1
|
Zhang X, Sivaguru P, Pan Y, Wang N, Zhang W, Bi X. The Carbene Chemistry of N-Sulfonyl Hydrazones: The Past, Present, and Future. Chem Rev 2025; 125:1049-1190. [PMID: 39792453 DOI: 10.1021/acs.chemrev.4c00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
N-Sulfonyl hydrazones have been extensively used as operationally safe carbene precursors in modern organic synthesis due to their ready availability, facile functionalization, and environmental benignity. Over the past two decades, there has been tremendous progress in the carbene chemistry of N-sulfonyl hydrazones in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Many carbene transfer reactions of N-sulfonyl hydrazones are unique and cannot be achieved by any alternative methods. The discovery of novel N-sulfonyl hydrazones and the development of highly enantioselective new reactions and skeletal editing reactions represent the notable recent achievements in the carbene chemistry of N-sulfonyl hydrazones. This review describes the overall progress made in the carbene chemistry of N-sulfonyl hydrazones, organized based on reaction types, spotlighting the current state-of-the-art and remaining challenges to be addressed in the future. Special emphasis is devoted to identifying, describing, and comparing the scope and limitations of current methodologies, key mechanistic scenarios, and potential applications in the synthesis of complex molecules.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Yongzhen Pan
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Nan Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Wenjie Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
2
|
Yuan S, Li SY, Zhao XM, Lin YZ, Zheng SC. Enantioselective Alkylation of Primary C( sp3)-H Bonds in N-Methyl Tertiary Amine Enabled by Iridium Complex of Axially Chiral β-Aryl Porphyrins. J Am Chem Soc 2025; 147:51-56. [PMID: 39601225 DOI: 10.1021/jacs.4c12449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
A fine-tuning of enantioselective carbene insertion into primary C(sp3)-H bonds has been realized in challenging substrates, such as N-methyl unblocked aromatic and non-deactivated aliphatic tertiary amines, in which sterically demanding β-axially chiral iridium porphyrin catalysts play a crucial role. This primary C(sp3)-H alkylation with diazo compounds affords a series of β-chiral tertiary amines in high yields with excellent enantioselectivities. Notably, the protocol was successfully applied to the postmodification of chiral bicuculline, yielding the desired derivative with high diastereoselectivity. This approach paves a facile way for the stereodivergent derivation of chiral alkaloid natural products featuring an N-methyl handle. In addition, a mechanism for the reaction was proposed based on deuterium experiments and an identified cationic iridium species via HRMS analysis.
Collapse
Affiliation(s)
- Shanshan Yuan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 P.R. China
| | - Sheng-Yu Li
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 P.R. China
| | - Xiao-Ming Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 P.R. China
| | - Ya-Zhou Lin
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 P.R. China
| | - Sheng-Cai Zheng
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092 P.R. China
| |
Collapse
|
3
|
Yang W, Zhao Z, Lan Y, Dong Z, Chang R, Bai Y, Liu S, Li SJ, Niu L. Heterocoupling Two Similar Benzyl Radicals by Dual Photoredox/Cobalt Catalysis. Angew Chem Int Ed Engl 2024:e202421256. [PMID: 39718362 DOI: 10.1002/anie.202421256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/23/2024] [Indexed: 12/25/2024]
Abstract
Transition-metal-regulated radical cross coupling enables the selective bonding of two distinct transient radicals, whereas the catalytic method for sorting two almost identical transient radicals, especially similar benzyl radicals, is still rare. Herein, we show that leveraging dual photoredox/cobalt catalysis can selectively couple two similar benzyl radicals. Using easily accessible methylarenes and phenylacetates (benzyl N-hydroxyphthalimide (NHPI) esters) as benzyl radical sources, a range of unsymmetrical 1,2-diarylethane classes via the 1°-1°, 1°-2°, 1°-3°, 2°-2°, 2°-3° and 3°-3° couplings were obtained with broad functional group tolerance. Besides the photochemical continuous flow synthesis, the one-pot procedure that directly uses phenylacetic acids and NHPI as the starting materials to avoid the pre-preparation of benzyl NHPI esters for the gram-scale synthesis is also feasible and affords good yields, showcasing the synthetic utility of our protocol.
Collapse
Affiliation(s)
- Wei Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yu Lan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, Jiangsu, P. R. China
| | - Zhou Dong
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Ruiying Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Yihang Bai
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
| | - Shihan Liu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, Henan, P. R. China
| | - Shi-Jun Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| | - Linbin Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, 100 Science Avenue, Zhengzhou, 450001, Henan, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, 453007, Henan, P. R. China
| |
Collapse
|
4
|
Buchelt C, Zuber J, Bach T. Intramolecular Cobalt Porphyrin-Catalyzed Alkylation of 1-Isoindolinones by Site-Selective Insertion into a C(sp 3)-H Bond. Org Lett 2024; 26:7302-7306. [PMID: 39190911 PMCID: PMC11385374 DOI: 10.1021/acs.orglett.4c02270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
1-Isoindolinones with a reactive hydrazone tether attached to the nitrogen atom underwent an intramolecular alkylation in the presence of cobalt(tetraphenylporphyrin) and a base. Products display saturated heterocyclic rings of various sizes (n = 5-7), and the method was applied to a short synthesis of the azepane alkaloid lennoxamine. The reaction likely involves a diazoalkane intermediate that undergoes dediazotation and a formal insertion into the C3-H bond. If a stereogenic center is present in the tether, a high degree of diastereoselectivity is recorded.
Collapse
Affiliation(s)
- Christoph Buchelt
- Technische Universität München, TUM School of Natural Sciences, Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
| | - Julian Zuber
- Technische Universität München, TUM School of Natural Sciences, Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
| | - Thorsten Bach
- Technische Universität München, TUM School of Natural Sciences, Department Chemie and Catalysis Research Center (CRC), 85747 Garching, Germany
| |
Collapse
|
5
|
Lee WCC, Zhang XP. Metalloradical Catalysis: General Approach for Controlling Reactivity and Selectivity of Homolytic Radical Reactions. Angew Chem Int Ed Engl 2024; 63:e202320243. [PMID: 38472114 PMCID: PMC11097140 DOI: 10.1002/anie.202320243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Since Friedrich Wöhler's groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| | - X. Peter Zhang
- Department of Chemistry, Boston College, Merkert Chemistry Center, Chestnut Hill, Massachusetts 02467 (USA)
| |
Collapse
|
6
|
Chen S, Tan J, Wu H, Zhao Q, Shang Y. Base-promoted tandem synthesis of 2-azaaryl indoline. Org Biomol Chem 2023; 21:9133-9137. [PMID: 37974521 DOI: 10.1039/d3ob01444d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A novel tandem method to synthesize 2-azaaryl indoline promoted by LiN(SiMe3)2 from 2-azaaryl methyl amine and 2-fluoro benzyl bromides was developed. Mechanistic investigation indicated that this tandem cyclization was initiated by selective benzyl C-SN2 substitution followed by an intramolecular SNAr reaction. Diverse 2-azaaryl indoles could also be obtained via simple functional transformations.
Collapse
Affiliation(s)
- Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Jiahong Tan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Hao Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Quansheng Zhao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P.R. China.
| |
Collapse
|
7
|
Wei X, Huang Y, Karimi Z, Qu J, Wang B. DMAP-Catalyzed [4+3] Spiroannulation of Pyrazolone-Derived Morita-Baylis-Hillman Carbonates with N-( o-Chloromethyl)aryl Amides to Forge Spiro[pyrazolone-azepine] Scaffolds. J Org Chem 2023. [PMID: 37389982 DOI: 10.1021/acs.joc.3c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
A novel DMAP-catalyzed [4+3] spiroannulation of pyrazolone-derived Morita-Baylis-Hillman carbonates with N-(o-chloromethyl)aryl amides was developed. This reaction led to the assembly of medicinally relevant pyrazolone and azepine nuclei into a structurally new spirocyclic scaffold, and a diverse array of spiro[pyrazolone-azepine] products were afforded in good to excellent yields (up to 93%) with a wide substrate scope (23 examples) under mild conditions. Moreover, a gram-scale reaction and product transformations were conducted, which further increased the diversity of products.
Collapse
Affiliation(s)
- Xingfu Wei
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yue Huang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zahra Karimi
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jingping Qu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Baomin Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
- Ningbo Institute of Dalian University of Technology, Ningbo 315016, P. R. China
| |
Collapse
|
8
|
Lee WCC, Wang J, Zhu Y, Zhang XP. Asymmetric Radical Bicyclization for Stereoselective Construction of Tricyclic Chromanones and Chromanes with Fused Cyclopropanes. J Am Chem Soc 2023; 145:11622-11632. [PMID: 37129381 PMCID: PMC10249947 DOI: 10.1021/jacs.3c01618] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Asymmetric radical bicyclization processes have been developed via metalloradical catalysis (MRC) to stereoselectively construct chiral chromanones and chromanes bearing fused cyclopropanes. Through optimization of a versatile D2-symmetric chiral amidoporphyrin ligand platform, a Co(II)-metalloradical system can homolytically activate both diazomalonates and α-aryldiazomethanes containing different alkene functionalities under mild conditions for effective radical bicyclization, delivering cyclopropane-fused tricyclic chromanones and chromanes, respectively, in high yields with excellent control of both diastereoselectivities and enantioselectivities. Combined computational and experimental studies, including the electron paramagnetic resonance (EPR) detection and 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) trapping of key radical intermediates, shed light on the working details of the underlying stepwise radical mechanisms of the Co(II)-catalyzed bicyclization processes. The two catalytic radical processes provide effective synthetic tools for stereoselective construction of valuable cyclopropane-fused chromanones and chromanes with newly generated contiguous stereogenic centers. As a specific demonstration of synthetic application, the Co(II)-catalyzed radical bicyclization has been employed as a key step for the first asymmetric total synthesis of the natural product (+)-Radulanin J.
Collapse
Affiliation(s)
- Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
9
|
Epping RF, Vesseur D, Zhou M, de Bruin B. Carbene Radicals in Transition-Metal-Catalyzed Reactions. ACS Catal 2023; 13:5428-5448. [PMID: 37123600 PMCID: PMC10127290 DOI: 10.1021/acscatal.3c00591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/21/2023] [Indexed: 04/08/2023]
Abstract
Discovered as organometallic curiosities in the 1970s, carbene radicals have become a staple in modern-day homogeneous catalysis. Carbene radicals exhibit nucleophilic radical-type reactivity orthogonal to classical electrophilic diamagnetic Fischer carbenes. Their successful catalytic application has led to the synthesis of a myriad of carbo- and heterocycles, ranging from simple cyclopropanes to more challenging eight-membered rings. The field has matured to employ densely functionalized chiral porphyrin-based platforms that exhibit high enantio-, regio-, and stereoselectivity. Thus far the focus has largely been on cobalt-based systems, but interest has been growing for the past few years to expand the application of carbene radicals to other transition metals. This Perspective covers the advances made since 2011 and gives an overview on the coordination chemistry, reactivity, and catalytic application of carbene radical species using transition metal complexes and catalysts.
Collapse
Affiliation(s)
- Roel F.J. Epping
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - David Vesseur
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis Group, van ‘t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
10
|
Wang HH, Shao H, Huang G, Fan J, To WP, Dang L, Liu Y, Che CM. Chiral Iron Porphyrins Catalyze Enantioselective Intramolecular C(sp 3 )-H Bond Amination Upon Visible-Light Irradiation. Angew Chem Int Ed Engl 2023; 62:e202218577. [PMID: 36716145 DOI: 10.1002/anie.202218577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/30/2023] [Indexed: 01/31/2023]
Abstract
Iron-catalyzed asymmetric amination of C(sp3 )-H bonds is appealing for synthetic applications due to the biocompatibility and high earth abundance of iron, but examples of such reactions are sparse. Herein we describe chiral iron complexes of meso- and β-substituted-porphyrins that can catalyze asymmetric intramolecular C(sp3 )-H amination of aryl and arylsulfonyl azides to afford chiral indolines (29 examples) and benzofused cyclic sulfonamides (17 examples), respectively, with up to 93 % ee (yield: up to 99 %) using 410 nm light under mild conditions. Mechanistic studies, including DFT calculations, for the reactions of arylsulfonyl azides reveal that the Fe(NSO2 Ar) intermediate generated in situ under photochemical conditions reacts with the C(sp3 )-H bond through a stepwise hydrogen atom transfer/radical rebound mechanism, with enantioselectivity arising from cooperative noncovalent interactions between the Fe(NSO2 Ar) unit and the peripheral substituents of the chiral porphyrin scaffold.
Collapse
Affiliation(s)
- Hua-Hua Wang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Hui Shao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Guanglong Huang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Jianqiang Fan
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Wai-Pong To
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Li Dang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, and Chemistry and Chemical Engineering Guangdong Laboratory, Guangdong, 515063, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Hong Kong, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, 518057, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17 W, Hong Kong Science and Technology Parks New Territories, Hong Kong, China
| |
Collapse
|
11
|
Desai B, Uppuluru A, Dey A, Deshpande N, Dholakiya BZ, Sivaramakrishna A, Naveen T, Padala K. The recent advances in cobalt-catalyzed C(sp 3)-H functionalization reactions. Org Biomol Chem 2023; 21:673-699. [PMID: 36602117 DOI: 10.1039/d2ob01936a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Over the past decades, reactions involving C-H functionalization have become a hot theme in organic transformations because they have a lot of potential for the streamlined synthesis of complex molecules. C(sp3)-H bonds are present in most organic species. Since organic molecules have massive significance in various aspects of life, the exploitation and functionalization of C(sp3)-H bonds hold enormous importance. In recent years, the first-row transition metal-catalyzed direct and selective functionalization of C-H bonds has emerged as a simple and environmentally friendly synthetic method due to its low cost, unique reactivity profiles and easy availability. Therefore, research advancements are being made to conceive catalytic systems that foster direct C(sp3)-H functionalization under benign reaction conditions. Cobalt-based catalysts offer mild and convenient reaction conditions at a reasonable expense compared to conventional 2nd and 3rd-row transition metal catalysts. Consequently, the probing of Co-based catalysts for C(sp3)-H functionalization is one of the hot topics from the outlook of an organic chemist. This review primarily focuses on the literature from 2018 to 2022 and sheds light on the substrate scope, selectivity, benefits and limitations of cobalt catalysts for organic transformations.
Collapse
Affiliation(s)
- Bhargav Desai
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Ajay Uppuluru
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Ashutosh Dey
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Neha Deshpande
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Bharatkumar Z Dholakiya
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Akella Sivaramakrishna
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India.
| | - Togati Naveen
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395 007, India.
| | - Kishor Padala
- Department of Chemistry, School of Advanced Science, Vellore Institute of Technology, Katpadi, Vellore, Tamil Nadu, 632014, India. .,Central Tribal University of Andhra Pradesh, Kondakarakam Village, Cantonment, Vizianagaram, Andhra Pradesh, 535003, India
| |
Collapse
|
12
|
Klimovica K, Heidlas JX, Romero I, Le TV, Daugulis O. “Sandwich” Diimine‐Copper Catalysts for C−H Functionalization by Carbene Insertion. Angew Chem Int Ed Engl 2022; 61:e202200334. [PMID: 35594167 PMCID: PMC9329213 DOI: 10.1002/anie.202200334] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 11/12/2022]
Abstract
We report here "sandwich" diimine-copper(I) catalysts for C(sp3 )-H bond functionalization. Reactions of alkanes and ethers with trimethylsilyldiazomethane, ethyl diazoacetate, and trifluoromethyl-diazomethane have been demonstrated. We also report C(sp3 )-H bond methylation, benzylation, and diphenylmethylation by diazomethane, aryldiazomethanes, and diphenyldiazomethane. These reactions are rare examples of base-metal catalyzed, intermolecular C(sp3 )-H functionalizations by employing unactivated diazo compounds. Electrophilicity and unique steric environment of "sandwich"-copper catalysts are likely reasons for their catalytic efficiency.
Collapse
Affiliation(s)
- Kristine Klimovica
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Julius X. Heidlas
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Irvin Romero
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Thanh V. Le
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| | - Olafs Daugulis
- Department of Chemistry University of Houston 3585 Cullen Blvd. Houston TX USA
| |
Collapse
|
13
|
Klimovica K, Heidlas JX, Romero I, Le TV, Daugulis O. “Sandwich” Diimine‐Copper Catalysts for C‐H Functionalization by Carbene Insertion. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | | | - Olafs Daugulis
- University of Houston Chemistry Fleming 112 77204-5003 Houston UNITED STATES
| |
Collapse
|
14
|
Reek JNH, de Bruin B, Pullen S, Mooibroek TJ, Kluwer AM, Caumes X. Transition Metal Catalysis Controlled by Hydrogen Bonding in the Second Coordination Sphere. Chem Rev 2022; 122:12308-12369. [PMID: 35593647 PMCID: PMC9335700 DOI: 10.1021/acs.chemrev.1c00862] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Transition metal catalysis is of utmost importance for the development of sustainable processes in academia and industry. The activity and selectivity of metal complexes are typically the result of the interplay between ligand and metal properties. As the ligand can be chemically altered, a large research focus has been on ligand development. More recently, it has been recognized that further control over activity and selectivity can be achieved by using the "second coordination sphere", which can be seen as the region beyond the direct coordination sphere of the metal center. Hydrogen bonds appear to be very useful interactions in this context as they typically have sufficient strength and directionality to exert control of the second coordination sphere, yet hydrogen bonds are typically very dynamic, allowing fast turnover. In this review we have highlighted several key features of hydrogen bonding interactions and have summarized the use of hydrogen bonding to program the second coordination sphere. Such control can be achieved by bridging two ligands that are coordinated to a metal center to effectively lead to supramolecular bidentate ligands. In addition, hydrogen bonding can be used to preorganize a substrate that is coordinated to the metal center. Both strategies lead to catalysts with superior properties in a variety of metal catalyzed transformations, including (asymmetric) hydrogenation, hydroformylation, C-H activation, oxidation, radical-type transformations, and photochemical reactions.
Collapse
Affiliation(s)
- Joost N H Reek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.,InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Sonja Pullen
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Tiddo J Mooibroek
- Homogeneous and Supramolecular Catalysis, Van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | | | - Xavier Caumes
- InCatT B.V., Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
15
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese-Catalyzed Asymmetric Hydrogenation of 3H-Indoles. Angew Chem Int Ed Engl 2022; 61:e202202814. [PMID: 35238455 DOI: 10.1002/anie.202202814] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Indexed: 12/21/2022]
Abstract
The asymmetric hydrogenation (AH) of 3H-indoles represents an ideal approach to the synthesis of useful chiral indoline scaffolds. However, very few catalytic systems based on precious metals have been developed to realize this challenging reaction. Herein, we report a Mn-catalyzed AH of 3H-indoles with excellent yields and enantioselectivities. The kinetic resolution of racemic 3H-indoles by AH was also achieved with high s-factors to construct quaternary stereocenters. Many acid-sensitive functional groups, which cannot be tolerated when using a state-of-the-art ruthenium catalyst, were compatible with manganese catalysis. This new process expands the scope of this transformation and highlights the uniqueness of earth-abundant metal catalysis. The reaction could proceed with catalyst loadings at the parts per million (ppm) level with an exceptional turnover number of 72 350. This is the highest value yet reported for an earth-abundant metal-catalyzed AH reaction.
Collapse
Affiliation(s)
- Chenguang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mingyang Wang
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yihan Xu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yibiao Li
- School of Biotechnology and Health, Wuyi University, Jiangmen, Guangdong, 529090, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Singhal R, Choudhary SP, Malik B, Pilania M. Emerging Trends in
N
‐Tosylhydrazone Mediated Transition‐Metal‐Free Reactions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Satya Prakash Choudhary
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Babita Malik
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| | - Meenakshi Pilania
- Department of Chemistry Manipal University Jaipur Off Jaipur-Ajmer Express Way Jaipur Rajasthan India 303007
| |
Collapse
|
17
|
He Y, Huang Z, Wu K, Ma J, Zhou YG, Yu Z. Recent advances in transition-metal-catalyzed carbene insertion to C-H bonds. Chem Soc Rev 2022; 51:2759-2852. [PMID: 35297455 DOI: 10.1039/d1cs00895a] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
C-H functionalization has been emerging as a powerful method to establish carbon-carbon and carbon-heteroatom bonds. Many efforts have been devoted to transition-metal-catalyzed direct transformations of C-H bonds. Metal carbenes generated in situ from transition-metal compounds and diazo or its equivalents are usually applied as the transient reactive intermediates to furnish a catalytic cycle for new C-C and C-X bond formation. Using this strategy compounds from unactivated simple alkanes to complex molecules can be further functionalized or transformed to multi-functionalized compounds. In this area, transition-metal-catalyzed carbene insertion to C-H bonds has been paid continuous attention. Diverse catalyst design strategies, synthetic methods, and potential applications have been developed. This critical review will summarize the advance in transition-metal-catalyzed carbene insertion to C-H bonds dated up to July 2021, by the categories of C-H bonds from aliphatic C(sp3)-H, aryl (aromatic) C(sp2)-H, heteroaryl (heteroaromatic) C(sp2)-H bonds, alkenyl C(sp2)-H, and alkynyl C(sp)-H, as well as asymmetric carbene insertion to C-H bonds, and more coverage will be given to the recent work. Due to the rapid development of the C-H functionalization area, future directions in this topic are also discussed. This review will give the authors an overview of carbene insertion chemistry in C-H functionalization with focus on the catalytic systems and synthetic applications in C-C bond formation.
Collapse
Affiliation(s)
- Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kaikai Wu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Juan Ma
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
18
|
Liu C, Wang M, Xu Y, Li Y, Liu Q. Manganese‐Catalyzed Asymmetric Hydrogenation of 3H‐Indoles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Yihan Xu
- Tsinghua University Department of Chemistry CHINA
| | - Yibiao Li
- Wuyi University Department of Chemistry CHILE
| | - Qiang Liu
- Tsinghua University Department of Chemistry Tsinghuayuan 1 100084 Beijing CHINA
| |
Collapse
|
19
|
Ke J, Lee WCC, Wang X, Wang Y, Wen X, Zhang XP. Metalloradical Activation of In Situ-Generated α-Alkynyldiazomethanes for Asymmetric Radical Cyclopropanation of Alkenes. J Am Chem Soc 2022; 144:2368-2378. [PMID: 35099966 PMCID: PMC9032462 DOI: 10.1021/jacs.1c13154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
α-Alkynyldiazomethanes, generated in situ from the corresponding sulfonyl hydrazones in the presence of a base, can serve as effective metalloradicophiles in Co(II)-based metalloradical catalysis (MRC) for asymmetric cyclopropanation of alkenes. With D2-symmetric chiral amidoporphyrin 2,6-DiMeO-QingPhyrin as the optimal supporting ligand, the Co(II)-based metalloradical system can efficiently activate different α-alkynyldiazomethanes at room temperature for highly asymmetric cyclopropanation of a broad range of alkenes. This catalytic radical process provides a general synthetic tool for stereoselective construction of alkynyl cyclopropanes in high yields with high both diastereoselectivity and enantioselectivity. Combined computational and experimental studies offer several lines of evidence in support of the underlying stepwise radical mechanism for the Co(II)-catalyzed olefin cyclopropanation involving a unique α-metalloradical intermediate that is associated with two resonance forms of α-Co(III)-propargyl radical and γ-Co(III)-allenyl radical. The resulting enantioenriched alkynyl cyclopropanes, as showcased with several stereospecific transformations, may serve as valuable chiral building blocks for stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yong Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Xin Wen
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X. Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
20
|
Mondal S, Dumur F, Gigmes D, Sibi MP, Bertrand MP, Nechab M. Enantioselective Radical Reactions Using Chiral Catalysts. Chem Rev 2022; 122:5842-5976. [DOI: 10.1021/acs.chemrev.1c00582] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Shovan Mondal
- Department of Chemistry, Syamsundar College, Shyamsundar 713424, West Bengal, India
| | - Frédéric Dumur
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Mukund P. Sibi
- Department of Chemistry and Biochemistry North Dakota State University, Fargo, North Dakota 58108, United States
| | - Michèle P. Bertrand
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| | - Malek Nechab
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire UMR 7273, F-13390e Marseille, France
| |
Collapse
|
21
|
Zhang Y, Huang Y, Yu K, Zhang X, Yu W, Tang J, Tian Y, Wei W, Zhang Z, Liang T. Iron–iodine co-catalysis towards tandem C–N/C–C bond formation: one-pot regioselective synthesis of 2-amino-3-alkylindoles. Org Chem Front 2022. [DOI: 10.1039/d2qo01329k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient intermolecular C2,3-H aminoalkylation of indoles with 9H-xanthenes and azoles via iron–iodine co-catalyzed tandem C–N/C–C bond formation has been developed.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yating Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Kewei Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Xiaoxiang Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wenhua Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Jiale Tang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Yiran Tian
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Wanxing Wei
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Zhuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| | - Taoyuan Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China
- Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning, Guangxi 530004, P. R. China
| |
Collapse
|
22
|
Verma PK, Sawant SD. Unravelling reaction selectivities via bio-inspired porphyrinoid tetradentate frameworks. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Zhou M, Wolzak LA, Li Z, de Zwart FJ, Mathew S, de Bruin B. Catalytic Synthesis of 1 H-2-Benzoxocins: Cobalt(III)-Carbene Radical Approach to 8-Membered Heterocyclic Enol Ethers. J Am Chem Soc 2021; 143:20501-20512. [PMID: 34802239 PMCID: PMC8662738 DOI: 10.1021/jacs.1c10927] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Indexed: 12/30/2022]
Abstract
The metallo-radical activation of ortho-allylcarbonyl-aryl N-arylsulfonylhydrazones with the paramagnetic cobalt(II) porphyrin catalyst [CoII(TPP)] (TPP = tetraphenylporphyrin) provides an efficient and powerful method for the synthesis of novel 8-membered heterocyclic enol ethers. The synthetic protocol is versatile and practical and enables the synthesis of a wide range of unique 1H-2-benzoxocins in high yields. The catalytic cyclization reactions proceed with excellent chemoselectivities, have a high functional group tolerance, and provide several opportunities for the synthesis of new bioactive compounds. The reactions are shown to proceed via cobalt(III)-carbene radical intermediates, which are involved in intramolecular hydrogen transfer (HAT) from the allylic position to the carbene radical, followed by a near-barrierless radical rebound step in the coordination sphere of cobalt. The proposed mechanism is supported by experimental observations, density functional theory (DFT) calculations, and spin trapping experiments.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Lukas A. Wolzak
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Zirui Li
- Department
of Bioorganic Synthesis, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333
CC Leiden, The Netherlands
| | - Felix J. de Zwart
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Simon Mathew
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous,
Supramolecular and Bio-Inspired Catalysis (HomKat) group, Van ‘t
Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
24
|
Sivaguru P, Bi X. Fluoroalkyl N-sulfonyl hydrazones: An efficient reagent for the synthesis of fluoroalkylated compounds. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1052-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
van Leest N, de Zwart FJ, Zhou M, de Bruin B. Controlling Radical-Type Single-Electron Elementary Steps in Catalysis with Redox-Active Ligands and Substrates. JACS AU 2021; 1:1101-1115. [PMID: 34467352 PMCID: PMC8385710 DOI: 10.1021/jacsau.1c00224] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Advances in (spectroscopic) characterization of the unusual electronic structures of open-shell cobalt complexes bearing redox-active ligands, combined with detailed mapping of their reactivity, have uncovered several new catalytic radical-type protocols that make efficient use of the synergistic properties of redox-active ligands, redox-active substrates, and the metal to which they coordinate. In this perspective, we discuss the tools available to study, induce, and control catalytic radical-type reactions with redox-active ligands and/or substrates, contemplating recent developments in the field, including some noteworthy tools, methods, and reactions developed in our own group. The main topics covered are (i) tools to characterize redox-active ligands; (ii) novel synthetic applications of catalytic reactions that make use of redox-active carbene and nitrene substrates at open-shell cobalt-porphyrins; (iii) development of catalytic reactions that take advantage of purely ligand- and substrate-based redox processes, coupled to cobalt-centered spin-changing events in a synergistic manner; and (iv) utilization of redox-active ligands to influence the spin state of the metal. Redox-active ligands have emerged as useful tools to generate and control reactive metal-coordinated radicals, which give access to new synthetic methodologies and intricate (electronic) structures, some of which are yet to be exposed.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Felix J. de Zwart
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired
Catalysis Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
26
|
Choi A, El‐Tunsi A, Wang Y, Meijer AJHM, Li J, Li X, Proietti Silvestri I, Coldham I. Asymmetric Synthesis of 2-Arylindolines and 2,2-Disubstituted Indolines by Kinetic Resolution. Chemistry 2021; 27:11670-11675. [PMID: 34110662 PMCID: PMC8456874 DOI: 10.1002/chem.202101248] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Indexed: 01/18/2023]
Abstract
Kinetic resolution of 2-arylindolines (2,3-dihydroindoles) was achieved by treatment of their N-tert-butoxycarbonyl (Boc) derivatives with n-butyllithium and sparteine in toluene at -78 °C followed by electrophilic quench. The unreacted starting materials together with the 2,2-disubstituted products could be isolated with high enantiomer ratios. Variable temperature NMR spectroscopy showed that the rate of Boc rotation was fast (ΔG≠ ≈57 kJ/mol at 195 K). This was corroborated by DFT studies and by in situ ReactIR spectroscopy. The enantioenriched N-Boc-2-arylindolines were converted to 2,2-disubstituted products without significant loss in enantiopurity. Hence, either enantiomer of the 2,2-disubstituted products could be obtained with high selectivity from the same enantiomer of the chiral ligand sparteine (one from the kinetic resolution and the other from subsequent lithiation-trapping of the recovered starting material). Secondary amine products were prepared by removing the Boc group with acid to provide a way to access highly enantioenriched 2-aryl and 2,2-disubstituted indolines.
Collapse
Affiliation(s)
- Anthony Choi
- Department of ChemistryUniversity of Sheffield Brook HillSheffieldS3 7HFUK
| | - Ashraf El‐Tunsi
- Department of ChemistryUniversity of Sheffield Brook HillSheffieldS3 7HFUK
| | - Yuhang Wang
- Department of ChemistryUniversity of Sheffield Brook HillSheffieldS3 7HFUK
| | | | - Jia Li
- School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710062PR China
| | - Xiabing Li
- School of Chemistry and Chemical EngineeringShaanxi Normal UniversityXi'an710062PR China
| | | | - Iain Coldham
- Department of ChemistryUniversity of Sheffield Brook HillSheffieldS3 7HFUK
| |
Collapse
|
27
|
Qi R, Wang C, Huo Y, Chai H, Wang H, Ma Z, Liu L, Wang R, Xu Z. Visible Light Induced Cu-Catalyzed Asymmetric C(sp 3)-H Alkylation. J Am Chem Soc 2021; 143:12777-12783. [PMID: 34351761 DOI: 10.1021/jacs.1c05890] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The asymmetric functionalization of C-H is one of the most attractive strategies in asymmetric synthesis. In the past decades, catalytic enantioselective C(sp3)-H functionalization has been intensively studied and successfully applied in various asymmetric bond formations, whereas asymmetric C(sp3)-H alkylation was not well developed. Photoredox catalysis has recently emerged as an efficient way to synthesize organic compounds under mild conditions. Despite many photoinduced stereoselective reactions that have been achieved, the related enantioselective C(sp3)-C(sp3) coupling is challenging, especially of the photocatalytic asymmetric C(sp3)-H radical alkylation. Here, we report a visible light induced Cu catalyzed asymmetric sp3 C-H alkylation, which is effective for coupling with unbiased primary, secondary, and tertiary alkyl fragments in high enantioselectivities. This reaction would provide a new approach for the synthesis of important molecules such as unnatural α-amino acids and late-stage functionalization of bioactive compounds, and will be useful for modern peptide synthesis and drug discovery.
Collapse
Affiliation(s)
- Rupeng Qi
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Chao Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yumei Huo
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongli Chai
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Hongying Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zijian Ma
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China
| | - Liangyu Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Rui Wang
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| | - Zhaoqing Xu
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, P. R. China.,Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Lanzhou 730000, P. R. China
| |
Collapse
|
28
|
Xie J, Xu P, Zhu Y, Wang J, Lee WCC, Zhang XP. New Catalytic Radical Process Involving 1,4-Hydrogen Atom Abstraction: Asymmetric Construction of Cyclobutanones. J Am Chem Soc 2021; 143:11670-11678. [PMID: 34292709 PMCID: PMC8399868 DOI: 10.1021/jacs.1c04968] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
While alkyl radicals have been well demonstrated to undergo both 1,5- and 1,6-hydrogen atom abstraction (HAA) reactions, 1,4-HAA is typically a challenging process both entropically and enthalpically. Consequently, chemical transformations based on 1,4-HAA have been scarcely developed. Guided by the general mechanistic principles of metalloradical catalysis (MRC), 1,4-HAA has been successfully incorporated as a key step, followed by 4-exo-tet radical substitution (RS), for the development of a new catalytic radical process that enables asymmetric 1,4-C-H alkylation of diazoketones for stereoselective construction of cyclobutanone structures. The key to success is the optimization of the Co(II)-based metalloradical catalyst through judicious modulation of D2-symmetric chiral amidoporphyrin ligand to adopt proper steric, electronic, and chiral environments that can utilize a network of noncovalent attractive interactions for effective activation of the substrate and subsequent radical intermediates. Supported by an optimal chiral ligand, the Co(II)-based metalloradical system, which operates under mild conditions, is capable of 1,4-C-H alkylation of α-aryldiazoketones with varied electronic and steric properties to construct chiral α,β-disubstituted cyclobutanones in good to high yields with high diastereoselectivities and enantioselectivities, generating dinitrogen as the only byproduct. Combined computational and experimental studies have shed light on the mechanistic details of the new catalytic radical process, including the revelation of facile 1,4-HAA and 4-exo-tet-RS steps. The resulting enantioenriched α,β-disubstituted cyclobutanones, as showcased with several enantiospecific transformations to other types of cyclic structures, may find useful applications in stereoselective organic synthesis.
Collapse
Affiliation(s)
- Jingjing Xie
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Pan Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jingyi Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
29
|
Zhang C, Wang DS, Lee WCC, McKillop AM, Zhang XP. Controlling Enantioselectivity and Diastereoselectivity in Radical Cascade Cyclization for Construction of Bicyclic Structures. J Am Chem Soc 2021; 143:11130-11140. [PMID: 34260202 PMCID: PMC8399859 DOI: 10.1021/jacs.1c04719] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Radical cascade cyclization reactions are highly attractive synthetic tools for the construction of polycyclic molecules in organic synthesis. While it has been successfully implemented in diastereoselective synthesis of natural products and other complex compounds, radical cascade cyclization faces a major challenge of controlling enantioselectivity. As the first application of metalloradical catalysis (MRC) for controlling enantioselectivity as well as diastereoselectivity in radical cascade cyclization, we herein report the development of a Co(II)-based catalytic system for asymmetric radical bicyclization of 1,6-enynes with diazo compounds. Through the fine-tuning of D2-symmetric chiral amidoporphyrins as the supporting ligands, the Co(II)-catalyzed radical cascade process, which proceeds in a single operation under mild conditions, enables asymmetric construction of multisubstituted cyclopropane-fused tetrahydrofurans bearing three contiguous stereogenic centers, including two all-carbon quaternary centers, in high yields with excellent stereoselectivities. Combined computational and experimental studies have shed light on the underlying stepwise radical mechanism for this new Co(II)-based cascade bicyclization that involves the relay of several Co-supported C-centered radical intermediates, including α-, β-, γ-, and ε-metalloalkyl radicals. The resulting enantioenriched cyclopropane-fused tetrahydrofurans that contain a trisubstituted vinyl group at the bridgehead, as showcased in several stereospecific transformations, may serve as useful intermediates for stereoselective organic synthesis. The successful demonstration of this new asymmetric radical process via Co(II)-MRC points out a potentially general approach for controlling enantioselectivity as well as diastereoselectivity in synthetically attractive radical cascade reactions.
Collapse
Affiliation(s)
- Congzhe Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Duo-Sheng Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Wan-Chen Cindy Lee
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Alexander M McKillop
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
30
|
Wang X, Ke J, Zhu Y, Deb A, Xu Y, Zhang XP. Asymmetric Radical Process for General Synthesis of Chiral Heteroaryl Cyclopropanes. J Am Chem Soc 2021; 143:11121-11129. [PMID: 34282613 PMCID: PMC8399893 DOI: 10.1021/jacs.1c04655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly efficient catalytic method has been developed for asymmetric radical cyclopropanation of alkenes with in situ-generated α-heteroaryldiazomethanes via Co(II)-based metalloradical catalysis (MRC). Through fine-tuning the cavity-like environments of newly-synthesized D2-symmetric chiral amidoporphyrins as the supporting ligand, the optimized Co(II)-based metalloradical system is broadly applicable to α-pyridyl and other α-heteroaryldiazomethanes for asymmetric cyclopropanation of wide-ranging alkenes, including several types of challenging substrates. This new catalytic methodology provides a general access to valuable chiral heteroaryl cyclopropanes in high yields with excellent both diastereoselectivities and enantioselectivities. Combined computational and experimental studies further support the underlying stepwise radical mechanism of the Co(II)-based olefin cyclopropanation involving α- and γ-metalloalkyl radicals as the key intermediates.
Collapse
Affiliation(s)
- Xiaoxu Wang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Jing Ke
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yiling Zhu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Arghya Deb
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Yijie Xu
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
31
|
Zhang X, Tian C, Wang Z, Sivaguru P, Nolan SP, Bi X. Fluoroalkyl N-Triftosylhydrazones as Easily Decomposable Diazo Surrogates for Asymmetric [2 + 1] Cycloaddition: Synthesis of Chiral Fluoroalkyl Cyclopropenes and Cyclopropanes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01483] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Xinyu Zhang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Chunqi Tian
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhanjing Wang
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | | | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Xihe Bi
- Department of Chemistry, Northeast Normal University, Changchun 130024, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
32
|
van Leest N, de Bruin B. Revisiting the Electronic Structure of Cobalt Porphyrin Nitrene and Carbene Radicals with NEVPT2-CASSCF Calculations: Doublet versus Quartet Ground States. Inorg Chem 2021; 60:8380-8387. [PMID: 34096281 PMCID: PMC8220492 DOI: 10.1021/acs.inorgchem.1c00910] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 12/23/2022]
Abstract
Cobalt porphyrin complexes are established catalysts for carbene and nitrene radical group-transfer reactions. The key carbene and mono- and bisnitrene radical complexes coordinated to [Co(TPP)] (TPP = tetraphenylporphyrin) have previously been investigated with a variety of experimental techniques and supporting (single-reference) density functional theory (DFT) calculations that indicated doublet (S = 1/2) ground states for all three species. In this contribution, we revisit their electronic structures with multireference N-electron valence state perturbation theory (NEVPT2)-complete-active-space self-consistent-field (CASSCF) calculations to investigate possible multireference contributions to the ground-state wave functions. The carbene ([CoIII(TPP)(•CHCO2Et)]) and mononitrene ([CoIII(TPP)(•NNs)]) radical complexes were confirmed to have uncomplicated doublet ground states, although a higher carbene or nitrene radical character and a lower Co-C/N bond order was found in the NEVPT2-CASSCF calculations. Supported by electron paramagnetic resonance analysis and spin counting, paramagnetic molar susceptibility determination, and NEVPT2-CASSCF calculations, we report that the cobalt porphyrin bisnitrene complex ([CoIII(TPP•)(•NNs)2]) has a quartet (S = 3/2) spin ground state, with a thermally accesible multireference and multideterminant "broken-symmetry" doublet spin excited state. A spin flip on the porphyrin-centered unpaired electron allows for interconversion between the quartet and broken-symmetry doublet spin states, with an approximate 10-fold higher Boltzmann population of the quartet at room temperature.
Collapse
Affiliation(s)
- Nicolaas
P. van Leest
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular
and Bio-Inspired Catalysis Group, Van ’t Hoff Institute for
Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
33
|
Radolko J, Ehlers P, Langer P. Recent Advances in Transition‐Metal‐Catalyzed Reactions of N‐Tosylhydrazones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jan Radolko
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
| | - Peter Ehlers
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| | - Peter Langer
- Universität Rostock Institut für Chemie A.-Einstein-Str. 3a 18059 Rostock Germany
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock Albert-Einstein-Str. 29a 18059 Rostock Germany
| |
Collapse
|
34
|
Wang Y, Wang L, Chen M, Tu Y, Liu Y, Zhang J. Palladium/Xu-Phos-catalyzed asymmetric carboamination towards isoxazolidines and pyrrolidines. Chem Sci 2021; 12:8241-8245. [PMID: 34194715 PMCID: PMC8208297 DOI: 10.1039/d1sc01337h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An efficient palladium-catalyzed enantioselective carboamination reaction of N-Boc-O-homoallyl-hydroxylamines and N-Boc-pent-4-enylamines with aryl or alkenyl bromides was developed, delivering various substituted isoxazolidines and pyrrolidines in good yields with up to 97% ee. The reaction features mild conditions, general substrate scope and scalability. The obtained products can be transformed into chiral 1,3-aminoalcohol derivatives without erosion of chirality. The newly identified Xu-Phos ligand bearing an ortho-OiPr group is responsible for the good yield and high enantioselectivity.
Collapse
Affiliation(s)
- Yuzhuo Wang
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Lei Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Mingjie Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University 3663 N. Zhongshan Road Shanghai 200062 China
| | - Youshao Tu
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Yu Liu
- College of Chemistry and Life Science, Jilin Province Key Laboratory of Carbon Fiber Development and Application, Changchun University of Technology Changchun 130012 China
| | - Junliang Zhang
- Department of Chemistry, Fudan University 2005 Songhu Road Shanghai 200438 China
| |
Collapse
|
35
|
De novo biosynthesis of a nonnatural cobalt porphyrin cofactor in E. coli and incorporation into hemoproteins. Proc Natl Acad Sci U S A 2021; 118:2017625118. [PMID: 33850014 DOI: 10.1073/pnas.2017625118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzymes that bear a nonnative or artificially introduced metal center can engender novel reactivity and enable new spectroscopic and structural studies. In the case of metal-organic cofactors, such as metalloporphyrins, no general methods exist to build and incorporate new-to-nature cofactor analogs in vivo. We report here that a common laboratory strain, Escherichia coli BL21(DE3), biosynthesizes cobalt protoporphyrin IX (CoPPIX) under iron-limited, cobalt-rich growth conditions. In supplemented minimal media containing CoCl2, the metabolically produced CoPPIX is directly incorporated into multiple hemoproteins in place of native heme b (FePPIX). Five cobalt-substituted proteins were successfully expressed with this new-to-nature cobalt porphyrin cofactor: myoglobin H64V V68A, dye decolorizing peroxidase, aldoxime dehydratase, cytochrome P450 119, and catalase. We show conclusively that these proteins incorporate CoPPIX, with the CoPPIX making up at least 95% of the total porphyrin content. In cases in which the native metal ligand is a sulfur or nitrogen, spectroscopic parameters are consistent with retention of native metal ligands. This method is an improvement on previous approaches with respect to both yield and ease-of-implementation. Significantly, this method overcomes a long-standing challenge to incorporate nonnatural cofactors through de novo biosynthesis. By utilizing a ubiquitous laboratory strain, this process will facilitate spectroscopic studies and the development of enzymes for CoPPIX-mediated biocatalysis.
Collapse
|
36
|
Tang CK, Li YZ, Zhou ZJ, Ma F, Mo Y. Metalloradical complex Co-C˙Ph3 catalyzes the CO 2 reduction in gas phase: a theoretical study. Phys Chem Chem Phys 2021; 23:1392-1400. [PMID: 33476353 DOI: 10.1039/d0cp04453a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal-stabilized radicals have been increasingly exploited in modern organic synthesis. Here, we theoretically designed a metalloradical complex Co-C˙Ph3 with the triplet characters through the transition metal cobalt (Co0) coordinating a triphenylmethyl radical. The potential catalytic role of this novel metalloradical in the CO2 reduction with H2/CH4 in the gas phase was explored via density functional theory (DFT) calculations. For the CO2 reduction reaction with H2, there are two possible pathways: one (path A) is the activation of CO2 by Co-C˙Ph3, followed by the hydrogenation of CO2. The other (path B) starts from the splitting of the H-H bond by Co-C˙Ph3, leading to the transition-metal hydride complex CoH-H, which can reduce CO2. DFT computations show that path B is more favorable than path A as their rate-determining free energy barriers are 18.3 and 27.2 kcal mol-1, respectively. However, for the reduction of CO2 by CH4 two different products, CH3COOH and HCOOCH3, can be generated following different reaction routes. Both routes begin with one CH4 molecule approaching the metalloradical Co-C˙Ph3 to form the intermediate CoH-CH3. This intermediate can evolve following two different pathways, depending on whether the H bonded to Co is transferred to the O (pathway PO) or the C (pathway PC) of CO2. Comparing their rate-determining steps, we identified that the PO route is more favorable for the reduction of CO2 by CH4 to CH3COOH with the reaction barrier 24.5 kcal mol-1. Thus, the present Co0-based metalloradical system represents a viable catalytic protocol that can contribute to the effective utilization of small molecules (H2 and CH4) to reduce CO2, and provides an alternative strategy for the exploration of CO2 conversion.
Collapse
Affiliation(s)
- Chuan-Kai Tang
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Ya-Zhou Li
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Zhong-Jun Zhou
- Institute of Theoretical Chemistry, Jilin University, Changchun, 130023, China
| | - Fang Ma
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, 235000, China.
| | - Yirong Mo
- Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC 27401, USA.
| |
Collapse
|
37
|
Zhang C, Li ZL, Gu QS, Liu XY. Catalytic enantioselective C(sp 3)-H functionalization involving radical intermediates. Nat Commun 2021; 12:475. [PMID: 33473126 PMCID: PMC7817665 DOI: 10.1038/s41467-020-20770-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/18/2020] [Indexed: 11/08/2022] Open
Abstract
Recently, with the boosted development of radical chemistry, enantioselective functionalization of C(sp3)-H bonds via a radical pathway has witnessed a renaissance. In principle, two distinct catalytic modes, distinguished by the steps in which the stereochemistry is determined (the radical formation step or the radical functionalization step), can be devised. This Perspective discusses the state-of-the-art in the area of catalytic enantioselective C(sp3)-H functionalization involving radical intermediates as well as future challenges and opportunities.
Collapse
Affiliation(s)
- Chi Zhang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, 518055, Shenzhen, China.
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 518055, Shenzhen, China.
| |
Collapse
|
38
|
Jin L, Wang Q, Chen X, Liu N, Fang X, Yang YF, She YB. Computational Studies on the Mechanism and Origin of the Different Regioselectivities of Manganese Porphyrin-Catalyzed C-H Bond Hydroxylation and Amidation of Equilenin Acetate. J Org Chem 2020; 85:14879-14889. [PMID: 33225704 DOI: 10.1021/acs.joc.0c01444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate developed by Breslow and his co-worker have been investigated with density functional theory (DFT) calculations. The hydroxylation of C(sp2)-H bond of equilenin acetate leading to the 6-hydroxylated product is more favorable than the hydroxylation of C(sp3)-H bond of equilenin acetate, leading to the 11β-hydroxylation product. The computational results suggest that the C(sp2)-H bond hydroxylation of equilenin acetate undergoes an oxygen-atom-transfer mechanism, which is more favorable than the C(sp3)-H bond hydroxylation undergoing the hydrogen-atom-abstraction/oxygen-rebound (HAA/OR) mechanism by 1.6 kcal/mol. That is why, the 6-hydroxylated product is the major product and the 11β-hydroxylated product is the minor product. In contrast, the 11β-amidated product is the only observed product in manganese porphyrin-catalyzed amidation reaction. The benzylic amidation undergoes a hydrogen-atom-abstraction/nitrogen-rebound (HAA/NR) mechanism, in which hydrogen atom abstraction is followed by nitrogen rebound, leading to the 11β-amidated product. The benzylic C(sp3)-H bond amidation at the C-11 position is more favorable than aromatic amidation at the C-6 position by 4.9 kcal/mol. Therefore, the DFT computational results are consistent with the experiments that manganese porphyrin-catalyzed C-H bond hydroxylation and amidation of equilenin acetate have different regioselectivities.
Collapse
Affiliation(s)
- Liyuan Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Qunmin Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiahe Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Ning Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaoli Fang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yun-Fang Yang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yuan-Bin She
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
39
|
Lang K, Li C, Kim I, Zhang XP. Enantioconvergent Amination of Racemic Tertiary C-H Bonds. J Am Chem Soc 2020; 142:20902-20911. [PMID: 33249845 DOI: 10.1021/jacs.0c11103] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Racemization is considered to be an intrinsic stereochemical feature of free radical chemistry as can be seen in traditional radical halogenation reactions of optically active tertiary C-H bonds. If the facile process of radical racemization could be effectively combined with an ensuing step of bond formation in an enantioselective fashion, then it would give rise to deracemizative functionalization of racemic tertiary C-H bonds for stereoselective construction of chiral molecules bearing quaternary stereocenters. As a demonstration of this unique potential in radical chemistry, we herein report that metalloradical catalysis can be successfully applied to devise Co(II)-based catalytic system for enantioconvergent radical amination of racemic tertiary C(sp3)-H bonds. The key to the success of the radical process is the development of Co(II)-based metalloradical catalyst with fitting steric, electronic, and chiral environments of the D2-symmetric chiral amidoporphyrin as the supporting ligand. The existence of optimal reaction temperature is recognized as an important factor in the realization of the enantioconvergent radical process. Supported by an optimized chiral ligand, the Co(II)-based metalloradical system can effectively catalyze the enantioconvergent 1,6-amination of racemic tertiary C(sp3)-H bonds at the optimal temperature, affording chiral α-tertiary amines in excellent yields with high enantiocontrol of the newly created quaternary stereocenters. Systematic studies, including experiments utilizing optically active deuterium-labeled C-H substrates as a model system, shed light on the underlying mechanistic details of this new catalytic process for enantioconvergent radical C-H amination. The remarkable power to create quaternary stereocenters bearing multiple functionalities from ubiquitous C-H bonds, as showcased with stereoselective construction of bicyclic N-heterocycles, opens the door for future synthetic applications of this new radical technology.
Collapse
Affiliation(s)
- Kai Lang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - Chaoqun Li
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Isaac Kim
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| | - X Peter Zhang
- Department of Chemistry, Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, United States
| |
Collapse
|
40
|
Florentino L, López L, Barroso R, Cabal M, Valdés C. Synthesis of Pyrrolidines by a Csp
3
‐Csp
3
/Csp
3
‐
N
Transition‐Metal‐Free Domino Reaction of Boronic Acids with γ‐Azido‐
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2020; 60:1273-1280. [DOI: 10.1002/anie.202010528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/29/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Lucía Florentino
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Raquel Barroso
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - María‐Paz Cabal
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
41
|
Florentino L, López L, Barroso R, Cabal M, Valdés C. Synthesis of Pyrrolidines by a Csp
3
‐Csp
3
/Csp
3
‐
N
Transition‐Metal‐Free Domino Reaction of Boronic Acids with γ‐Azido‐
N
‐Tosylhydrazones. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Lucía Florentino
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Lucía López
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Raquel Barroso
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - María‐Paz Cabal
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| | - Carlos Valdés
- Departamento de Química Orgánica e Inorgánica Instituto de Química Organometálica “Enrique Moles” Universidad de Oviedo C/ Julián Clavería 8 33006 Oviedo Spain
| |
Collapse
|
42
|
Zhang Z, Gevorgyan V. Co-Catalyzed Transannulation of Pyridotriazoles with Isothiocyanates and Xanthate Esters. Org Lett 2020; 22:8500-8504. [PMID: 33044833 PMCID: PMC7655727 DOI: 10.1021/acs.orglett.0c03099] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient radical transannulation reaction of pyridotriazoles with isothiocyanates and xanthate esters was developed. This method features conversion of pyridotriazoles into two N-fused heterocyclic aromatic systems-imino-thiazolopyridines and oxo-thiazolopyridine derivatives-via one-step Co(II)-catalyzed transannulation reaction proceeding via a radical mechanism. The synthetic usefulness of the developed method was illustrated in the synthesis of amino acid derivatives and further transformations of obtained reaction products.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas 75080, United States
| |
Collapse
|
43
|
Zhou M, Lankelma M, Vlugt JI, Bruin B. Catalytic Synthesis of 8‐Membered Ring Compounds via Cobalt(III)‐Carbene Radicals. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Jarl Ivar Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| | - Bas Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA) Science Park 904 1098 XH Amsterdam The Netherlands
| |
Collapse
|
44
|
Zhou M, Lankelma M, van der Vlugt JI, de Bruin B. Catalytic Synthesis of 8-Membered Ring Compounds via Cobalt(III)-Carbene Radicals. Angew Chem Int Ed Engl 2020; 59:11073-11079. [PMID: 32259369 PMCID: PMC7317878 DOI: 10.1002/anie.202002674] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 12/20/2022]
Abstract
The metalloradical activation of o-aryl aldehydes with tosylhydrazide and a cobalt(II) porphyrin catalyst produces cobalt(III)-carbene radical intermediates, providing a new and powerful strategy for the synthesis of medium-sized ring structures. Herein we make use of the intrinsic radical-type reactivity of cobalt(III)-carbene radical intermediates in the [CoII (TPP)]-catalyzed (TPP=tetraphenylporphyrin) synthesis of two types of 8-membered ring compounds; novel dibenzocyclooctenes and unprecedented monobenzocyclooctadienes. The method was successfully applied to afford a variety of 8-membered ring compounds in good yields and with excellent substituent tolerance. Density functional theory (DFT) calculations and experimental results suggest that the reactions proceed via hydrogen atom transfer from the bis-allylic/benzallylic C-H bond to the carbene radical, followed by two divergent processes for ring-closure to the two different types of 8-membered ring products. While the dibenzocyclooctenes are most likely formed by dissociation of o-quinodimethanes (o-QDMs) which undergo a non-catalyzed 8π-cyclization, DFT calculations suggest that ring-closure to the monobenzocyclooctadienes involves a radical-rebound step in the coordination sphere of cobalt. The latter mechanism implies that unprecedented enantioselective ring-closure reactions to chiral monobenzocyclooctadienes should be possible, as was confirmed for reactions mediated by a chiral cobalt-porphyrin catalyst.
Collapse
Affiliation(s)
- Minghui Zhou
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Marianne Lankelma
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Jarl Ivar van der Vlugt
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| | - Bas de Bruin
- Homogeneous, Supramolecular and Bio-Inspired Catalysis group (HomKat)Van't Hoff Institute for Molecular Sciences (HIMS)University of Amsterdam (UvA)Science Park 9041098XHAmsterdamThe Netherlands
| |
Collapse
|
45
|
Alcântara AFP, Fontana LA, Almeida MP, Rigolin VH, Ribeiro MA, Barros WP, Megiatto JD. Control over the Redox Cooperative Mechanism of Radical Carbene Transfer Reactions for the Efficient Active‐Metal‐Template Synthesis of [2]Rotaxanes. Chemistry 2020; 26:7808-7822. [DOI: 10.1002/chem.201905602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Indexed: 02/01/2023]
Affiliation(s)
- Arthur F. P. Alcântara
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
- Instituto Federal do Sertão Pernambucano Estrada do Tamboril 56200-000 Ouricuri Brazil
| | - Liniquer A. Fontana
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marlon P. Almeida
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Vitor H. Rigolin
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Marcos A. Ribeiro
- Departamento de QuímicaUniversidade Federal do Espírito Santo Av. Fernando Ferrari, 514 29075-910 Vitória Brazil
| | - Wdeson P. Barros
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| | - Jackson D. Megiatto
- Institute of ChemistryUniversity of Campinas (UNICAMP) PO Box 6154 13083-970 Campinas Brazil
| |
Collapse
|
46
|
Zhu D, Chen L, Fan H, Yao Q, Zhu S. Recent progress on donor and donor-donor carbenes. Chem Soc Rev 2020; 49:908-950. [PMID: 31958107 DOI: 10.1039/c9cs00542k] [Citation(s) in RCA: 234] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Donor and donor-donor carbenes are two important kinds of carbenes, which have experienced tremendous growth in the past two decades. This review provides a comprehensive overview of the recent development of donor and donor-donor carbene chemistry. The development of this chemistry offers efficient protocols to construct a wide variety of C-C and C-X bonds in organic synthesis. This review is organized based on the different types of carbene precursors, including diazo compounds, hydrazones, enynones, cycloheptatrienes and cyclopropenes. The typical transformations, the reaction mechanisms, as well as their subsequent applications in the synthesis of complex natural products and bioactive molecules are discussed. Due to the rapidly increasing interest in this area, we believe that this review will provide a timely and comprehensive discussion of recent progress in donor and donor-donor carbene chemistry.
Collapse
Affiliation(s)
- Dong Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China.
| | | | | | | | | |
Collapse
|
47
|
Hua TB, Xiao C, Yang QQ, Chen JR. Recent advances in asymmetric synthesis of 2-substituted indoline derivatives. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.07.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
48
|
Wang H, Richard Y, Wan Q, Zhou C, Che C. Iridium(III)‐Catalyzed Intermolecular C(sp
3
)−H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angew Chem Int Ed Engl 2020; 59:1845-1850. [DOI: 10.1002/anie.201911138] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/18/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yann Richard
- Faculté des SciencesUniversité catholique de Louvain Place des Sciences 2 1348 Louvain-la-Neuve Belgium
| | - Qingyun Wan
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- College of Chemistry and Materials ScienceJinan University Guangzhou China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|
49
|
Liu Y, You T, Wang HX, Tang Z, Zhou CY, Che CM. Iron- and cobalt-catalyzed C(sp3)–H bond functionalization reactions and their application in organic synthesis. Chem Soc Rev 2020; 49:5310-5358. [DOI: 10.1039/d0cs00340a] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the developments in iron and cobalt catalyzed C(sp3)–H bond functionalization reactions with emphasis on their applications in organic synthesis, i.e. natural products and pharmaceuticals synthesis and/or modification.
Collapse
Affiliation(s)
- Yungen Liu
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
| | - Tingjie You
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Hai-Xu Wang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Zhou Tang
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Cong-Ying Zhou
- Department of Chemistry
- State Key Laboratory of Synthetic Chemistry
- The University of Hong Kong
- Hong Kong
- P. R. China
| | - Chi-Ming Che
- Department of Chemistry
- Southern University of Science and Technology
- Shenzhen
- P. R. China
- Department of Chemistry
| |
Collapse
|
50
|
Wang H, Richard Y, Wan Q, Zhou C, Che C. Iridium(III)‐Catalyzed Intermolecular C(sp
3
)−H Insertion Reaction of Quinoid Carbene: A Radical Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201911138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hai‐Xu Wang
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Yann Richard
- Faculté des SciencesUniversité catholique de Louvain Place des Sciences 2 1348 Louvain-la-Neuve Belgium
| | - Qingyun Wan
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
| | - Cong‐Ying Zhou
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- College of Chemistry and Materials ScienceJinan University Guangzhou China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic ChemistryDepartment of ChemistryThe University of Hong Kong Pokfulam Road Hong Kong China
- HKU Shenzhen Institute of Research & Innovation Shenzhen China
| |
Collapse
|