration of open metal sites, which has a pronounced effect on the gas adsorption of N2 , H2 , CO2 and CO. Initial isosteric heats of adsorption are significantly higher than for MOFs without open metal sites and are slightly higher than for CPO-27. The plateau of high heat of adsorption decreases earlier in CPO-54-Mn as a function of loading per mole than in CPO-27-Mn. Cluster and periodic density functional theory based calculations of the adsorbate structures and energetics show that the larger adsorption energy at low loadings, when only open metal sites are occupied, is mainly due to larger contribution of dispersive interactions for the materials with the larger, more electron rich bridging ligand.
Collapse
Affiliation(s)
| | - Peter A. Georgiev
- Department of Condensed Matter Physics and MicroelecetronicsThe University of SofiaJ. Bourchier str. 51164SofiaBulgaria
| | | | - Rune E. Johnsen
- Department of Energy Conversion and StorageTechnical University of DenmarkFysikvej2800 Kgs.LyngbyDenmark
| | - Helmer Fjellvåg
- Department of ChemistryUniversity of Oslo, P.O.box 1033 Blindern0313OsloNorway
| | - Richard Blom
- SINTEF Industry, P.O.box 124 Blindern0314OsloNorway
| |
Collapse
|
21
|
Campanella AJ, Trump BA, Gosselin AJ, Bloch ED, Brown CM. Neutron diffraction structural study of CO 2 binding in mixed-metal CPM-200 metal-organic frameworks. Chem Commun (Camb) 2020; 56:2574-2577. [PMID: 32010906 PMCID: PMC7874966 DOI: 10.1039/c9cc09904b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-organic frameworks featuring open metal coordination sites have been widely studied for the separation of gas mixtures. For CO2/N2 separations, these materials have shown considerable promise. Herein, we report the characterization of a subset of the well-known PCN-250 class of frameworks upon CO2 adsorption via powder neutron diffraction methods. Noteably, in contrast to previously reported data, they display only moderate CO2 adsorption enthalpies, based on metal cation-CO2 interactions. Further, we show charge balance in these materials is likely achieved via ligand vacancies rather than the presence of μ3-OH groups in the trimetallic cluster that comprises them.
Collapse
Affiliation(s)
- Anthony J Campanella
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Benjamin A Trump
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
| | - Aeri J Gosselin
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
| | - Eric D Bloch
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, USA.
- Center for Neutron Science, Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| | - Craig M Brown
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA.
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
22
|
Liu S, Liu B, Yao S, Liu Y. Post-synthetic metal-ion metathesis in a single-crystal-to-single-crystal process: improving the gas adsorption and separation capacity of an indium-based metal–organic framework. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00078g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
By means of post-synthetic metal-ion metathesis, Cu ions selectively substitute In ions in the paddlewheel of JLU-Liu40-In to construct JLU-Liu40-In/Cu, which has significant improved the ability of thermal stability and gas sorption and separation.
Collapse
Affiliation(s)
- Shuang Liu
- College of Chemistry and Chemical engineering
- Ocean University of China
- Qingdao 266100
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Bing Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| | - Shuo Yao
- College of Chemistry and Chemical engineering
- Ocean University of China
- Qingdao 266100
- P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
| | - Yunling Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry
- College of Chemistry
- Jilin University
- Changchun 130012
- P. R. China
| |
Collapse
|
23
|
Asgari M, Semino R, Schouwink PA, Kochetygov I, Tarver J, Trukhina O, Krishna R, Brown CM, Ceriotti M, Queen WL. Understanding How Ligand Functionalization Influences CO 2 and N 2 Adsorption in a Sodalite Metal-Organic Framework. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2020; 32:10.1021/acs.chemmater.9b04631. [PMID: 33612965 PMCID: PMC7890575 DOI: 10.1021/acs.chemmater.9b04631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work, a detailed study is conducted to understand how ligand substitution influences the CO2 and N2 adsorption properties of two highly crystalline sodalite metal-organic frameworks (MOFs) known as Cu-BTT (BTT-3 = 1,3,5-benzenetristetrazolate) and Cu-BTTri (BTTri-3 = 1,3,5-benzenetristriazolate). The enthalpy of adsorption and observed adsorption capacities at a given pressure are significantly lower for Cu-BTTri compared to its tetrazole counterpart, Cu-BTT. In situ X-ray and neutron diffraction, which allow visualization of the CO2 and N2 binding sites on the internal surface of Cu-BTTri, provide insights into understanding the subtle differences. As expected, slightly elongated distances between the open Cu2+ sites and surface-bound CO2 in Cu-BTTri can be explained by the fact that the triazolate ligand is a better electron donor than the tetrazolate. The more pronounced Jahn-Teller effect in Cu-BTTri leads to weaker guest binding. The results of the aforementioned structural analysis were complemented by the prediction of the binding energies at each CO2 and N2 adsorption site by density functional theory calculations. In addition, variable temperature in situ diffraction measurements shed light on the fine structural changes of the framework and CO2 occupancies at different adsorption sites as a function of temperature. Finally, simulated breakthrough curves obtained for both sodalite MOFs demonstrate the materials' potential performance in dry postcombustion CO2 capture. The simulation, which considers both framework uptake capacity and selectivity, predicts better separation performance for Cu-BTT. The information obtained in this work highlights how ligand substitution can influence adsorption properties and hence provides further insights into the material optimization for important separations.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Rocio Semino
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Universitéde Montpellier, 34095 Montpellier Cedex 05, France; Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Pascal A. Schouwink
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Ilia Kochetygov
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Jacob Tarver
- Center for Neutron Research, National Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States; National Renewable Energy Laboratory, 80401 Golden, Colorado, United States
| | - Olga Trukhina
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| | - Rajamani Krishna
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 XH Amsterdam, Netherlands
| | - Craig M. Brown
- Center for Neutron Research, National Institute of Standards and Technology, 20899 Gaithersburg, Maryland, United States
| | - Michele Ceriotti
- Laboratory of Computational Science and Modeling, Institute of Materials, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wendy L. Queen
- Institut des Sciences et Ingenierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1951 Sion, Switzerland
| |
Collapse
|
24
|
Kökçam-Demir Ü, Goldman A, Esrafili L, Gharib M, Morsali A, Weingart O, Janiak C. Coordinatively unsaturated metal sites (open metal sites) in metal–organic frameworks: design and applications. Chem Soc Rev 2020; 49:2751-2798. [DOI: 10.1039/c9cs00609e] [Citation(s) in RCA: 257] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The defined synthesis of OMS in MOFs is the basis for targeted functionalization through grafting, the coordination of weakly binding species and increased (supramolecular) interactions with guest molecules.
Collapse
Affiliation(s)
- Ülkü Kökçam-Demir
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Anna Goldman
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Leili Esrafili
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Maniya Gharib
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Ali Morsali
- Department of Chemistry
- Faculty of Sciences
- Tarbiat Modares University
- Tehran
- Islamic Republic of Iran
| | - Oliver Weingart
- Institut für Theoretische Chemie und Computerchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie
- Heinrich-Heine-Universität Düsseldorf
- D-40204 Düsseldorf
- Germany
| |
Collapse
|
25
|
Pardakhti M, Jafari T, Tobin Z, Dutta B, Moharreri E, Shemshaki NS, Suib S, Srivastava R. Trends in Solid Adsorbent Materials Development for CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34533-34559. [PMID: 31437393 DOI: 10.1021/acsami.9b08487] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A recent report from the United Nations has warned about the excessive CO2 emissions and the necessity of making efforts to keep the increase in global temperature below 2 °C. Current CO2 capture technologies are inadequate for reaching that goal, and effective mitigation strategies must be pursued. In this work, we summarize trends in materials development for CO2 adsorption with focus on recent studies. We put adsorbent materials into four main groups: (I) carbon-based materials, (II) silica/alumina/zeolites, (III) porous crystalline solids, and (IV) metal oxides. Trends in computational investigations along with experimental findings are covered to find promising candidates in light of practical challenges imposed by process economics.
Collapse
Affiliation(s)
- Maryam Pardakhti
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Tahereh Jafari
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Zachary Tobin
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Biswanath Dutta
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ehsan Moharreri
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Nikoo S Shemshaki
- Department of Biomedical Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Steven Suib
- Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Ranjan Srivastava
- Department of Chemical and Biomolecular Engineering , University of Connecticut , Storrs , Connecticut 06269 , United States
| |
Collapse
|
26
|
Qi XL, Zhou DD, Zhang J, Hu S, Haranczyk M, Wang DY. Simultaneous Improvement of Mechanical and Fire-Safety Properties of Polymer Composites with Phosphonate-Loaded MOF Additives. ACS APPLIED MATERIALS & INTERFACES 2019; 11:20325-20332. [PMID: 31042349 DOI: 10.1021/acsami.9b02357] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Flame-retardant (FR) additives are commonly used to improve the fire safety of synthetic polymers, which are widely employed in manufactured consumer goods. Incorporation of an FR in a polymer typically leads to deterioration of its mechanical properties. It also manifests itself in non-negligible volatile organic compound (VOC) release, which in turn increases environmental risks carried by both the application and disposal of the corresponding consumer goods. Herein, we present a hierarchical strategy for the design of composite materials, which ensures simultaneous improvement of both mechanical and fire-safety properties of polymers while limiting the VOC release. Our strategy employs porous metal-organic framework (MOF) particles to provide a multifunctional interface between the FR molecules and the polymer. Specifically, we demonstrate that the particles of environmentally friendly HKUST-1 MOF can be infused by a modern FR-dimethyl methylphosphonate (DMMP)-and then embedded into widely used unsaturated polyesters. The DMMP-HKUST-1 additive endows the resulting composite material with improved processability, flame retardancy, and mechanical properties. Single-crystal X-ray diffraction, thermogravimetric analysis, and computational modeling of the additive suggest the complete pore filling of HKUST-1 with DMMP molecules being bound to the open metal sites of the MOF.
Collapse
Affiliation(s)
- Xiao-Lin Qi
- IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain
| | - Dong-Dong Zhou
- School of Chemistry , Sun Yat-sen University , 510275 Guagzhou , China
| | - Jing Zhang
- IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain
| | - Shuang Hu
- IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain
| | - Maciej Haranczyk
- IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain
| | - De-Yi Wang
- IMDEA Materials Institute , C/Eric Kandel, 2 , Getafe , Madrid 28906 , Spain
| |
Collapse
|
27
|
Tian Y, Mu B, Li B, Li X, Xu W, Lin Y. A Stable Amine‐Functionalized Microporous Metal–Organic Framework for Thermodynamically and Kinetically Selective Gas Separations. ChemistrySelect 2019. [DOI: 10.1002/slct.201900416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuanyuan Tian
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
| | - Bin Mu
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
| | - Bo Li
- Department of ChemistryUniversity of California, Riverside California 92521 USA
| | - Xing Li
- School of Materials Science and Chemical EngineeringNingbo University Ningbo 315211 P. R. China
| | - Wei Xu
- Research Center of Applied Solid State ChemistryChemistry Institute for Synthesis and Green ApplicationNingbo University, Ningbo Zhejiang 315211 P.R. China
| | - Yichao Lin
- Ningbo Institute of Materials Technology and EngineeringChinese Academy of Sciences, Ningbo Zhejiang 315201 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
28
|
Li N, Qu R, Han X, Lin W, Zhang H, Zhang ZJ. The Counterion Effect of Imidazolium-Type Poly(ionic liquid) Brushes on Carbon Dioxide Adsorption. Chempluschem 2019; 84:281-288. [PMID: 31950764 DOI: 10.1002/cplu.201800636] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/18/2019] [Indexed: 11/10/2022]
Abstract
Imidazolium-based poly(ionic liquid) brushes were attached to spherical silica nanoparticles bearing various functionalities by using a surface-initiated atom transfer radical polymerization ("grafting from" technique). A temperature-programmed desorption process was applied to evaluate and analyze the carbon dioxide adsorption performance of the synthesized polymer brushes. The confined structure of the surface-attached polymer chains facilitates gas transport and adsorption, leading to an enhanced adsorption capacity of carbon dioxide molecules compared with pure polymer powders. Temperature-programmed desorption profiles of the synthesized polymer brushes after carbon dioxide adsorption reveal that the substituent groups on the nitrogen atom at the 3-position of the imidazole ring, as well as the associated anions significantly affect the adsorption capacity of functionalized poly(ionic liquid) brushes. Of the tested samples, amine-functionalized poly(ionic liquid) brushes associated with hexafluorophosphate ions exhibit the highest carbon dioxide adsorption capacity of 2.56 mmol g-1 (112.64 mg g-1 ) at 25 °C under a carbon dioxide partial pressure of 0.2 bar.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan, 430070, P. R. China
| | - Rong Qu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan, 430070, P. R. China
| | - Xiaoyu Han
- School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Weiran Lin
- Division of Fine Chemicals, SINOPEC R&D Centers of Chemicals for EOR, Nr. 14 Beisanhuan Donglu, Bejing, 100013, P. R. China
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Nr. 122 Luoshi Rd., Wuhan, 430070, P. R. China
| | - Zhenyu J Zhang
- School of Chemical Engineering, University of Birmingham Edgbaston, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
29
|
Xue Z, Ramirez‐Cuesta AJ, Brown CM, Calder S, Cao H, Chakoumakos BC, Daemen LL, Huq A, Kolesnikov AI, Mamontov E, Podlesnyak AA, Wang X. Neutron Instruments for Research in Coordination Chemistry. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zi‐Ling Xue
- Department of Chemistry University of Tennessee 37996 Knoxville Tennessee United States
| | - Anibal J. Ramirez‐Cuesta
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Craig M. Brown
- Center for Neutron Research National Institute of Standards and Technology 20899 Gaithersburg Maryland United States
- Department of Chemical and Biomolecular Engineering University of Delaware 19716 Newark Delaware United States
| | - Stuart Calder
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Huibo Cao
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Bryan C. Chakoumakos
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Luke L. Daemen
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Ashfia Huq
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Alexander I. Kolesnikov
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Eugene Mamontov
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Andrey A. Podlesnyak
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| | - Xiaoping Wang
- Neutron Scattering Division Oak Ridge National Laboratory 37831 Oak Ridge Tennessee United States
| |
Collapse
|
30
|
Asgari M, Semino R, Schouwink P, Kochetygov I, Trukhina O, Tarver JD, Bulut S, Yang S, Brown CM, Ceriotti M, Queen WL. An In-Situ Neutron Diffraction and DFT Study of Hydrogen Adsorption in a Sodalite-Type Metal-Organic Framework, Cu-BTTri. Eur J Inorg Chem 2019; 2019:10.1002/ejic.201801253. [PMID: 38903611 PMCID: PMC11188034 DOI: 10.1002/ejic.201801253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Indexed: 06/22/2024]
Abstract
Herein we present a detailed study of the hydrogen adsorption properties of Cu-BTTri, a robust crystalline metal-organic framework containing open metal-coordination sites. Diffraction techniques, carried out on the activated framework, reveal a structure that is different from what was previously reported. Further, combining standard hydrogen adsorption measurements with in-situ neutron diffraction techniques provides molecular level insight into the hydrogen adsorption process. The diffraction experiments unveil the location of four D2 adsorption sites in Cu-BTTri and shed light on the structural features that promote hydrogen adsorption in this material. Density functional theory (DFT), used to predict the location and strength of binding sites, corroborate the experimental findings. By decomposing binding energies in different sites in various energetic contributions, we show that van der Waals interactions play a crucial role, suggesting a possible route to enhancing the binding energy around open metal coordination sites.
Collapse
Affiliation(s)
- Mehrdad Asgari
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Rocio Semino
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Institut Charles Gerhardt Montpellier UMR 5253 CNRS, Université de Montpellier, Place E. Bataillon, 34095 Montpellier Cedex 05, France
| | - Pascal Schouwink
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Ilia Kochetygov
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Olga Trukhina
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Jacob D Tarver
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899, USA
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Safak Bulut
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Shuliang Yang
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| | - Craig M Brown
- National Institute of Standards and Technology, Center for Neutron Research, Gaithersburg, Maryland, 20899, USA
| | - Michele Ceriotti
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wendy L Queen
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1051 Sion, Switzerland
| |
Collapse
|
31
|
Tang F, Hou J, Liang K, Huang J, Liu YN. Melamine-Based Metal-Chelating Porous Organic Polymers for Efficient CO2
Capture and Conversion. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800764] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Feiying Tang
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan PR China
| | - Jianan Hou
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan PR China
| | - Kaixin Liang
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan PR China
| | - Jianhan Huang
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan PR China
| | - You-Nian Liu
- College of Chemistry and Chemical Engineering; Central South University; 410083 Changsha Hunan PR China
- State Key Laboratory for Powder Metallurgy; Central South University; 410083 Changsha Hunan PR China
| |
Collapse
|