1
|
Li Y, Tian R, Zou Y, Wang T, Liu J. Strategies and Applications for Supramolecular Protein Self-Assembly. Chemistry 2024:e202402624. [PMID: 39158515 DOI: 10.1002/chem.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Supramolecular chemistry achieves higher-order molecular self-assembly through non-covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a "bottom-up" perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self-assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self-assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host-guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies' unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio-delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruizhen Tian
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yingping Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
2
|
Luo L, Xu C, Shi W, Liu Q, Ou-Yang Y, Qian J, Wang Y, Li Q. In Situ Growth of Sub-50-nm Zirconium Aminobenzenedicarboxylate Metal-Organic Framework Nanocrystals for Carbon Dioxide Capture. J Phys Chem Lett 2023; 14:8437-8443. [PMID: 37712903 DOI: 10.1021/acs.jpclett.3c02003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Controlled synthesis of sub-50-nm metal-organic frameworks (MOFs), which are usually called porous coordination polymers, exhibits huge potential applications in gas storage and separation. Herein, surface-confined growth of zirconium aminobenzenedicarboxylate MOF (UIO-66-NH2) nanocrystals on polypyrrole hollow spheres (PPyHSs) is achieved through covalently grafted benzene dicarboxylic acid ligands using bridged molecules. PPyHSs modified with ligand molecules prohibit excessive growth of UIO-66-NH2 nanocrystals on their confined surface, resulting in smaller-sized nanocrystals (<50 nm) and a monolayer UIO-66-NH2 coating. Benefiting from the homogeneous dispersion of UIO-66-NH2 nanocrystals with a smaller size (40 ± 10 nm), the as-prepared PPyHSs@UIO-66-NH2 hybrids with high specific surface area and pore volume exhibit remarkable CO2 capture performance. Moreover, the time required to reach the maximum CO2 adsorption capacity shortens with decreasing UIO-66-NH2 crystals size. As a proof of concept, the proposed covalent grafting strategy can be used for synthesizing sub-50-nm UIO-66-NH2 nanocrystals for CO2 capture.
Collapse
Affiliation(s)
- Liangmei Luo
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Chenyu Xu
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Wenli Shi
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Qian Liu
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Yingying Ou-Yang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Jia Qian
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Yanqing Wang
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| | - Qi Li
- Department of Materials Science, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, Jiangsu, People's Republic of China
| |
Collapse
|
3
|
Li Y, Wang R, Liu X, Li K, Xu Q. Recent advances in MOF-bio-interface: a review. NANOTECHNOLOGY 2023; 34:202002. [PMID: 36796094 DOI: 10.1088/1361-6528/acbc81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Metal-organic frameworks (MOFs), as a class of promising material with adjustable function and controllable structure, have been widely used in the food industry, chemical industry, biological medicine, and sensors. Biomacromolecules and living systems play a critical role in the world. However, the insufficiency in stability, recyclability, and efficiency, significantly impedes their further utilization in slightly harsh conditions. MOF-bio-interface engineering effectively address the above-mentioned shortages of biomacromolecules and living systems, and thereby attracting considerable attentions. Herein, we systematically review the achievements in the area of MOF-bio-interface. In particular, we summarize the interface between MOFs and proteins (enzymes and non-enzymatic proteins), polysaccharides, DNA, cells, microbes, and viruses. Meanwhile, we discuss the limitations of this approach and propose future research directions. We expect that this review could provide new insights and inspire new research efforts towards life science and material science.
Collapse
Affiliation(s)
- Yingfeng Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Xue Liu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ke Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Qing Xu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
4
|
Liu J, Li H, Yan B, Zhong C, Zhao Y, Guo X, Zhong J. Rational Design of a Zr-MOF@Curli-Polyelectrolyte Hybrid Membrane toward Efficient Chemical Protection, Moisture Permeation, and Catalytic Detoxification. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53421-53432. [PMID: 36384285 DOI: 10.1021/acsami.2c16711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Developing high-performance protective materials is important for soldiers and civilians who are exposed to the atmosphere of highly toxic chemical warfare agents (CWAs). Polyelectrolyte membranes are promising candidates with excellent chemical resistance and moisture permeability, but they cannot efficiently degrade CWAs. Here, we design and prepare a hybrid membrane through in situ growth of catalytically active zirconium-based metal-organic frameworks (Zr-MOFs) on a polyelectrolyte membrane mediated by biofilm-inspired curli nanofibers (CNFs). Superior to the bare polyelectrolyte membrane, the prepared MOF-808@CNF-PQ hybrid membrane exhibits improved rejection of the nerve agent simulant dimethyl methyl phosphonate (DMMP) vapor and permeation of the water vapor by 113 and 45%, respectively. The water/DMMP selectivity of the hybrid membrane reaches 498.6, approximately 13 times that of the commercial polyelectrolyte membrane Nafion 117. In addition, the hybrid membrane possesses appreciable catalytic activity for the hydrolysis of the nerve agent simulant dimethyl 4-nitrophenyl phosphate (DMNP) with a half-life of ∼38 min. Nanomechanical characterization results based on atomic force microscopy (AFM) techniques demonstrate the critical role of CNFs in mediating Zr-MOF nucleation and the dominant effect of electrostatic interactions on self-assembly of CNFs on polyelectrolyte base. It is also confirmed that the Zr-MOF toppings serve as the key components in physically adsorbing and chemically degrading the DMNP molecules through multiple strong intermolecular interactions. Our work offers a rational strategy to develop advanced membranes toward efficient chemical protection, moisture permeation, and catalytic detoxification against CWAs.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing100191, China
| | - Heguo Li
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing100191, China
| | - Bin Yan
- National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu610065, China
| | - Chao Zhong
- Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen518055, China
| | - Yue Zhao
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing100191, China
| | - Xuan Guo
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing100191, China
| | - Jinyi Zhong
- State Key Laboratory of NBC Protection for Civilian, Institute of Chemical Defense, Beijing100191, China
| |
Collapse
|
5
|
Wang Q, Sun J, Wei D. Two‐Dimensional
Metal Organic Frameworks and Covalent Organic Frameworks. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Qiankun Wang
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Jiang Sun
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers Fudan University Shanghai 200433 China
- Department of Macromolecular Science Fudan University Shanghai 200433 China
- Laboratory of Molecular Materials and Devices Fudan University Shanghai 200433 China
| |
Collapse
|
6
|
Lee SW, Lee W, Kim I, Lee D, Park D, Kim W, Park J, Lee JH, Lee G, Yoon DS. Bio-Inspired Electronic Textile Yarn-Based NO 2 Sensor Using Amyloid-Graphene Composite. ACS Sens 2021; 6:777-785. [PMID: 33253539 DOI: 10.1021/acssensors.0c01582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Graphene-based e-textile gas sensors have received significant attention as wearable electronic devices for human healthcare and environmental monitoring. Theoretically, more the attached graphene on the devices, better is the gas-sensing performance. However, it has been hampered by poor adhesion between graphene and textile platforms. Meanwhile, amyloid nanofibrils are reputed for their ability to improve adhesion between materials, including between graphene and microorganisms. Despite that fact, there has been no attempt to apply amyloid nanofibrils to fabricate graphene-based e-textiles. By biomimicking the adhesion ability of amyloid nanofibrils, herein, we developed a graphene-amyloid nanofibril hybrid e-textile yarn (RGO/amyloid nanofibril/CY) for the detection of NO2. Compared to traditional e-textile yarn, the RGO/amyloid nanofibril/CY showed better performance in response time, sensing efficiency, sensitivity, and selectivity for NO2. Last, we suggested a practical use of RGO/amyloid nanofibril/CY combined with a light-emitting diode as a wearable e-textile gas sensor.
Collapse
Affiliation(s)
- Sang Won Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Wonseok Lee
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Insu Kim
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongtak Lee
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Dongsung Park
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woong Kim
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jinsung Park
- Department of Control and Instrumentation Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Jeong Hoon Lee
- Department of Electrical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Gyudo Lee
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
| | - Dae Sung Yoon
- School of Biomedical Engineering, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Song L, Li S, Li T. In situ reconstruction of ZIF-8 loaded on fibrous supports. CrystEngComm 2021. [DOI: 10.1039/d1ce00790d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fibre-supported ZIF-8 can undergo a full degradation–recrystallization cycle in a vapor phase with partial recovery of its porosity.
Collapse
Affiliation(s)
- Leilei Song
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201203, Shanghai, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Siqi Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China
| | - Tao Li
- School of Physical Science and Technology, ShanghaiTech University, 201210 Shanghai, People's Republic of China
| |
Collapse
|
8
|
DeBenedictis EP, Zhang Y, Keten S. Structure and Mechanics of Bundled Semiflexible Polymer Networks. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00191] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elizabeth P. DeBenedictis
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Zhang
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Sinan Keten
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
9
|
Kalaj M, Cohen SM. Spray‐Coating of Catalytically Active MOF–Polythiourea through Postsynthetic Polymerization. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202004205] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| | - Seth M. Cohen
- Department of Chemistry and Biochemistry University of California, San Diego La Jolla CA 92093 USA
| |
Collapse
|
10
|
Kalaj M, Cohen SM. Spray-Coating of Catalytically Active MOF-Polythiourea through Postsynthetic Polymerization. Angew Chem Int Ed Engl 2020; 59:13984-13989. [PMID: 32369673 DOI: 10.1002/anie.202004205] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Indexed: 11/09/2022]
Abstract
A UiO-66-NCS MOF was formed by postsynthetic modification of UiO-66-NH2 . The UiO-66-NCS MOFs displays a circa 20-fold increase in activity against the chemical warfare agent simulant dimethyl-4-nitrophenyl phosphate (DMNP) compared to UiO-66-NH2 , making it the most active MOF materials using a validated high-throughput screening. The -NCS functional groups provide reactive handles for postsynthetic polymerization of the MOFs into functional materials. These MOFs can be tethered to amine-terminated polypropylene polymers (Jeffamines) through a facile room-temperature synthesis with no byproducts. The MOFs are then crosslinked into a MOF-polythiourea (MOF-PTU) composite material, maintaining the catalytic properties of the MOF and the flexibility of the polymer. This MOF-PTU hybrid material was spray-coated onto Nyco textile fibers, displaying excellent adhesion to the fiber surface. The spray-coated fibers were screened for the degradation of DMNP and showed durable catalytic reactivity.
Collapse
Affiliation(s)
- Mark Kalaj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Seth M Cohen
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| |
Collapse
|
11
|
Yang Z, Asoh TA, Uyama H. A cellulose monolith supported metal/organic framework as a hierarchical porous material for a flow reaction. Chem Commun (Camb) 2020; 56:411-414. [DOI: 10.1039/c9cc08232h] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel cellulose monolith supported ZIF-8 metal organic framework as a hierarchical porous material was designed by using a highly effective pump injection method, which is used for a flow-based reaction.
Collapse
Affiliation(s)
- Zhaohang Yang
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Taka-Aki Asoh
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry
- Graduate School of Engineering
- Osaka University
- Osaka 565-0871
- Japan
| |
Collapse
|
12
|
Li Y, Li K, Wang X, An B, Cui M, Pu J, Wei S, Xue S, Ye H, Zhao Y, Liu M, Wang Z, Zhong C. Patterned Amyloid Materials Integrating Robustness and Genetically Programmable Functionality. NANO LETTERS 2019; 19:8399-8408. [PMID: 31512886 DOI: 10.1021/acs.nanolett.9b02324] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The precise manipulation, localization, and assembly of biological and bioinspired molecules into organized structures have greatly promoted material science and bionanotechnology. Further technological innovation calls for new patternable soft materials with the long-sought qualities of environmental tolerance and functional flexibility. Here, we report a patterned amyloid material (PAM) platform for producing hierarchically ordered structures that integrate these material attributes. This platform, combining soft lithography with generic amyloid monomer inks (consisting of genetically engineered biofilm proteins dissolved in hexafluoroisopropanol), along with methanol-assisted curing, enables the spatially controlled deposition and in situ reassembly of amyloid monomers. The resulting patterned structures exhibit spectacular chemical and thermal stability and mechanical robustness under harsh conditions. The PAMs can be programmed for a vast array of multilevel functionalities, including anchoring nanoparticles, enabling diverse fluorescent protein arrays, and serving as self-supporting porous sheets for cellular growth. This PAM platform will not only drive innovation in biomanufacturing but also broaden the applications of patterned soft architectures in optics, electronics, biocatalysis, analytical regents, cell engineering, medicine, and other areas.
Collapse
Affiliation(s)
- Yingfeng Li
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ke Li
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
| | - Xinyu Wang
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Bolin An
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Mengkui Cui
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Jiahua Pu
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Shicao Wei
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| | - Shuai Xue
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Haifeng Ye
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences , East China Normal University , Shanghai 200241 , China
| | - Yanhua Zhao
- Department of Mechanical and Biomedical Engineering , City University of Hong Kong , Hong Kong 999077 , China
| | - Minjie Liu
- Department of Mechanical and Biomedical Engineering , City University of Hong Kong , Hong Kong 999077 , China
| | - Zuankai Wang
- Department of Mechanical and Biomedical Engineering , City University of Hong Kong , Hong Kong 999077 , China
| | - Chao Zhong
- Materials and Physical Biology Division, School of Physical Science and Technology , ShanghaiTech University , Shanghai 201210 , China
| |
Collapse
|
13
|
Nie L, Li Y, Chen S, Li K, Huang Y, Zhu Y, Sun Z, Zhang J, He Y, Cui M, Wei S, Qiu F, Zhong C, Liu W. Biofilm Nanofiber-Coated Separators for Dendrite-Free Lithium Metal Anode and Ultrahigh-Rate Lithium Batteries. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32373-32380. [PMID: 31407877 DOI: 10.1021/acsami.9b08656] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rechargeable batteries that combine high energy density with high power density are highly demanded. However, the wide utilization of lithium metal anode is limited by the uncontrollable dendrite growth, and the conventional lithium-ion batteries (LIBs) commonly suffer from low rate capability. Here, we for the first time develop a biofilm-coated separator for high-energy and high-power batteries. It reveals that the coating of Escherichia coli protein nanofibers can improve electrolyte wettability and lithium transference number and enhance adhesion between separators and electrodes. Thus, lithium dendrite growth is impeded because of the uniform distribution of the Li-ion flux. The modified separator also enables the stable cycling of high-voltage Li|Li1.2Mn0.6Ni0.2O2 (LNMO) cells at an extremely high rate of 20 C, delivering a high specific capacity of 83.1 mA h g-1, which exceeds the conventional counterpart. In addition, the modified separator in the Li4Ti5O12|LNMO full cell also exhibits a larger capacity of 68.2 mA h g-1 at 10 C than the uncoated separator of 37.4 mA h g-1. Such remarkable performances of the modified separators arise from the conformal, adhesive, and endurable coating of biofilm nanofibers. Our work opens up a new opportunity for protein-based biomaterials in practical application of high-energy and high-power batteries.
Collapse
Affiliation(s)
| | - Yingfeng Li
- Shanghai Institute of Ceramics , Chinese Academy of Sciences , Shanghai 200050 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Katayama Y, Bentz KC, Cohen SM. Defect-Free MOF-Based Mixed-Matrix Membranes Obtained by Corona Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13029-13037. [PMID: 30855936 DOI: 10.1021/acsami.9b02539] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Functionalized UiO-66 metal-organic frameworks (MOF) particles were covalently grafted with hydride-terminated poly(dimethylsiloxane) (PDMS) via postsynthetic modification. These PDMS-coated MOF particles (termed here "corona-MOF") were used in the preparation of mixed-matrix membranes (MMMs). Defect-free MMMs with weight loadings of 50% were achieved with corona-MOF particles, attributed to the improved dispersibility of the corona-MOF particles and covalent linkages between the corona-MOF particles and the polymer matrix. The PDMS MMMs showed distinct separation features in single gas permeation tests, displaying much higher CO2 gas permeation with no decrease in selectivity when compared to MMMs prepared with unmodified UiO-66 particles. Single gas separation tests with CO2, N2, and propane were performed to probe the separation mechanism of the corona-MOF MMMs, demonstrating that these MMMs avoid nonideal "sieve-in-a-cage" and "plugged sieves" scenarios. Additionally, due to covalent bond formation between both the MOF and the polymer matrix in corona-MOF MMMs, particle aggregation is negligible during film curing, allowing for the formation of flexible, self-standing MMMs of <1 μm in thickness. Low quantities of polymer covalently attached to the MOF surface (<5 wt %) are sufficient to fabricate thin, defect-free, high MOF-loading MMMs.
Collapse
Affiliation(s)
- Yuji Katayama
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
- Asahi Kasei Corporation , 2-1 Samejima , Fuji , Shizuoka 416-8501 , Japan
| | - Kyle C Bentz
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| | - Seth M Cohen
- Department of Chemistry and Biochemistry , University of California , La Jolla, San Diego , California 92093 , United States
| |
Collapse
|
15
|
DeBenedictis EP, Keten S. Mechanical unfolding of alpha- and beta-helical protein motifs. SOFT MATTER 2019; 15:1243-1252. [PMID: 30604826 DOI: 10.1039/c8sm02046a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alpha-helices and beta-sheets are the two most common secondary structure motifs in proteins. Beta-helical structures merge features of the two motifs, containing two or three beta-sheet faces connected by loops or turns in a single protein. Beta-helical structures form the basis of proteins with diverse mechanical functions such as bacterial adhesins, phage cell-puncture devices, antifreeze proteins, and extracellular matrices. Alpha-helices are commonly found in cellular and extracellular matrix components, whereas beta-helices such as curli fibrils are more common as bacterial and biofilm matrix components. It is currently not known whether it may be advantageous to use one helical motif over the other for different structural and mechanical functions. To better understand the mechanical implications of using different helix motifs in networks, here we use Steered Molecular Dynamics (SMD) simulations to mechanically unfold multiple alpha- and beta-helical proteins at constant velocity at the single molecule scale. We focus on the energy dissipated during unfolding as a means of comparison between proteins and work normalized by protein characteristics (initial and final length, # H-bonds, # residues, etc.). We find that although alpha-helices such as keratin and beta-helices CsgA and CsgB can require similar amounts of work to unfold, the normalized work per hydrogen bond, initial end to end length, and number of residues is greater for beta-helices at the same pulling rate. To explain this, we analyze the orientation of the backbone alpha carbons and backbone hydrogen bonds during unfolding. We find that the larger width and shorter height of beta-helices results in smaller angles between the protein backbone and the pulling direction during unfolding. As subsequent strands are separated from the beta-helix core, the angle between the backbone and the pulling direction diminishes. This marks a transition where beta-sheet hydrogen bonds become loaded predominantly in a collective shearing mode, which requires a larger rupture force. This finding underlines the importance of geometry in optimizing resistance to mechanical unfolding in proteins. The helix radius is identified here as an important parameter that governs how much sacrificial energy dissipation capacity can be stored in protein networks, where beta-helices offer unique properties.
Collapse
Affiliation(s)
- Elizabeth P DeBenedictis
- Department of Civil and Environmental Engineering and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA.
| | | |
Collapse
|
16
|
Li Q, Zhu H, Tang Y, Zhu P, Ma H, Ge C, Yan F. Chemically grafting nanoscale UIO-66 onto polypyrrole nanotubes for long-life lithium–sulfur batteries. Chem Commun (Camb) 2019; 55:12108-12111. [DOI: 10.1039/c9cc06362e] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Chemical grafting of nanoscale UIO-66 onto polypyrrole nanotubes (sesame-like PPyNTs@UIO-66) was performed successfully, and the corresponding PPyNT@UIO-66-S cathode greatly improves the cycling performance of lithium–sulfur batteries.
Collapse
Affiliation(s)
- Qi Li
- Department of Polymer Materials and Science
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| | - Hai Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| | - Yanfeng Tang
- Department of Polymer Materials and Science
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| | - Peng Zhu
- Department of Polymer Materials and Science
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| | - Haiyan Ma
- Department of Polymer Materials and Science
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| | - Cunwang Ge
- Department of Polymer Materials and Science
- College of Chemistry and Chemical Engineering
- Nantong University
- Nantong
- China
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou
| |
Collapse
|