1
|
Sun Q, Xu Y, Yang L, Zheng CL, Wang G, Wang HB, Fang Z, Wang CS, Guo K. Direct C-H Sulfuration: Synthesis of Disulfides, Dithiocarbamates, Xanthates, Thiocarbamates and Thiocarbonates. Chem Asian J 2024; 19:e202400124. [PMID: 38421239 DOI: 10.1002/asia.202400124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
In light of the important biological activities and widespread applications of organic disulfides, dithiocarbamates, xanthates, thiocarbamates and thiocarbonates, the continual persuit of efficient methods for their synthesis remains crucial. Traditionally, the preparation of such compounds heavily relied on intricate multi-step syntheses and the use of highly prefunctionalized starting materials. Over the past two decades, the direct sulfuration of C-H bonds has evolved into a straightforward, atom- and step-economical method for the preparation of organosulfur compounds. This review aims to provide an up-to-date discussion on direct C-H disulfuration, dithiocarbamation, xanthylation, thiocarbamation and thiocarbonation, with a special focus on describing scopes and mechanistic aspects. Moreover, the synthetic limitations and applications of some of these methodologies, along with the key unsolved challenges to be addressed in the future are also discussed. The majority of examples covered in this review are accomplished via metal-free, photochemical or electrochemical approaches, which are in alignment with the overraching objectives of green and sustainable chemistry. This comprehensive review aims to consolidate recent advancements, providing valuable insights into the dynamic landscape of efficient and sustainable synthetic strategies for these crucial classes of organosulfur compounds.
Collapse
Affiliation(s)
- Qiao Sun
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Yuan Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Liu Yang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chun-Ling Zheng
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Guowei Wang
- School of Food Science and Light Industry, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Hai-Bo Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Zheng Fang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Chang-Sheng Wang
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| | - Kai Guo
- School of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Rd S., Nanjing, 211816, PR China
| |
Collapse
|
2
|
Wang Z, Yan CX, Liu R, Li X, Dai J, Li X, Shi D. Photo-induced versatile aliphatic C-H functionalization via electron donor-acceptor complex. Sci Bull (Beijing) 2024; 69:345-353. [PMID: 38044193 DOI: 10.1016/j.scib.2023.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/05/2023]
Abstract
The ability to selectively introduce diverse functionality onto hydrocarbons is of substantial value in the synthesis of both small molecules and pharmaceuticals. In this endeavour, as a photocatalyst- and metal-free process, the electron donor-acceptor (EDA) strategy has not been well explored. Here we report an approach to aliphatic carbon-hydrogen bond diversification through an EDA complex constituted by HCl and SIV=O groups. As an efficient hydrogen atom transfer (HAT) reagent, chlorine radical can be produced via a proton-coupled electron transfer process in this system. Based on this unusual path, a photo-promoted versatile aliphatic C-H functionalization is developed without photo- and metal-catalysts, including thiolation, arylation, alkynylation, and allylation. This conversion has concise and ambient reaction conditions, good functional group tolerance, and substrate diversity, and provides an alternative solution for the high value-added utilization of bulk light alkanes.
Collapse
Affiliation(s)
- Zemin Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Chao-Xian Yan
- School of Chemistry & Chemical Engineering, Ankang University, Ankang 725000, China
| | - Ruihua Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiaowei Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Jiajia Dai
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Laboratory of Marine Drugs and Biological Products, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
3
|
Zhang B, Erb FR, Vasilopoulos A, Voight EA, Alexanian EJ. General Synthesis of N-Alkylindoles from N, N-Dialkylanilines via [4 + 1] Annulative Double C-H Functionalization. J Am Chem Soc 2023; 145:26540-26544. [PMID: 38029320 PMCID: PMC10789186 DOI: 10.1021/jacs.3c10751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Strategies enabling the construction of indoles and novel polycyclic heterocycles from simple building blocks streamline syntheses in synthetic and medicinal chemistry. Herein, we report a C-H functionalization approach to N-alkylindoles proceeding via a double, site-selective C(sp3)-H/C(sp2)-H [4 + 1] annulation of readily accessed N,N-dialkylanilines. This protocol features a site-selective hydrogen atom transfer by a tuned N-tBu amidyl radical and addition of a sulfonyl diazo coupling partner, which promotes highly site-selective homolytic aromatic substitution of the (hetero)aromatic core. Mild decarboxylation of the annulation product enables the overall introduction of a carbyne equivalent into the N,N-dialkylaniline scaffold. Furthermore, the site-selectivity and mild conditions of the indolization facilitate direct access to N-alkyl indole scaffolds in late-stage functionalization (LSF) settings.
Collapse
Affiliation(s)
- Bowen Zhang
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Frederik R. Erb
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | | | - Eric A. Voight
- AbbVie, Inc., North Chicago, Illinois 60064, United States
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
4
|
Bakanas I, Lusi RF, Wiesler S, Hayward Cooke J, Sarpong R. Strategic application of C-H oxidation in natural product total synthesis. Nat Rev Chem 2023; 7:783-799. [PMID: 37730908 DOI: 10.1038/s41570-023-00534-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/22/2023]
Abstract
The oxidation of unactivated C-H bonds has emerged as an effective tactic in natural product synthesis and has altered how chemists approach the synthesis of complex molecules. The use of C-H oxidation methods has simplified the process of synthesis planning by expanding the choice of starting materials, limiting functional group interconversion and protecting group manipulations, and enabling late-stage diversification. In this Review, we propose classifications for C-H oxidations on the basis of their strategic purpose: type 1, which installs functionality that is used to establish the carbon skeleton of the target; type 2, which is used to construct a heterocyclic ring; and type 3, which installs peripheral functional groups. The reactions are further divided based on whether they are directed or undirected. For each classification, examples from recent literature are analysed. Finally, we provide two case studies of syntheses from our laboratory that were streamlined by the judicious use of C-H oxidation reactions.
Collapse
Affiliation(s)
- Ian Bakanas
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Robert F Lusi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Stefan Wiesler
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Jack Hayward Cooke
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Wang S, Yang L, Liang F, Zhong Y, Liu X, Wang Q, Zhu D. Synthetic exploration of electrophilic xanthylation via powerful N-xanthylphthalimides. Chem Sci 2023; 14:9197-9206. [PMID: 37655020 PMCID: PMC10466340 DOI: 10.1039/d3sc03194b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 07/30/2023] [Indexed: 09/02/2023] Open
Abstract
Organic xanthates are broadly applied as synthetic intermediates and bioactive molecules in synthetic chemistry. Electrophilic xanthylation represents a promising approach but has rarely been explored mainly due to the lack of powerful electrophilic reagents. Herein, synthetic exploration of electrophilic xanthylation via powerful N-xanthylphthalimides was investigated. This strategy might provide a new avenue to less-concerned but meaningful electrophilic xanthylation in organic synthesis. With the help of these powerful reagents, electrophilic xanthylation of a wide range of substrates including aryl/alkenyl boronic acids, β-keto esters, 2-oxindole, and alkyl amines, as well as previously inaccessible phenols (first report) was achieved under mild reaction conditions. Notably, this simple electrophilic xanthylation of alkyl amine substrates will occur in the desulfuration reaction, consistent with the previously reported methods. Similarly, xanthamide and thioxanthate groups could also be transformed into desired nucleophiles via this electrophilic reagent strategy. The broad substrate scope, excellent functional group compatibility and late-stage functionalization of bioactive or functional molecules made them very attractive as general reagents which will allow rapid incorporation of SC(S)R (R = OEt, Oalkyl, NEt2 and SEt) into the target molecules.
Collapse
Affiliation(s)
- Shuo Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Liuqing Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Fangcan Liang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Yu Zhong
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Xueru Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| | - Qingling Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University Xi'an 710069 China
| | - Dianhu Zhu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an 710127 China
| |
Collapse
|
6
|
Nanjo T, Matsumoto A, Oshita T, Takemoto Y. Synthesis of Chlorinated Oligopeptides via γ- and δ-Selective Hydrogen Atom Transfer Enabled by the N-Chloropeptide Strategy. J Am Chem Soc 2023; 145:19067-19075. [PMID: 37594470 DOI: 10.1021/jacs.3c06931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The introduction of a chlorine atom could potentially endow peptide derivatives with notable bioactivity and applicability. However, despite considerable recent progress in C(sp3)-H functionalization chemistry, a general method for the site-selective chlorination of inert aliphatic C-H bonds in peptides still remains elusive. Herein, we report a site-selective C(sp3)-H chlorination of oligopeptides based on an N-chloropeptide strategy. N-chloropeptides, which are easily prepared from the corresponding native oligopeptides, are smoothly degraded in the presence of an appropriate copper catalyst, and a subsequent 1,5-hydrogen atom transfer affords γ- or δ-chlorinated peptides in excellent yield. A wide variety of amino acid residues can thus be site-selectively chlorinated in a predictable manner. This method hence enables the efficient synthesis of otherwise less accessible, chlorine-containing peptide fragments of natural peptides. We moreover demonstrate here the successful estimation of the stereochemistry of the chlorinated carbon atom in aquimarin A. Furthermore, we reveal that side-chain-chlorinated peptides can serve as highly useful substructures with a fine balance between stability and reactivity, which renders them promising targets for synthetic and medicinal applications.
Collapse
Affiliation(s)
- Takeshi Nanjo
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ayaka Matsumoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takuma Oshita
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yoshiji Takemoto
- Graduate School of Pharmaceutical Sciences, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
7
|
Meger FS, Murphy JA. Recent Advances in C-H Functionalisation through Indirect Hydrogen Atom Transfer. Molecules 2023; 28:6127. [PMID: 37630379 PMCID: PMC10459052 DOI: 10.3390/molecules28166127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
The functionalisation of C-H bonds has been an enormous achievement in synthetic methodology, enabling new retrosynthetic disconnections and affording simple synthetic equivalents for synthons. Hydrogen atom transfer (HAT) is a key method for forming alkyl radicals from C-H substrates. Classic reactions, including the Barton nitrite ester reaction and Hofmann-Löffler-Freytag reaction, among others, provided early examples of HAT. However, recent developments in photoredox catalysis and electrochemistry have made HAT a powerful synthetic tool capable of introducing a wide range of functional groups into C-H bonds. Moreover, greater mechanistic insights into HAT have stimulated the development of increasingly site-selective protocols. Site-selectivity can be achieved through the tuning of electron density at certain C-H bonds using additives, a judicious choice of HAT reagent, and a solvent system. Herein, we describe the latest methods for functionalizing C-H/Si-H/Ge-H bonds using indirect HAT between 2018-2023, as well as a critical discussion of new HAT reagents, mechanistic aspects, substrate scopes, and background contexts of the protocols.
Collapse
Affiliation(s)
- Filip S. Meger
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, 16 Avinguda dels Països Catalans, 43007 Tarragona, Catalonia, Spain
| | - John A. Murphy
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK
| |
Collapse
|
8
|
Lu Z, Ju M, Wang Y, Meinhardt JM, Martinez Alvarado JI, Villemure E, Terrett JA, Lin S. Regioselective aliphatic C-H functionalization using frustrated radical pairs. Nature 2023; 619:514-520. [PMID: 37407819 PMCID: PMC10530363 DOI: 10.1038/s41586-023-06131-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/25/2023] [Indexed: 07/07/2023]
Abstract
Frustrated Lewis pairs (FLPs) are well documented for the activation of small molecules such as dihydrogen and carbon dioxide1-4. Although canonical FLP chemistry is heterolytic in nature, recent work has shown that certain FLPs can undergo single-electron transfer to afford radical pairs5. Owing to steric encumbrance and/or weak bonding association, these radicals do not annihilate one another, and they have thus been named frustrated radical pairs (FRPs). Notable preliminary results suggest that FRPs may be useful reagents in chemical synthesis6-8, although their applications remain limited. Here we demonstrate that the functionalization of C(sp3)-H bonds can be accomplished using a class of FRPs generated from disilazide donors and an N-oxoammonium acceptor. Together, these species undergo single-electron transfer to generate a transient and persistent radical pair capable of cleaving unactivated C-H bonds to furnish aminoxylated products. By tuning the structure of the donor, it is possible to control regioselectivity and tailor reactivity towards tertiary, secondary or primary C-H bonds. Mechanistic studies lend strong support for the formation and involvement of radical pairs in the target reaction.
Collapse
Affiliation(s)
- Zhipeng Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Minsoo Ju
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | - Jonathan M Meinhardt
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA
| | | | - Elisia Villemure
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Jack A Terrett
- Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA, USA
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Maldonado-Domínguez M, Srnec M. Quantifiable polarity match effect on C-H bond cleavage reactivity and its limits in reaction design. Dalton Trans 2023; 52:1399-1412. [PMID: 36644790 DOI: 10.1039/d2dt04018b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
When oxidants favour cleaving a strong C-H bond at the expense of weaker ones, which are otherwise inherently preferred due to their favourable reaction energy, reactivity factors such as the polarity match effect are often invoked. Polarity match follows the intuition of electrophilic (nucleophilic) oxidants reacting faster with nucleophilic (electrophilic) C-H bonds. Nevertheless, this concept is purely qualitative and is best suited for a posteriori rationalization of experimental observations. Here, we propose and inspect two methods to quantify polar effects in C-H cleavage reactions, one by computation via the difference of atomic charges (Δq) of reacting atoms, and one amenable to experimental measurement through asynchronicity factors, η. By their application to three case studies, we observe that both Δq and η faithfully capture the notion of polarity match. The polarity match model, however, proves insufficient as a predictor of H-atom abstraction reactivity and we discourage its use as a standalone variable in reaction design. Besides this caveat, η and Δq (through its mapping on η) allow the implementation of polarity match into a Marcus-type model of reactivity, alleviating its shortcomings and making reaction planning feasible.
Collapse
Affiliation(s)
- Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| | - Martin Srnec
- J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, Prague 8, 18223, Czech Republic.
| |
Collapse
|
10
|
Azzi E, Ghigo G, Sarasino L, Parisotto S, Moro R, Renzi P, Deagostino A. Photoinduced Chloroamination Cyclization Cascade with N-Chlorosuccinimide: From N-(Allenyl)sulfonylamides to 2-(1-Chlorovinyl)pyrrolidines. J Org Chem 2022; 88:6420-6433. [DOI: 10.1021/acs.joc.2c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Emanuele Azzi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Lorenzo Sarasino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Riccardo Moro
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Polyssena Renzi
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino, Via P. Giuria 7, 10125, Turin, Italy
| |
Collapse
|
11
|
Miller AS, Alexanian EJ. Heteroarylation of unactivated C-H bonds suitable for late-stage functionalization. Chem Sci 2022; 13:11878-11882. [PMID: 36320922 PMCID: PMC9580477 DOI: 10.1039/d2sc04605a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/25/2022] [Indexed: 11/21/2022] Open
Abstract
The late-stage introduction of diverse heterocycles onto complex small molecules enables efficient access to new medicinally relevant compounds. An attractive approach to such a transformation would utilize the ubiquitous aliphatic C-H bonds of a complex substrate. Herein, we report a system that enables direct C-H heteroarylation using a stable, commercially available O-alkenylhydroxamate with heterocyclic sulfone partners. The C-H heteroarylation proceeds efficiently with a range of aliphatic substrates and common heterocycles, and is a rare example of heteroarylation of strong C-H bonds. Importantly, the present approach is amenable to late-stage functionalization as the substrate is the limiting reagent in all cases.
Collapse
Affiliation(s)
- Austin S. Miller
- Department of Chemistry, The University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel HillChapel HillNorth Carolina 27599USA
| |
Collapse
|
12
|
Call A, Cianfanelli M, Besalú-Sala P, Olivo G, Palone A, Vicens L, Ribas X, Luis JM, Bietti M, Costas M. Carboxylic Acid Directed γ-Lactonization of Unactivated Primary C-H Bonds Catalyzed by Mn Complexes: Application to Stereoselective Natural Product Diversification. J Am Chem Soc 2022; 144:19542-19558. [PMID: 36228322 DOI: 10.1021/jacs.2c08620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reactions that enable selective functionalization of strong aliphatic C-H bonds open new synthetic paths to rapidly increase molecular complexity and expand chemical space. Particularly valuable are reactions where site-selectivity can be directed toward a specific C-H bond by catalyst control. Herein we describe the catalytic site- and stereoselective γ-lactonization of unactivated primary C-H bonds in carboxylic acid substrates. The system relies on a chiral Mn catalyst that activates aqueous hydrogen peroxide to promote intramolecular lactonization under mild conditions, via carboxylate binding to the metal center. The system exhibits high site-selectivity and enables the oxidation of unactivated primary γ-C-H bonds even in the presence of intrinsically weaker and a priori more reactive secondary and tertiary ones at α- and β-carbons. With substrates bearing nonequivalent γ-C-H bonds, the factors governing site-selectivity have been uncovered. Most remarkably, by manipulating the absolute chirality of the catalyst, γ-lactonization at methyl groups in gem-dimethyl structural units of rigid cyclic and bicyclic carboxylic acids can be achieved with unprecedented levels of diastereoselectivity. Such control has been successfully exploited in the late-stage lactonization of natural products such as camphoric, camphanic, ketopinic, and isoketopinic acids. DFT analysis points toward a rebound type mechanism initiated by intramolecular 1,7-HAT from a primary γ-C-H bond of the bound substrate to a highly reactive MnIV-oxyl intermediate, to deliver a carbon radical that rapidly lactonizes through carboxylate transfer. Intramolecular kinetic deuterium isotope effect and 18O labeling experiments provide strong support to this mechanistic picture.
Collapse
Affiliation(s)
- Arnau Call
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Marco Cianfanelli
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Pau Besalú-Sala
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Giorgio Olivo
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Andrea Palone
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain.,Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Laia Vicens
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Josep M Luis
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica 1, I-00133 Rome, Italy
| | - Miquel Costas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus Montilivi, Girona E-17003, Catalonia, Spain
| |
Collapse
|
13
|
Zhu F, Yin P, Zhang P. Multicomponent Reaction: Palladium-Catalyzed Carbonylation of Aryl Halides and Alkyl Halides to Aromatic Esters. J Org Chem 2022; 88:5153-5160. [PMID: 36103718 DOI: 10.1021/acs.joc.2c01794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A convenient four-component reaction has been developed that allows for the direct transformation of aryl iodides with alkyl halides into the corresponding aromatic esters and diesters via palladium-catalyzed carbonylation with water as solvent. Various esters and diesters were isolated in moderate to good yields with broad functional group tolerance.
Collapse
Affiliation(s)
- Fengxiang Zhu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Pengpeng Yin
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China
| | - Pengbo Zhang
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
14
|
Golden DL, Suh SE, Stahl SS. Radical C(sp3)-H functionalization and cross-coupling reactions. Nat Rev Chem 2022; 6:405-427. [PMID: 35965690 PMCID: PMC9364982 DOI: 10.1038/s41570-022-00388-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2022] [Indexed: 11/09/2022]
Abstract
C─H functionalization reactions are playing an increasing role in the preparation and modification of complex organic molecules, including pharmaceuticals, agrochemicals, and polymer precursors. Radical C─H functionalization reactions, initiated by hydrogen-atom transfer (HAT) and proceeding via open-shell radical intermediates, have been expanding rapidly in recent years. These methods introduce strategic opportunities to functionalize C(sp3)─H bonds. Examples include synthetically useful advances in radical-chain reactivity and biomimetic radical-rebound reactions. A growing number of reactions, however, proceed via "radical relay" whereby HAT generates a diffusible radical that is functionalized by a separate reagent or catalyst. The latter methods provide the basis for versatile C─H cross-coupling methods with diverse partners. In the present review, highlights of recent radical-chain and radical-rebound methods provide context for a survey of emerging radical-relay methods, which greatly expand the scope and utility of intermolecular C(sp3)─H functionalization and cross coupling.
Collapse
Affiliation(s)
- Dung L. Golden
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
| | - Sung-Eun Suh
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
- These authors contributed equally: Dung L. Golden, Sung-Eun Suh
- Department of Chemistry, Ajou University, Suwon, Republic of Korea
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, WI, USA
| |
Collapse
|
15
|
Wang Z, Wang F. Radical‐Mediated
Selective Functionalization of Unactivated Primary C–H Bonds. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhan‐Lin Wang
- State Key Laboratory of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Fei Wang
- State Key Laboratory of Elemento‐Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
16
|
Galeotti M, Salamone M, Bietti M. Electronic control over site-selectivity in hydrogen atom transfer (HAT) based C(sp 3)-H functionalization promoted by electrophilic reagents. Chem Soc Rev 2022; 51:2171-2223. [PMID: 35229835 DOI: 10.1039/d1cs00556a] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The direct functionalization of C(sp3)-H bonds represents one of the most investigated approaches to develop new synthetic methodology. Among the available strategies for intermolecular C-H bond functionalization, increasing attention has been devoted to hydrogen atom transfer (HAT) based procedures promoted by radical or radical-like reagents, that offer the opportunity to introduce a large variety of atoms and groups in place of hydrogen under mild conditions. Because of the large number of aliphatic C-H bonds displayed by organic molecules, in these processes control over site-selectivity represents a crucial issue, and the associated factors have been discussed. In this review article, attention will be devoted to the role of electronic effects on C(sp3)-H bond functionalization site-selectivity. Through an analysis of the recent literature, a detailed description of the HAT reagents employed in these processes, the associated mechanistic features and the selectivity patterns observed in the functionalization of substrates of increasing structural complexity will be provided.
Collapse
Affiliation(s)
- Marco Galeotti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche, Università "Tor Vergata", Via della Ricerca Scientifica, 1 I-00133 Rome, Italy.
| |
Collapse
|
17
|
Gonzalez MI, Gygi D, Qin Y, Zhu Q, Johnson EJ, Chen YS, Nocera DG. Taming the Chlorine Radical: Enforcing Steric Control over Chlorine-Radical-Mediated C-H Activation. J Am Chem Soc 2022; 144:1464-1472. [PMID: 35020391 DOI: 10.1021/jacs.1c13333] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chlorine radicals readily activate C-H bonds, but the high reactivity of these intermediates precludes their use in regioselective C-H functionalization reactions. We demonstrate that the secondary coordination sphere of a metal complex can confine photoeliminated chlorine radicals and afford steric control over their reactivity. Specifically, a series of iron(III) chloride pyridinediimine complexes exhibit activity for photochemical C(sp3)-H chlorination and bromination with selectivity for primary and secondary C-H bonds, overriding thermodynamic preference for weaker tertiary C-H bonds. Transient absorption spectroscopy reveals that Cl· remains confined through formation of a Cl·|arene complex with aromatic groups on the pyridinediimine ligand. Furthermore, photocrystallography confirms that this selectivity arises from the generation of Cl· within the steric environment defined by the iron secondary coordination sphere.
Collapse
Affiliation(s)
- Miguel I Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - David Gygi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Qilei Zhu
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Elizabeth J Johnson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - Daniel G Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
18
|
Cammarota RC, Liu W, Bacsa J, Davies HML, Sigman MS. Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. J Am Chem Soc 2022; 144:1881-1898. [DOI: 10.1021/jacs.1c12198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ryan C. Cammarota
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| | - Wenbin Liu
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - John Bacsa
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Huw M. L. Davies
- Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Matthew S. Sigman
- Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, United States
| |
Collapse
|
19
|
Kato T, Maruoka K. Selective functionalization of benzylic C-H bonds of two different benzylic ethers by bowl-shaped N-hydroxyimide derivatives as efficient organoradical catalysts. Chem Commun (Camb) 2021; 58:1021-1024. [PMID: 34951412 DOI: 10.1039/d1cc06425h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly efficient, site-selective benzylic C-H bond amination of two different benzylic ether substrates was described by using bowl-shaped N-hydroxyimide organoradical catalysts with diethyl azodicarboxylate. The synthetic utility of this approach is demonstrated by the subsequent transformation of the amination products into the corresponding aldehydes and alkylhydrazines.
Collapse
Affiliation(s)
- Terumasa Kato
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| | - Keiji Maruoka
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.,Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, China.,Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
20
|
Wang J, Fang WH, Qu LB, Shen L, Maseras F, Chen X. An Expanded SET Model Associated with the Functional Hindrance Dominates the Amide-Directed Distal sp 3 C-H Functionalization. J Am Chem Soc 2021; 143:19406-19416. [PMID: 34761900 DOI: 10.1021/jacs.1c07983] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The mechanistic understanding of catalytic radical reactions currently lags behind the flourishing development of new types of catalytic activation. Herein, an innovative single electron transfer (SET) model has been expanded by using the nonadiabatic crossing integrated with the rate-determining step of 1,5-hydrogen atom transfer (HAT) reaction to provide the control mechanism of radical decay dynamics through calculating excited-state relaxation paths of a paradigm example of the amide-directed distal sp3 C-H bond alkylation mediated by Ir-complex-based photocatalysts. The stability of carbon radical intermediates, the functional hindrance associated with the back SET, and the energy inversion between the reactive triplet and closed-shell ground states were verified to be key factors in improving catalytic efficiency via blocking radical inhibition. The expanded SET model associated with the dynamic behaviors and kinetic data could guide the design and manipulation of visible-light-driven inert bond activation by the utilization of photocatalysts bearing more or less electron-withdrawing groups and the comprehensive considerations of kinetic solvent effects and electron-withdrawing effects of substrates.
Collapse
Affiliation(s)
- Juanjuan Wang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Wei-Hai Fang
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Lin Shen
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Feliu Maseras
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007 Tarragona, Spain.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Xuebo Chen
- Department of Chemistry, Beijing Normal University, Xin-wai-da-jie No. 19, Beijing 100875, China.,College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
21
|
Chen P, Xie J, Chen Z, Xiong B, Liu Y, Yang C, Tang K. Visible‐Light‐Mediated Nitrogen‐Centered Radical Strategy: Preparation of 3‐Acylated Spiro[4,5]trienones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100852] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Jun Xie
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Zan Chen
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Bi‐Quan Xiong
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Chang‐An Yang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| | - Ke‐Wen Tang
- Department of Chemistry and Chemical Engineering Hunan Institute of Science and Technology Yueyang Hunan 414006 People's Republic of China
| |
Collapse
|
22
|
Oguri H. Synthesis and Structural Diversification of Artemisinins towards the Generation of Potent Anti-malarial Agents. CHEM LETT 2021. [DOI: 10.1246/cl.200920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Hiroki Oguri
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
23
|
Gygi D, Gonzalez MI, Hwang SJ, Xia KT, Qin Y, Johnson EJ, Gygi F, Chen YS, Nocera DG. Capturing the Complete Reaction Profile of a C–H Bond Activation. J Am Chem Soc 2021; 143:6060-6064. [DOI: 10.1021/jacs.1c02630] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- David Gygi
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Miguel I. Gonzalez
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Seung Jun Hwang
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Kay T. Xia
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Elizabeth J. Johnson
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - François Gygi
- Department of Computer Science, University of California, Davis, Davis, California 95616, United States
| | - Yu-Sheng Chen
- ChemMatCARS, The University of Chicago, Argonne, Illinois 60439, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
24
|
Fawcett A, Keller MJ, Herrera Z, Hartwig JF. Site Selective Chlorination of C(sp 3 )-H Bonds Suitable for Late-Stage Functionalization. Angew Chem Int Ed Engl 2021; 60:8276-8283. [PMID: 33480134 DOI: 10.1002/anie.202016548] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/03/2021] [Indexed: 01/18/2023]
Abstract
C(sp3 )-Cl bonds are present in numerous biologically active small molecules, and an ideal route for their preparation is by the chlorination of a C(sp3 )-H bond. However, most current methods for the chlorination of C(sp3 )-H bonds are insufficiently site selective and tolerant of functional groups to be applicable to the late-stage functionalization of complex molecules. We report a method for the highly selective chlorination of tertiary and benzylic C(sp3 )-H bonds to produce the corresponding chlorides, generally in high yields. The reaction occurs with a mixture of an azidoiodinane, which generates a selective H-atom abstractor under mild conditions, and a readily-accessible and inexpensive copper(II) chloride complex, which efficiently transfers a chlorine atom. The reaction's exceptional functional group tolerance is demonstrated by the chlorination of >30 diversely functionalized substrates and the late-stage chlorination of a dozen derivatives of natural products and active pharmaceutical ingredients.
Collapse
Affiliation(s)
- Alexander Fawcett
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - M Josephine Keller
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - Zachary Herrera
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, 94720, USA
| |
Collapse
|
25
|
Fawcett A, Keller MJ, Herrera Z, Hartwig JF. Site Selective Chlorination of C(sp
3
)−H Bonds Suitable for Late‐Stage Functionalization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alexander Fawcett
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - M. Josephine Keller
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - Zachary Herrera
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| | - John F. Hartwig
- Department of Chemistry University of California, Berkeley Berkeley CA 94720 USA
| |
Collapse
|
26
|
McMillan AJ, Sieńkowska M, Di Lorenzo P, Gransbury GK, Chilton NF, Salamone M, Ruffoni A, Bietti M, Leonori D. Practical and Selective sp 3 C-H Bond Chlorination via Aminium Radicals. Angew Chem Int Ed Engl 2021; 60:7132-7139. [PMID: 33458924 PMCID: PMC8048631 DOI: 10.1002/anie.202100030] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Indexed: 12/12/2022]
Abstract
The introduction of chlorine atoms into organic molecules is fundamental to the manufacture of industrial chemicals, the elaboration of advanced synthetic intermediates and also the fine-tuning of physicochemical and biological properties of drugs, agrochemicals and polymers. We report here a general and practical photochemical strategy enabling the site-selective chlorination of sp3 C-H bonds. This process exploits the ability of protonated N-chloroamines to serve as aminium radical precursors and also radical chlorinating agents. Upon photochemical initiation, an efficient radical-chain propagation is established allowing the functionalization of a broad range of substrates due to the large number of compatible functionalities. The ability to synergistically maximize both polar and steric effects in the H-atom transfer transition state through appropriate selection of the aminium radical has provided the highest known selectivity in radical sp3 C-H chlorination.
Collapse
Affiliation(s)
| | - Martyna Sieńkowska
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Piero Di Lorenzo
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Gemma K. Gransbury
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Nicholas F. Chilton
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata”Via della Ricerca Scientifica00133RomeItaly
| | - Alessandro Ruffoni
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie ChimicheUniversità “Tor Vergata”Via della Ricerca Scientifica00133RomeItaly
| | - Daniele Leonori
- Department of ChemistryUniversity of ManchesterOxford RoadManchesterM13 9PLUK
| |
Collapse
|
27
|
McMillan AJ, Sieńkowska M, Di Lorenzo P, Gransbury GK, Chilton NF, Salamone M, Ruffoni A, Bietti M, Leonori D. Practical and Selective sp
3
C−H Bond Chlorination via Aminium Radicals. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Alastair J. McMillan
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Martyna Sieńkowska
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Piero Di Lorenzo
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Gemma K. Gransbury
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Nicholas F. Chilton
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Michela Salamone
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandro Ruffoni
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| | - Massimo Bietti
- Dipartimento di Scienze e Tecnologie Chimiche Università “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Daniele Leonori
- Department of Chemistry University of Manchester Oxford Road Manchester M13 9PL UK
| |
Collapse
|
28
|
Lee W, Jung S, Kim M, Hong S. Site-Selective Direct C–H Pyridylation of Unactivated Alkanes by Triplet Excited Anthraquinone. J Am Chem Soc 2021; 143:3003-3012. [DOI: 10.1021/jacs.1c00549] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wooseok Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Minseok Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
29
|
Yang LC, Li X, Zhang SQ, Hong X. Machine learning prediction of hydrogen atom transfer reactivity in photoredox-mediated C–H functionalization. Org Chem Front 2021. [DOI: 10.1039/d1qo01325d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
DFT-computed structure–activity relationship data and physical organic descriptors create accurate machine learning model for HAT barrier prediction in photoredox-mediated HAT catalysis.
Collapse
Affiliation(s)
- Li-Cheng Yang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuo-Qing Zhang
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
30
|
Abstract
The Ni-catalyzed oxidation of unactivated alkanes, including the oxidation of polyethylenes, by meta-chloroperbenzoic acid (mCPBA) occur with high turnover numbers under mild conditions, but the mechanism of such transformations has been a subject of debate. Putative, high-valent nickel-oxo or nickel-oxyl intermediates have been proposed to cleave the C-H bond, but several studies on such complexes have not provided strong evidence to support such reactivity toward unactivated C(sp3)-H bonds. We report mechanistic investigations of Ni-catalyzed oxidations of unactivated C-H bonds by mCPBA. The lack of an effect of ligands, the formation of carbon-centered radicals with long lifetimes, and the decomposition of mCPBA in the presence of Ni complexes suggest that the reaction occurs through free alkyl radicals. Selectivity on model substrates and deuterium-labeling experiments imply that the m-chlorobenzoyloxy radical derived from mCPBA cleaves C-H bonds in the alkane to form an alkyl radical, which subsequently reacts with mCPBA to afford the alcohol product and regenerate the aroyloxy radical. This free-radical chain mechanism shows that Ni does not cleave the C(sp3)-H bonds as previously proposed; rather, it catalyzes the decomposition of mCPBA to form the aroyloxy radical.
Collapse
Affiliation(s)
- Yehao Qiu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
31
|
Shu C, Noble A, Aggarwal VK. Metal-free photoinduced C(sp 3)-H borylation of alkanes. Nature 2020; 586:714-719. [PMID: 33116286 DOI: 10.1038/s41586-020-2831-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/27/2020] [Indexed: 01/05/2023]
Abstract
Boronic acids and their derivatives are some of the most useful reagents in the chemical sciences1, with applications spanning pharmaceuticals, agrochemicals and functional materials. Catalytic C-H borylation is a powerful method for introducing these and other boron groups into organic molecules because it can be used to directly functionalize C-H bonds of feedstock chemicals without the need for substrate pre-activation1-3. These reactions have traditionally relied on precious-metal catalysts for C-H bond cleavage and, as a result, display high selectivity for borylation of aromatic C(sp2)-H bonds over aliphatic C(sp3)-H bonds4. Here we report a mechanistically distinct, metal-free borylation using hydrogen atom transfer catalysis5, in which homolytic cleavage of C(sp3)-H bonds produces alkyl radicals that are borylated by direct reaction with a diboron reagent. The reaction proceeds by violet-light photoinduced electron transfer between an N-alkoxyphthalimide-based oxidant and a chloride hydrogen atom transfer catalyst. Unusually, stronger methyl C-H bonds are borylated preferentially over weaker secondary, tertiary and even benzylic C-H bonds. Mechanistic studies indicate that the high methyl selectivity is a result of the formation of a chlorine radical-boron 'ate' complex that selectively cleaves sterically unhindered C-H bonds. By using a photoinduced hydrogen atom transfer strategy, this metal-free C(sp3)-H borylation enables unreactive alkanes to be transformed into valuable organoboron reagents under mild conditions and with selectivities that contrast with those of established metal-catalysed protocols.
Collapse
Affiliation(s)
- Chao Shu
- School of Chemistry, University of Bristol, Bristol, UK
| | - Adam Noble
- School of Chemistry, University of Bristol, Bristol, UK.
| | | |
Collapse
|
32
|
An Q, Wang Z, Chen Y, Wang X, Zhang K, Pan H, Liu W, Zuo Z. Cerium-Catalyzed C-H Functionalizations of Alkanes Utilizing Alcohols as Hydrogen Atom Transfer Agents. J Am Chem Soc 2020; 142:6216-6226. [PMID: 32181657 DOI: 10.1021/jacs.0c00212] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Modern photoredox catalysis has traditionally relied upon metal-to-ligand charge-transfer (MLCT) excitation of metal polypyridyl complexes for the utilization of light energy for the activation of organic substrates. Here, we demonstrate the catalytic application of ligand-to-metal charge-transfer (LMCT) excitation of cerium alkoxide complexes for the facile activation of alkanes utilizing abundant and inexpensive cerium trichloride as the catalyst. As demonstrated by cerium-catalyzed C-H amination and the alkylation of hydrocarbons, this reaction manifold has enabled the facile use of abundant alcohols as practical and selective hydrogen atom transfer (HAT) agents via the direct access of energetically challenging alkoxy radicals. Furthermore, the LMCT excitation event has been investigated through a series of spectroscopic experiments, revealing a rapid bond homolysis process and an effective production of alkoxy radicals, collectively ruling out the LMCT/homolysis event as the rate-determining step of this C-H functionalization.
Collapse
Affiliation(s)
- Qing An
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Yuegang Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Kaining Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Hui Pan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,University of Chinese Academy of Science, Shanghai 100049, China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,STU & SIOM Joint Laboratory for Superintense Lasers and the Applications, Shanghai 201210, China
| | - Zhiwei Zuo
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China.,State Key Laboratory of Bioorganic and Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
33
|
Na CG, Ravelli D, Alexanian EJ. Direct Decarboxylative Functionalization of Carboxylic Acids via O-H Hydrogen Atom Transfer. J Am Chem Soc 2020; 142:44-49. [PMID: 31877036 PMCID: PMC7147874 DOI: 10.1021/jacs.9b10825] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Decarboxylative functionalization via hydrogen atom transfer offers an attractive alternative to standard redox approaches to this important class of transformations. Herein, we report a direct decarboxylative functionalization of aliphatic carboxylic acids using N-xanthylamides. The unique reactivity of amidyl radicals in hydrogen atom transfer enables decarboxylative xanthylation under redox-neutral conditions. This platform provides expedient access to a range of derivatives through subsequent elaboration of the xanthate group.
Collapse
Affiliation(s)
- Christina G. Na
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry, University of Pavia, viale Taramelli 12, 27100 Pavia, Italy
| | - Erik J. Alexanian
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
34
|
Short MA, Blackburn JM, Roizen JL. Modifying Positional Selectivity in C-H Functionalization Reactions with Nitrogen-Centered Radicals: Generalizable Approaches to 1,6-Hydrogen-Atom Transfer Processes. Synlett 2020; 31:102-116. [PMID: 33986583 PMCID: PMC8115226 DOI: 10.1055/s-0039-1691501] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nitrogen-centered radicals are powerful reaction intermediates owing in part to their ability to guide position-selective C(sp3)-H functionalization reactions. Typically, these reactive species dictate the site of functionalization by preferentially engaging in 1,5-hydrogen-atom transfer (1,5-HAT) processes. Broadly relevant approaches to alter the site-selectivity of HAT pathways would be valuable because they could be paired with a variety of tactics to install diverse functional groups. Yet, until recently, there have been no generalizable strategies to modify the position-selectivity observed in these HAT processes. This Synpacts article reviews transformations in which nitrogen-centered radicals preferentially react through 1,6-HAT pathways. Specific attention will be focused on strategies that employ alcohol- and amine-anchored sulfamate esters and sulfamides as templates to achieve otherwise rare γ-selective functionalization reactions.
Collapse
Affiliation(s)
- Melanie A. Short
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| | - J. Miles Blackburn
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| | - Jennifer L. Roizen
- Department of Chemistry, Duke University, Box 90346, Durham, North Carolina, 27708-0354, USA
| |
Collapse
|
35
|
Li J, Zhang Z, Wu L, Zhang W, Chen P, Lin Z, Liu G. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 2019; 574:516-521. [DOI: 10.1038/s41586-019-1655-8] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
|
36
|
Tierney MM, Crespi S, Ravelli D, Alexanian EJ. Identifying Amidyl Radicals for Intermolecular C-H Functionalizations. J Org Chem 2019; 84:12983-12991. [PMID: 31441300 DOI: 10.1021/acs.joc.9b01774] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies have demonstrated the capabilities of amidyl radicals to facilitate a range of intermolecular functionalizations of unactivated, aliphatic C-H bonds. Relatively little information is known regarding the important structural and electronic features of amidyl and related radicals that impart efficient reactivity. Herein, we evaluate a diverse range of nitrogen-centered radicals in unactivated, aliphatic C-H chlorinations. These studies establish the salient features of nitrogen-centered radicals critical to these reactions in order to expedite the future development of new site-selective, intermolecular C-H functionalizations.
Collapse
Affiliation(s)
- Matthew M Tierney
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| | - Stefano Crespi
- PhotoGreen Lab, Department of Chemistry , University of Pavia , viale Taramelli 12 , 27100 Pavia , Italy
| | - Davide Ravelli
- PhotoGreen Lab, Department of Chemistry , University of Pavia , viale Taramelli 12 , 27100 Pavia , Italy
| | - Erik J Alexanian
- Department of Chemistry , The University of North Carolina at Chapel Hill , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|
37
|
Nguyen ST, Zhu Q, Knowles RR. PCET-Enabled Olefin Hydroamidation Reactions with N-Alkyl Amides. ACS Catal 2019; 9:4502-4507. [PMID: 32292642 DOI: 10.1021/acscatal.9b00966] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Olefin aminations are important synthetic technologies for the construction of aliphatic C-N bonds. Here we report a catalytic protocol for olefin hydroamidation that proceeds through transient amidyl radical intermediates that are formed via proton-coupled electron transfer (PCET) activation of the strong N-H bonds in N-alkyl amides by an excited-state iridium photocatalyst and a dialkyl phosphate base. This method exhibits a broad substrate scope, high functional group tolerance, and amenability to use in cascade polycyclization reactions. The feasibility of this PCET protocol in enabling the intermolecular anti-Markovnikov hydroamidation reactions of unactivated olefins is also demonstrated.
Collapse
Affiliation(s)
- Suong T. Nguyen
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Qilei Zhu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
38
|
Hung K, Condakes ML, Novaes LFT, Harwood SJ, Morikawa T, Yang Z, Maimone TJ. Development of a Terpene Feedstock-Based Oxidative Synthetic Approach to the Illicium Sesquiterpenes. J Am Chem Soc 2019; 141:3083-3099. [PMID: 30698435 DOI: 10.1021/jacs.8b12247] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Illicium sesquiterpenes are a family of natural products containing over 100 highly oxidized and structurally complex members, many of which display interesting biological activities. This comprehensive account chronicles the evolution of a semisynthetic strategy toward these molecules from (+)-cedrol, seeking to emulate key aspects of their presumed biosynthesis. An initial route generated lower oxidation state analogs but failed in delivering a crucial hydroxy group in the final step. Insight gathered during these studies, however, ultimately led to a synthesis of the pseudoanisatinoids along with the allo-cedrane natural product 11- O-debenzoyltashironin. A second-generation strategy was then developed to access the more highly oxidized majucinoid compounds including jiadifenolide and majucin itself. Overall, one dozen natural products can be accessed from an abundant and inexpensive terpene feedstock. A multitude of general observations regarding site-selective C(sp3)-H bond functionalization reactions in complex polycyclic architectures are reported.
Collapse
Affiliation(s)
- Kevin Hung
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Matthew L Condakes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Luiz F T Novaes
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Stephen J Harwood
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Takahiro Morikawa
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Zhi Yang
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| | - Thomas J Maimone
- Department of Chemistry , University of California, Berkeley , 826 Latimer Hall , Berkeley , California 94720 , United States
| |
Collapse
|
39
|
Bakhoda A(G, Jiang Q, Badiei YM, Bertke JA, Cundari TR, Warren TH. Copper‐Catalyzed C(sp
3
)−H Amidation: Sterically Driven Primary and Secondary C−H Site‐Selectivity. Angew Chem Int Ed Engl 2019; 58:3421-3425. [DOI: 10.1002/anie.201810556] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
| | - Quan Jiang
- Department of Chemistry Center for Advanced Scientific Computing and Modeling (CASCaM) University of North Texas Denton TX 76203 USA
| | - Yosra M. Badiei
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Thomas R. Cundari
- Department of Chemistry Center for Advanced Scientific Computing and Modeling (CASCaM) University of North Texas Denton TX 76203 USA
| | - Timothy H. Warren
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| |
Collapse
|
40
|
Bakhoda A(G, Jiang Q, Badiei YM, Bertke JA, Cundari TR, Warren TH. Copper‐Catalyzed C(sp
3
)−H Amidation: Sterically Driven Primary and Secondary C−H Site‐Selectivity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201810556] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Quan Jiang
- Department of Chemistry Center for Advanced Scientific Computing and Modeling (CASCaM) University of North Texas Denton TX 76203 USA
| | - Yosra M. Badiei
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Jeffery A. Bertke
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| | - Thomas R. Cundari
- Department of Chemistry Center for Advanced Scientific Computing and Modeling (CASCaM) University of North Texas Denton TX 76203 USA
| | - Timothy H. Warren
- Department of Chemistry Georgetown University Box 571227 Washington DC 20057-1227 USA
| |
Collapse
|
41
|
Li GX, Hu X, He G, Chen G. Photoredox-Mediated Minisci-type Alkylation of N-Heteroarenes with Alkanes with High Methylene Selectivity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04079] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guo-Xing Li
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiafei Hu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Gang He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| | - Gong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
42
|
Abstract
The atomistic change of C( sp3)-H to C( sp3)-O can have a profound impact on the physical and biological properties of small molecules. Traditionally, chemical synthesis has relied on pre-existing functionality to install new functionality, and directed approaches to C-H oxidation are an extension of this logic. The impact of developing undirected C-H oxidation reactions with controlled site-selectivity is that scientists gain the ability to diversify complex structures at sites remote from existing functionality, without having to carry out individual de novo syntheses. This Perspective offers a historical view of why, as recently as 2007, it was thought that the differences between aliphatic C-H bonds of the same bond type (for example, 2° aliphatic) were not large enough to distinguish them preparatively with small-molecule catalysis in the absence of directing groups or molecular recognition elements. We give an account of the discovery of Fe(PDP)-catalyzed non-directed aliphatic C-H hydroxylations and how the electronic, steric, and stereoelectronic rules for predicting site-selectivity that emerged have affected a shift in how the chemical community views the reactivity among these bonds. The discovery that site-selectivity could be altered by tuning the catalyst [i.e., Fe(CF3-PDP)] with no changes to the substrate or reaction now gives scientists the ability to exert control on the site of oxidation on a range of functionally and topologically diverse compounds. Collectively, these findings have made possible the emerging area of late-stage C-H functionalizations for streamlining synthesis and derivatizing complex molecules.
Collapse
Affiliation(s)
- M. Christina White
- Roger Adams Laboratory, Department of Chemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jinpeng Zhao
- Roger Adams Laboratory, Department of Chemistry, University of Illinois
at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
43
|
Ruccolo S, Qin Y, Schnedermann C, Nocera DG. General Strategy for Improving the Quantum Efficiency of Photoredox Hydroamidation Catalysis. J Am Chem Soc 2018; 140:14926-14937. [DOI: 10.1021/jacs.8b09109] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Serge Ruccolo
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Yangzhong Qin
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Christoph Schnedermann
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| | - Daniel G. Nocera
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts 02138−2902, United States
| |
Collapse
|
44
|
Wang H, Zhang D, Bolm C. Photocatalytic Additions of 1-Sulfoximidoyl-1,2-Benziodoxoles to Styrenes. Chemistry 2018; 24:14942-14945. [PMID: 30079969 DOI: 10.1002/chem.201803975] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Indexed: 11/10/2022]
Abstract
Sulfoximidoyl-containing 1,2-benziodoxoles add to styrenes by a photoredox radical process affording difunctionalized products with high regioselectivity. The solvent plays a significantly role in the reaction path, in which Eosin Y appears to have a dual role rendering the process diastereoselective.
Collapse
Affiliation(s)
- Han Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Duo Zhang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
45
|
Na CG, Alexanian EJ. A General Approach to Site-Specific, Intramolecular C-H Functionalization Using Dithiocarbamates. Angew Chem Int Ed Engl 2018; 57:13106-13109. [PMID: 30085389 PMCID: PMC6249686 DOI: 10.1002/anie.201806963] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/17/2018] [Indexed: 01/11/2023]
Abstract
Intramolecular hydrogen atom transfer is an established approach for the site-specific functionalization of unactivated, aliphatic C-H bonds. Transformations using this strategy typically require unstable intermediates formed using strong oxidants and have mainly targeted C-H halogenations or intramolecular aminations. Herein, we report a site-specific C-H functionalization that significantly increases the synthetic scope and convergency of reactions proceeding via intramolecular hydrogen atom transfer. Stable, isolable N-dithiocarbamates are used as precursors to amidyl radicals formed via either light or radical initiation to efficiently deliver highly versatile alkyl dithiocarbamates across a wide range of complex structures.
Collapse
Affiliation(s)
- Christina G. Na
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill, NC 27599 (USA)
| | - Erik J. Alexanian
- Department of Chemistry The University of North Carolina at Chapel Hill Chapel Hill, NC 27599 (USA)
| |
Collapse
|
46
|
Na CG, Alexanian EJ. A General Approach to Site‐Specific, Intramolecular C−H Functionalization Using Dithiocarbamates. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806963] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Christina G. Na
- Department of ChemistryThe University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| | - Erik J. Alexanian
- Department of ChemistryThe University of North Carolina at Chapel Hill Chapel Hill NC 27599 USA
| |
Collapse
|
47
|
Wang L, Xia Y, Bergander K, Studer A. Remote Site-Specific Radical Alkynylation of Unactivated C–H Bonds. Org Lett 2018; 20:5817-5820. [DOI: 10.1021/acs.orglett.8b02514] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lin Wang
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Yong Xia
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Klaus Bergander
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|