1
|
Geniller L, Ben Kraim H, Clot E, Taillefer M, Jaroschik F, Prieto A. Metal-Free Decarboxylative Allylation of Oxime Esters under Light Irradiation. Chemistry 2024; 30:e202401494. [PMID: 38785147 DOI: 10.1002/chem.202401494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Allylation reactions, often used as a key step for constructing complex molecules and drug candidates, typically rely on transition-metal (TM) catalysts. Even though TM-free radical allylations have been developed using allyl-stannanes, -sulfides, -silanes or -sulfones, much less procedures have been reported using simple and commercially available allyl halides, that are used for the preparation of the before-mentioned allyl derivatives. Here, we present a straightforward photocatalytic protocol for the decarboxylative allylation of oxime esters using allyl bromide derivatives under metal-free and mild conditions. This methodology yields a diverse variety of functionalized molecules including several pharmaceutically relevant molecules.
Collapse
Affiliation(s)
- Lilian Geniller
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - Hiba Ben Kraim
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - Eric Clot
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - Marc Taillefer
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - Florian Jaroschik
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| | - Alexis Prieto
- ICGM, University of Montpellier, CNRS, ENSCM, 34000, Montpellier, France
| |
Collapse
|
2
|
Liu WQ, Lee BC, Song N, He Z, Shen ZA, Lu Y, Koh MJ. Electrochemical Synthesis of C(sp 3)-Rich Amines by Aminative Carbofunctionalization of Carbonyl Compounds. Angew Chem Int Ed Engl 2024; 63:e202402140. [PMID: 38650440 DOI: 10.1002/anie.202402140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/16/2024] [Accepted: 04/22/2024] [Indexed: 04/25/2024]
Abstract
Alkylamines form the backbone of countless nitrogen-containing small molecules possessing desirable biological properties. Despite advances in amine synthesis through transition metal catalysis and photoredox chemistry, multicomponent reactions that leverage inexpensive materials to transform abundant chemical feedstocks into three-dimensional α-substituted alkylamines bearing complex substitution patterns remain scarce. Here, we report the design of a catalyst-free electroreductive manifold that merges amines, carbonyl compounds and carbon-based radical acceptors under ambient conditions without rigorous exclusion of air and moisture. Key to this aminative carbofunctionalization process is the chemoselective generation of nucleophilic α-amino radical intermediates that readily couple with electrophilic partners, providing straightforward access to architecturally intricate alkylamines and drug-like scaffolds which are inaccessible by conventional means.
Collapse
Affiliation(s)
- Wen-Qiang Liu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Boon Chong Lee
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - NingXi Song
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Zhenghao He
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Zi-An Shen
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, Singapore, 117544, Republic of Singapore
| |
Collapse
|
3
|
Grotjahn S, Graf C, Zelenka J, Pattanaik A, Müller L, Kutta RJ, Rehbein J, Roithová J, Gschwind RM, Nuernberger P, König B. Reactivity of Superbasic Carbanions Generated via Reductive Radical-Polar Crossover in the Context of Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202400815. [PMID: 38408163 DOI: 10.1002/anie.202400815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/28/2024]
Abstract
Photocatalytic reactions involving a reductive radical-polar crossover (RRPCO) generate intermediates with carbanionic reactivity. Many of these proposed intermediates resemble highly reactive organometallic compounds. However, conditions of their formation are generally not tolerated by their isolated organometallic versions and often a different reactivity is observed. Our investigations on their nature and reactivity under commonly used photocatalytic conditions demonstrate that these intermediates are indeed best described as free, superbasic carbanions capable of deprotonating common polar solvents usually assumed to be inert such as acetonitrile, dimethylformamide, and dimethylsulfoxide. Their basicity not only towards solvents but also towards electrophiles, such as aldehydes, ketones, and esters, is comparable to the reactivity of isolated carbanions in the gas-phase. Previously unsuccessful transformations thought to result from a lack of reactivity are explained by their high reactivity towards the solvent and weakly acidic protons of reaction partners. An intuitive explanation for the mode of action of photocatalytically generated carbanions is provided, which enables methods to verify reaction mechanisms proposed to involve an RRPCO step and to identify the reasons for the limitations of current methods.
Collapse
Affiliation(s)
- Sascha Grotjahn
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Christina Graf
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jan Zelenka
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Aryaman Pattanaik
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Lea Müller
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Roger Jan Kutta
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Julia Rehbein
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Jana Roithová
- Department of Spectroscopy and Catalysis, Radboud University Nijmegen, Heyendaalseweg 135, 6525AJ, Nijmegen, the Netherlands
| | - Ruth M Gschwind
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Patrick Nuernberger
- Faculty of Chemistry and Pharmacy, Institute of Physical and Theoretical Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, Institute of Organic Chemistry, University of Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| |
Collapse
|
4
|
Shimosato J, Sawamura M, Masuda Y. Photoinduced Platinum-Catalyzed Reductive Allylation of α-Diketones with Allylic Carbonates. Org Lett 2024; 26:2023-2028. [PMID: 38422050 DOI: 10.1021/acs.orglett.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A unique process for the photoinduced platinum-catalyzed reductive allylation of α-diketones with allylic carbonates has been developed. This allylation reaction was found to proceed selectively at the more electron-deficient carbonyl group of the diketone to afford an α-keto homoallylic alcohol. Such products could be further derivatized by transformation of the remaining carbonyl group. A mechanistic investigation suggests that a ketyl radical generated in response to photoirradiation reacts with a (π-allyl)platinum complex to form a C-C bond.
Collapse
Affiliation(s)
- Junpei Shimosato
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Masaya Sawamura
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Yusuke Masuda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
5
|
Song S, Li Z, Wang L, Zeng T, Hu Q, Zhu J. Photoredox and NHC Enabled Deoxygenative Alcohol Homologation via Formal 1,2-Addition. Org Lett 2024; 26:264-268. [PMID: 38147643 DOI: 10.1021/acs.orglett.3c03857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
A highly efficient photoinduced iron-catalyzed method has been developed for the direct use of alcohols as surrogates for organometallic reagents in the synthesis of tertiary alcohols. This method can be applied to both primary and secondary alcohols with diverse structures, enabling their reaction with aryl ketones under mild conditions. A variety of functional groups, including those that are typically reactive under conventional tertiary alcohol synthesis conditions, are compatible. Mechanistically, this reaction proceeds through the direct addition of the radical to the carbonyl pathway.
Collapse
Affiliation(s)
- Shuo Song
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhongxian Li
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Lele Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Tianlong Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Qiang Hu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Jun Zhu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
6
|
Chen QL, Mao L, Pan YF, Cai H, Zhang XM, Zhang FM, Ma AJ, Peng JB, Tu YQ. Photoinduced reductive Reformatsky reaction of α-haloesters and aldehydes or ketones by cooperative dual-metal catalysis. Chem Commun (Camb) 2023; 59:14427-14430. [PMID: 37975863 DOI: 10.1039/d3cc04671k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
A photoinduced reductive Reformatsky reaction by cooperative dual-metal catalysis is described. This methodology enables the implementation of this venerable reaction in environmentally friendly conditions, obviating the need for a stoichiometric amount of metals. A broad range of synthetically useful β-hydroxy esters can be efficiently prepared in moderate to high yields using this protocol.
Collapse
Affiliation(s)
- Qi-Long Chen
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Le Mao
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Yi-Fan Pan
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Heng Cai
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Xiao-Ming Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Fu-Min Zhang
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Yong-Qiang Tu
- State Key Laboratory of Applied Organic Chemistry & College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China.
| |
Collapse
|
7
|
Huangfu X, Liu W, Xu H, Wang Z, Wei J, Zhang WX. Photochemical Benzylation of White Phosphorus. Inorg Chem 2023; 62:12009-12017. [PMID: 37458455 DOI: 10.1021/acs.inorgchem.3c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Organophosphorus compounds (OPCs) have wide application in organic synthesis, material sciences, and drug discovery. Generally, the vast majority of phosphorus atoms in OPCs are derived from white phosphorus (P4). However, the large-scale preparation of OPCs mainly proceeds through the multistep and environmentally toxic chlorine route from P4. Herein, we report the direct benzylation of P4 promoted by visible light. The cheap and readily available benzyl bromide was used as a benzylation reagent, and tetrabenzylphosphonium bromide was directly synthesized from P4. In addition, the metallaphotoredox catalysis strategy was applied to functionalize P4 for the first time, which significantly improved the application range of the substituted benzyl bromide.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanhua Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Chen YJ, Wu LT, Xiao H, Sun XL, Wan WM. Recent Advances and Challenges in Barbier Polymerization. Chempluschem 2023; 88:e202200388. [PMID: 36581503 DOI: 10.1002/cplu.202200388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/11/2022] [Indexed: 12/15/2022]
Abstract
The Barbier reaction, a classical name reaction for carbon-carbon bond formation, has played important roles in organic chemistry for over 120 years. The introduction of the Barbier reaction into polymer chemistry for the development of a novel Barbier polymerization, expands the methodology, monomer, chemical structure and property libraries of polymerization, aggregation-induced emission (AIE) and non-traditional intrinsic luminescence (NTIL). This mini review focuses on Barbier polymerization, including the brief introduction of the history and importance of polymerization methods design and the achievements of Barbier polymerization from molecular design strategies, functionalities and properties. An outlook of Barbier polymerization is also proposed. This mini review on Barbier polymerization therefore may cause inspirations to scientists in different fields.
Collapse
Affiliation(s)
- Yu-Jiao Chen
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Liang-Tao Wu
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Hang Xiao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Xiao-Li Sun
- College of Environment and Resources Engineering Research Center of Polymer Green Recycling of Ministry of Education Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Wen-Ming Wan
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| |
Collapse
|
9
|
Wang L, Sun J, Xia J, Ma R, Zheng G, Zhang Q. Visible light-mediated NHC and photoredox co-catalyzed 1,2-sulfonylacylation of allenes via acyl and allyl radical cross-coupling. Org Chem Front 2023. [DOI: 10.1039/d2qo01993k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Visible light-mediated NHC and photoredox co-catalyzed radical 1,2-sulfonylacylation of allenes via cross-coupling between an allyl radical and an NHC-stabilized acyl radical.
Collapse
Affiliation(s)
- Lihong Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Jiaqiong Sun
- School of Environment, Northeast Normal University, Changchun 130117, China
| | - Jiuli Xia
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Ruiyang Ma
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Guangfan Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
| | - Qian Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of ChemistryNortheast Normal University, Changchun 130024, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
10
|
Liu G, Gao Y, Su W. Photocatalytic Decarboxylative Coupling of Arylacetic Acids with Aromatic Aldehydes. J Org Chem 2022; 88:6322-6332. [PMID: 36173738 DOI: 10.1021/acs.joc.2c01751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An efficient protocol was proposed for the preparation of secondary alcohols in good to excellent yields via photoredox-catalyzed decarboxylative couplings between readily available arylacetic acids and a variety of less reactive (hetero)aromatic aldehydes. The formation of carbanion is the key intermediate in this reaction. Various substituted arylacetic acids and aldehydes were all compatible with this transformation under mild reaction conditions. Furthermore, the current protocol was successfully applied to the direct alcoholization of several drug acids.
Collapse
Affiliation(s)
- Ge Liu
- College of Chemistry, Fuzhou University, Fuzhou 350116, China.,State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Yuzhen Gao
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Center for Excellence in Molecular Synthesis, Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
| |
Collapse
|
11
|
Corbin DA, Cremer C, Puffer KO, Newell BS, Patureau FW, Miyake GM. Effects of the Chalcogenide Identity in N-Aryl Phenochalcogenazine Photoredox Catalysts. ChemCatChem 2022; 14:e202200485. [PMID: 36245968 PMCID: PMC9541587 DOI: 10.1002/cctc.202200485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Indexed: 11/06/2022]
Abstract
Phenochalcogenazines such as phenoxazines and phenothiazines have been widely employed as photoredox catalysts (PCs) in small molecule and polymer synthesis. However, the effect of the chalcogenide in these catalysts has not been fully investigated. In this work, a series of four phenochalcogenazines is synthesized to understand how the chalcogenide impacts catalyst properties and performance. Increasing the size of the chalcogenide is found to distort the PC structure, ultimately impacting the properties of each PC. For example, larger chalcogenides destabilize the PC radical cation, possibly resulting in catalyst degradation. In addition, PCs with larger chalcogenides experience increased reorganization during electron transfer, leading to slower electron transfer. Ultimately, catalyst performance is evaluated in organocatalyzed atom transfer radical polymerization and a photooxidation reaction for C(sp2)-N coupling. Results from these experiments highlight that a balance of PC properties is most beneficial for catalysis, including a long-lived excited state, a stable radical cation, and a low reorganization energy.
Collapse
Affiliation(s)
- Daniel A. Corbin
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Christopher Cremer
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Katherine O. Puffer
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Brian S. Newell
- Analytical Resources Core, Materials and Molecular Analysis CenterColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| | - Frederic W. Patureau
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Garret M. Miyake
- Department of ChemistryColorado State University200 W. Lake St.Fort CollinsColorado80523United States
| |
Collapse
|
12
|
Zhu C, Lee S, Chen H, Yue H, Rueping M. Reductive Cross‐Coupling of α‐Oxy Halides Enabled by Thermal Catalysis, Photocatalysis, Electrocatalysis, or Mechanochemistry. Angew Chem Int Ed Engl 2022; 61:e202204212. [DOI: 10.1002/anie.202204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
13
|
Zhu C, Lee S, Chen H, Yue H, Rueping M. Reductive Cross‐Coupling of α‐Oxy Halides Enabled by Thermal Catalysis, Photocatalysis, Electrocatalysis, or Mechanochemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chen Zhu
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Shao‐Chi Lee
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Haifeng Chen
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Huifeng Yue
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|
14
|
Kondo M, Agou T. Catalytic aerobic photooxidation of triarylphosphines using dibenzo-fused 1,4-azaborines. Chem Commun (Camb) 2022; 58:5001-5004. [PMID: 35362494 DOI: 10.1039/d2cc00782g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Although dibenzo-fused 1,4-heteroaromatics are utilized as strongly reducing photocatalysts in organic synthesis and polymerization, they have rarely been employed in catalytic photooxidation. Moreover, to date, their boron-analogs, dibenzo-fused 1,4-azaborines (DBABs), have not been applied in photocatalysis despite their promising potential as photocatalysts. Accordingly, herein, aerobic photooxidation of triarylphosphines (Ar3P) was performed using DBABs as photocatalysts. The reaction smoothly proceeded in an aprotic solvent, and phosphine oxides were obtained in appropriate yields. Density functional theory calculations suggested that DBAB captured and activated phosphadioxirane intermediates, which were generated by the interaction of Ar3P with 1O2, at the Lewis acidic boron center.
Collapse
Affiliation(s)
- Masaru Kondo
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi-Shi, Ibaraki 316-8511, Japan.
| | - Tomohiro Agou
- Department of Materials Science and Engineering, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Naka-narusawa, Hitachi-Shi, Ibaraki 316-8511, Japan.
| |
Collapse
|
15
|
Esezobor OZ, Zeng W, Niederegger L, Grübel M, Hess CR. Co-Mabiq Flies Solo: Light-Driven Markovnikov-Selective C- and N-Alkylation of Indoles and Indazoles without a Cocatalyst. J Am Chem Soc 2022; 144:2994-3004. [PMID: 35157421 DOI: 10.1021/jacs.1c10930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Indoles and indazoles are common moieties in pharmaceuticals and naturally occurring bioactive compounds. The development of light-driven methods using earth-abundant transition-metal catalysts offers an attractive route for functionalization of such compounds. Herein, we report a visible-light-induced method for the C3- and N-alkylation of indoles and indazoles with styrenes, catalyzed by Co complexes based on the macrocyclic Mabiq ligand (Mabiq = 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N6). The photochemical behavior of two CoIII catalysts was examined: Co(Mabiq)Cl2 and the newly synthesized Co(MabiqBr)Cl2, which contains the Br-modified ligand. Both complexes undergo visible-light-induced homolysis that is significant to their activity but exhibit differences in reactivity. The alkylation reactions are regioselective, furnishing the alkylated indole and indazole products in a Markovnikov fashion with excellent yields of up to 96% across a broad range of substrates. Notably, in contrast to dual-transition-metal and photoredox-catalyzed cross-coupling reactions, our studies reveal that the Co complex plays a dual role─as a photosensitizer and catalytically active metal center with the Mabiq ligand offering regiocontrol.
Collapse
Affiliation(s)
- Oaikhena Zekeri Esezobor
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Wenyi Zeng
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Lukas Niederegger
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Michael Grübel
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| | - Corinna R Hess
- Technical University of Munich, Department of Chemistry and Catalysis Research Center, Lichtenbergstr. 4, 85748 Garching, Germany
| |
Collapse
|
16
|
Bortolato T, Cuadros S, Simionato G, Dell'Amico L. The advent and development of organophotoredox catalysis. Chem Commun (Camb) 2022; 58:1263-1283. [PMID: 34994368 DOI: 10.1039/d1cc05850a] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the last decade, photoredox catalysis has unlocked unprecedented reactivities in synthetic organic chemistry. Seminal advancements in the field have involved the use of well-studied metal complexes as photoredox catalysts (PCs). More recently, the synthetic community, looking for more sustainable approaches, has been moving towards the use of purely organic molecules. Organic PCs are generally cheaper and less toxic, while allowing their rational modification to an increased generality. Furthermore, organic PCs have allowed reactivities that are inaccessible by using common metal complexes. Likewise, in synthetic catalysis, the field of photocatalysis is now experiencing a green evolution moving from metal catalysis to organocatalysis. In this feature article, we discuss and critically comment on the scientific reasons for this ongoing evolution in the field of photoredox catalysis, showing how and when organic PCs can efficiently replace their metal counterparts.
Collapse
Affiliation(s)
- Tommaso Bortolato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Sara Cuadros
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Gianluca Simionato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, Padova, 35131, Italy.
| |
Collapse
|
17
|
Jiang HL, Yang YH, Zhao YN, He YH, Guan Z. Silyl-mediated photoredox-catalyzed radical–radical cross-coupling reaction of alkyl bromides and ketoesters. Org Chem Front 2022. [DOI: 10.1039/d2qo01377k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A strategy for cross-coupling between organic bromides and carbonyl compounds is developed by combining photocatalysis and halogen atom transfer using a photocatalyst and tris(trimethylsilyl)silane.
Collapse
Affiliation(s)
- Hao-Luo Jiang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yu-Hao Yang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ya-Nan Zhao
- Analytical and Testing Center, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Sustainable radical approaches for cross electrophile coupling to synthesize trifluoromethyl- and allyl-substituted tert-alcohols. iScience 2021; 24:103388. [PMID: 34841228 PMCID: PMC8605352 DOI: 10.1016/j.isci.2021.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 10/27/2022] Open
Abstract
Trifluoromethylated molecules have gained privileged recognition among the medicinal and pharmaceutical chemists. Sustainable photoredox- and electrochemical processes were employed to facilitate the relatively less explored radical cross-electrophile coupling to access trifluoromethyl- and allyl-substituted tert-alcohols. Reactions proceed through trifluoromethyl ketyl radical and allyl radical intermediates, which undergo challenging radical-radical cross-coupling. The developed transformations are mild and chemo-selective to give cross-coupled products and deliver a wide range of valuable trifluoromethyl- and allyl-containing tertiary alcohols. Both processes can also be applied for the synthesis of amine variant containing trifluoromethyl and allyl moiety, which is considered as amide bioisostere.
Collapse
|
19
|
Qi MY, Conte M, Anpo M, Tang ZR, Xu YJ. Cooperative Coupling of Oxidative Organic Synthesis and Hydrogen Production over Semiconductor-Based Photocatalysts. Chem Rev 2021; 121:13051-13085. [PMID: 34378934 DOI: 10.1021/acs.chemrev.1c00197] [Citation(s) in RCA: 204] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Merging hydrogen (H2) evolution with oxidative organic synthesis in a semiconductor-mediated photoredox reaction is extremely attractive because the clean H2 fuel and high-value chemicals can be coproduced under mild conditions using light as the sole energy input. Following this dual-functional photocatalytic strategy, a dreamlike reaction pathway for constructing C-C/C-X (X = C, N, O, S) bonds from abundant and readily available X-H bond-containing compounds with concomitant release of H2 can be readily fulfilled without the need of external chemical reagents, thus offering a green and fascinating organic synthetic strategy. In this review, we begin by presenting a concise overview on the general background of traditional photocatalytic H2 production and then focus on the fundamental principles of cooperative photoredox coupling of selective organic synthesis and H2 production by simultaneous utilization of photoexcited electrons and holes over semiconductor-based catalysts to meet the economic and sustainability goal. Thereafter, we put dedicated emphasis on recent key progress of cooperative photoredox coupling of H2 production and various selective organic transformations, including selective alcohol oxidation, selective methane conversion, amines oxidative coupling, oxidative cross-coupling, cyclic alkanes dehydrogenation, reforming of lignocellulosic biomass, and so on. Finally, the remaining challenges and future perspectives in this flourishing area have been critically discussed. It is anticipated that this review will provide enlightening guidance on the rational design of such dual-functional photoredox reaction system, thereby stimulating the development of economical and environmentally benign solar fuel generation and organic synthesis of value-added fine chemicals.
Collapse
Affiliation(s)
- Ming-Yu Qi
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Marco Conte
- Department of Chemistry, University of Sheffield, Sheffield S3 7HF, U.K
| | - Masakazu Anpo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, Osaka 599-8531, Japan
| | - Zi-Rong Tang
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yi-Jun Xu
- College of Chemistry, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350116, P. R. China
| |
Collapse
|
20
|
Ota K, Nagao K, Ohmiya H. Synthesis of Sterically Hindered α-Hydroxycarbonyls through Radical-Radical Coupling. Org Lett 2021; 23:4420-4425. [PMID: 33988371 DOI: 10.1021/acs.orglett.1c01358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We describe a synthetic approach to sterically hindered α-hydroxy carbonyl compounds through radical-radical coupling. An organic photoredox catalysis reaction converts an aliphatic carboxylic acid and α-ketocarbonyl to a transient alkyl radical and a persistent ketyl radical, respectively, which couple selectively based on the persistent radical effect. This protocol allows the use of primary, secondary, and tertiary aliphatic carboxylic acids to introduce various alkyl substituents onto ketone moieties of α-ketocarbonyls under mild reaction conditions.
Collapse
Affiliation(s)
- Kenji Ota
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.,JST, PRESTO, Saitama 332-0012, Japan
| |
Collapse
|
21
|
Huang C, Qiao J, Ci RN, Wang XZ, Wang Y, Wang JH, Chen B, Tung CH, Wu LZ. Quantum dots enable direct alkylation and arylation of allylic C(sp3)–H bonds with hydrogen evolution by solar energy. Chem 2021. [DOI: 10.1016/j.chempr.2021.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
22
|
Liu K, Studer A. Direct α-Acylation of Alkenes via N-Heterocyclic Carbene, Sulfinate, and Photoredox Cooperative Triple Catalysis. J Am Chem Soc 2021; 143:4903-4909. [PMID: 33760603 PMCID: PMC8033569 DOI: 10.1021/jacs.1c01022] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Indexed: 12/25/2022]
Abstract
N-Heterocyclic carbene (NHC) catalysis has emerged as a versatile tool in modern synthetic chemistry. Further increasing the complexity, several processes have been introduced that proceed via dual catalysis, where the NHC organocatalyst operates in concert with a second catalytic moiety, significantly enlarging the reaction scope. In biological transformations, multiple catalysis is generally used to access complex natural products. Guided by that strategy, triple catalysis has been studied recently, where three different catalytic modes are merged in a single process. In this Communication, direct α-C-H acylation of various alkenes with aroyl fluorides using NHC, sulfinate, and photoredox cooperative triple catalysis is reported. The method allows the preparation of α-substituted vinyl ketones in moderate to high yields with excellent functional group tolerance. Mechanistic studies reveal that these cascades proceed through a sequential radical addition/coupling/elimination process. In contrast to known triple catalysis processes that operate via two sets of interwoven catalysis cycles, in the introduced process, all three cycles are interwoven.
Collapse
Affiliation(s)
- Kun Liu
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
23
|
Péter Á, Agasti S, Knowles O, Pye E, Procter DJ. Recent advances in the chemistry of ketyl radicals. Chem Soc Rev 2021; 50:5349-5365. [PMID: 33972956 PMCID: PMC8111543 DOI: 10.1039/d0cs00358a] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Ketyl radicals are valuable reactive intermediates for synthesis and are used extensively to construct complex, functionalized products from carbonyl substrates. Single electron transfer (SET) reduction of the C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O bond of aldehydes and ketones is the classical approach for the formation of ketyl radicals and metal reductants are the archetypal reagents employed. The past decade has, however, witnessed significant advances in the generation and harnessing of ketyl radicals. This tutorial review highlights recent, exciting developments in the chemistry of ketyl radicals by comparing the varied contemporary – for example, using photoredox catalysts – and more classical approaches for the generation and use of ketyl radicals. The review will focus on different strategies for ketyl radical generation, their creative use in new synthetic protocols, strategies for the control of enantioselectivity, and detailed mechanisms where appropriate. Ketyl radicals are valuable reactive intermediates for synthesis. This review highlights exciting recent developments in the chemistry of ketyl radicals by comparing contemporary and more classical approaches for their generation and use.![]()
Collapse
Affiliation(s)
- Áron Péter
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester, UK.
| | | | | | | | | |
Collapse
|
24
|
Bao QF, Li M, Xia Y, Wang YZ, Zhou ZZ, Liang YM. Visible-Light-Mediated Decarboxylative Radical Addition Bifunctionalization Cascade for the Production of 1,4-Amino Alcohols. Org Lett 2021; 23:1107-1112. [DOI: 10.1021/acs.orglett.1c00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qiao-Fei Bao
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Ming Li
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830046, P. R. China
| | - Yu-Zhao Wang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| | - Zhao-Zhao Zhou
- Department of Chemistry, Nanchang Normal University, Nanchang 330000, P. R. China
| | - Yong-Min Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
25
|
Bhowmick A, Warghude PK, Dharpure PD, Bhat RG. Direct access to α-acyloxycarbonyl compounds and esters via oxidative esterification of aldehydes under visible light. Org Chem Front 2021. [DOI: 10.1039/d1qo00731a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An efficient synthesis of α-acyloxycarbonyl compounds and esters from aldehydes and α-bromocarbonyl compounds/benzyl bromide derivatives via photoredox catalysis has been developed.
Collapse
Affiliation(s)
- Anindita Bhowmick
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Prakash K. Warghude
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Pankaj D. Dharpure
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| | - Ramakrishna G. Bhat
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pashan, 411008, Maharashtra, India
| |
Collapse
|
26
|
Bobo MV, Kuchta JJ, Vannucci AK. Recent advancements in the development of molecular organic photocatalysts. Org Biomol Chem 2021; 19:4816-4834. [PMID: 34008685 DOI: 10.1039/d1ob00396h] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Research in the development of molecular organic photocatalysts for applications in chemical syntheses has burgeoned in recent years. While organic photosensitizers have been known for over a century, tuning the properties of these molecules to increase photocatalytic efficiencies is now of growing importance. The properties that help improve the performance of organic photocatalysts include: a wider range of redox potentials, increased molar absorptivity (ε) in the visible spectrum, increased quantum yields (Φ), long-lived excited-state lifetimes (ns to μs), and increased chemical stability. This review examines some of the recent advancements in the development of molecular organic photocatalysts, specifically cyanoarenes, acridinium dyes, phenazines, thiazines, oxazines, and xanthenes, with respect to these properties and examines the chemical synthesis routes now achieved by organic photocatalysts.
Collapse
Affiliation(s)
- M Victoria Bobo
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Joseph J Kuchta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| | - Aaron K Vannucci
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
27
|
Talukdar R. Tracking down the brominated single electron oxidants in recent organic red-ox transformations: photolysis and photocatalysis. Org Biomol Chem 2020; 18:8294-8345. [PMID: 33020775 DOI: 10.1039/d0ob01652g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A wide range of organic and inorganic brominated compounds including molecular bromine have been extensively used as oxidants in many organic photo-redox transformations in recent years, an area of ever growing interest because of greener and milder approaches. The oxidation power of these compounds is utilized through both mechanistic pathways (by hydrogen atom transfer or HAT in the absence of a photocatalyst and a combination of single electron transfer or SET and/or HAT in the presence of a photocatalyst). Not only as terminal oxidants for regeneration of photocatalysts, but brominated reactants have also contributed to the oxidation of the reaction intermediate(s) to carry on the radical chain process in several reactions. Here in this review mainly the non-brominative oxidative product formations are discussed, carried out since the last two decades, skipping the instances where they acted as terminal oxidants only to regenerate photocatalysts. The reactions are used to generate natural products, pharmaceuticals and beyond.
Collapse
Affiliation(s)
- Ranadeep Talukdar
- Molecular Synthesis and Drug Discovery Laboratory, Centre of Biomedical Research, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow-226014, India.
| |
Collapse
|
28
|
|
29
|
Li SS, Zhu N, Jing YN, Li Y, Bao H, Wan WM. Barbier Self-Condensing Ketyl Polymerization-Induced Emission: A Polarity Reversal Approach to Reversed Polymerizability. iScience 2020; 23:101031. [PMID: 32299054 PMCID: PMC7160573 DOI: 10.1016/j.isci.2020.101031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/25/2020] [Accepted: 03/29/2020] [Indexed: 11/22/2022] Open
Abstract
Carbon-carbon bond formation through polarity reversal ketyl radical anion coupling of carbonyls has inspired new reaction modes to this cornerstone carbonyl group and played significant roles in organic chemistry. The introduction of this resplendent polarity reversal ketyl strategy into polymer chemistry will inspire new polymerization mode with unpredicted discoveries. Here we show the successful introduction of polarity reversal ketyl approach to polymer chemistry to realize self-condensing ketyl polymerization with polymerization-induced emission. In this polarity reversal approach, it exhibits intriguing reversed polymerizability, where traditional excellent leaving groups are not suitable for polymerization but challenging polymerizations involving the cleavage of challenging C-F and C-CF3 bonds are realized under mild Barbier conditions. This polarity reversal approach enables the polymer chemistry with polarity reversal ketyl mode, opens up a new avenue toward the polymerization of challenging C-X bonds under mild conditions, and sparks design inspiration of new reaction, polymerization, and functional polymer.
Collapse
Affiliation(s)
- Shun-Shun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Nengbo Zhu
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Ya-Nan Jing
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China
| | - Yajun Li
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Hongli Bao
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China
| | - Wen-Ming Wan
- State Key Laboratory of Structural Chemistry, Key Laboratory of Coal to Ethylene Glycol and Its Related Technology, Center for Excellence in Molecular Synthesis, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 West Yangqiao Road, Fuzhou 350002, P. R. of China; University of Chinese Academy of Sciences, Beijing 100049, P. R. of China; State Key Laboratory of Heavy Oil Processing and Center for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 West Changjiang Road, Qingdao 266580, P. R. of China.
| |
Collapse
|
30
|
Wang S, Cheng BY, Sršen M, König B. Umpolung Difunctionalization of Carbonyls via Visible-Light Photoredox Catalytic Radical-Carbanion Relay. J Am Chem Soc 2020; 142:7524-7531. [PMID: 32233431 PMCID: PMC7252948 DOI: 10.1021/jacs.0c00629] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Indexed: 12/13/2022]
Abstract
The combination of photoredox catalysis with the Wolff-Kishner (WK) reaction allows the difunctionalization of carbonyl groups by a radical-carbanion relay sequence (photo-Wolff-Kishner reaction). Photoredox initiated radical addition to N-sulfonylhydrazones yields α-functionalized carbanions following the WK-type mechanism. With sulfur-centered radicals, the carbanions are further functionalized by reaction with electrophiles including CO2 and aldehydes, whereas CF3 radical addition furnishes a wide range of gem-difluoroalkenes through β-fluoride elimination of the generated α-CF3 carbanions. More than 80 substrate examples demonstrate the broad applicability of this reaction sequence. A series of investigations including radical inhibition, deuterium labeling, fluorescence quenching, cyclic voltammetry, and control experiments support the proposed radical-carbanion relay mechanism.
Collapse
Affiliation(s)
- Shun Wang
- Institute of Organic Chemistry, Faculty
of Chemistry and Pharmacy, University of
Regensburg, D-93040 Regensburg, Germany
| | - Bei-Yi Cheng
- Institute of Organic Chemistry, Faculty
of Chemistry and Pharmacy, University of
Regensburg, D-93040 Regensburg, Germany
| | - Matea Sršen
- Institute of Organic Chemistry, Faculty
of Chemistry and Pharmacy, University of
Regensburg, D-93040 Regensburg, Germany
| | - Burkhard König
- Institute of Organic Chemistry, Faculty
of Chemistry and Pharmacy, University of
Regensburg, D-93040 Regensburg, Germany
| |
Collapse
|
31
|
Mondal A, Mukhopadhyay C. Construction of Carbon-Carbon and Carbon-Heteroatom Bonds: Enabled by Visible Light. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824666200211115154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The present review provides an overview of visible light-mediated environment-
friendly approaches over the past decade for the formation of carbon-carbon and
carbon-heteroatom framework. This area has recently emerged as a versatile, environmentally
benign and green platform for the development of a highly sustainable synthetic
methodology. According to the recent advancements, visible light has come to the forefront
in synthetic organic chemistry as a powerful green strategy for the activation of small
molecules.
Collapse
Affiliation(s)
- Animesh Mondal
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India
| |
Collapse
|
32
|
Gualandi A, Calogero F, Mazzarini M, Guazzi S, Fermi A, Bergamini G, Cozzi PG. Cp2TiCl2-Catalyzed Photoredox Allylation of Aldehydes with Visible Light. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00348] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Andrea Gualandi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Francesco Calogero
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Martino Mazzarini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Simone Guazzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Andrea Fermi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Giacomo Bergamini
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| | - Pier Giorgio Cozzi
- Dipartimento di Chimica “Giacomo Ciamician”, Alma Mater Studiorum − Università di Bologna, Via Selmi 2, Bologna 40126, Italy
| |
Collapse
|
33
|
Yang XL, Guo JD, Xiao H, Feng K, Chen B, Tung CH, Wu LZ. Photoredox Catalysis of Aromatic β-Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020; 59:5365-5370. [PMID: 31957949 DOI: 10.1002/anie.201916423] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 12/20/2022]
Abstract
Radical formation is the initial step for conventional radical chemistry. Reported herein is a unified strategy to generate radicals in situ from aromatic β-ketoesters by using a photocatalyst. Under visible-light irradiation, a small amount of photocatalyst fac-Ir(ppy)3 generates a transient α-carbonyl radical and persistent ketyl radical in situ. In contrast to the well-established approaches, neither stoichiometric external oxidant nor reductant is required for this reaction. The synthetic utility is demonstrated by pinacol coupling of ketyl radicals and benzannulation of α-carbonyl radicals with alkynes to give a series of highly substituted 1-naphthols in good to excellent yields. The readily available photocatalyst, mild reaction conditions, broad substrate scope, and high functional-group tolerance make this reaction a useful synthetic tool.
Collapse
Affiliation(s)
- Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
34
|
Yang X, Guo J, Xiao H, Feng K, Chen B, Tung C, Wu L. Photoredox Catalysis of Aromatic β‐Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu‐Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface SciencesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
35
|
Wang ZS, Chen YB, Zhang HW, Sun Z, Zhu C, Ye LW. Ynamide Smiles Rearrangement Triggered by Visible-Light-Mediated Regioselective Ketyl-Ynamide Coupling: Rapid Access to Functionalized Indoles and Isoquinolines. J Am Chem Soc 2020; 142:3636-3644. [PMID: 32003986 DOI: 10.1021/jacs.9b13975] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the past decades, significant advances have been made on radical Smiles rearrangement. However, the eventually formed radical intermediates in these reactions are limited to the amidyl radical, except for the few examples initiated by a N-centered radical. Here, a novel and practical radical Smiles rearrangement triggered by photoredox-catalyzed regioselective ketyl-ynamide coupling is reported, which represents the first radical Smiles rearrangement of ynamides. This method enables facile access to a variety of valuable 2-benzhydrylindoles with broad substrate scope in generally good yields under mild reaction conditions. In addition, this chemistry can also be extended to the divergent synthesis of versatile 3-benzhydrylisoquinolines through a similar ketyl-ynamide coupling and radical Smiles rearrangement, followed by dehydrogenative oxidation. Moreover, such an ynamide Smiles rearrangement initiated by intermolecular photoredox catalysis via addition of external radical sources is also achieved. By control experiments, the reaction was shown to proceed via key ketyl radical and α-imino carbon radical intermediates.
Collapse
Affiliation(s)
- Ze-Shu Wang
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Yang-Bo Chen
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Hao-Wen Zhang
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Zhou Sun
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China
| | - Chunyin Zhu
- School of Chemistry and Chemical Engineering , Jiangsu University , Zhenjiang 212013 , China
| | - Long-Wu Ye
- iChEM, State Key Laboratory of Physical Chemistry of Solid Surfaces, Key Laboratory of Chemical Biology of Fujian Province, and College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , China.,State Key Laboratory of Organometallic Chemistry , Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences , Shanghai 200032 , China
| |
Collapse
|
36
|
Yahata K, Sakurai S, Hori S, Yoshioka S, Kaneko Y, Hasegawa K, Akai S. Coupling Reaction between Aldehydes and Non-Activated Hydrocarbons via the Reductive Radical-Polar Crossover Pathway. Org Lett 2020; 22:1199-1203. [DOI: 10.1021/acs.orglett.0c00096] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Kenzo Yahata
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shu Sakurai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuhei Hori
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shin Yoshioka
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Kaneko
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kai Hasegawa
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shuji Akai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
37
|
Gu JY, Zhang W, Jackson SR, He YH, Guan Z. Photoinduced umpolung addition of carbonyl compounds with α,β-unsaturated esters enables the polysubstituted γ-lactone formation. Chem Commun (Camb) 2020; 56:13441-13444. [DOI: 10.1039/d0cc05306f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Photoinduced reductive coupling of carbonyl compounds and α,β-unsaturated esters via ketyl radical intermediates for the synthesis of γ-lactones is described.
Collapse
Affiliation(s)
- Jia-Yi Gu
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Wei Zhang
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Seth R. Jackson
- Department of Chemistry
- College of Saint Benedict and Saint John's University
- Collegeville
- USA
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
- China
| |
Collapse
|
38
|
Li FS, Chen YQ, Lin SJ, Shi CZ, Li XY, Sun YC, Guo ZW, Shi L. Visible-light-mediated Barbier allylation of aldehydes and ketones via dual titanium and photoredox catalysis. Org Chem Front 2020. [DOI: 10.1039/d0qo00171f] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This study reports a photocatalytic Barbier-type allylation of various aldehydes and ketones with allyl halides for the synthesis of homoallylic alcohols driven by dual titanium and photoredox catalysis.
Collapse
Affiliation(s)
- Fu-sheng Li
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Yu-qing Chen
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Shuang-jie Lin
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Cai-zhe Shi
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Xi-yu Li
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Yu-chen Sun
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Zhuo-wen Guo
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| | - Lei Shi
- Dalian University of Technology
- Zhang Dayu School of Chemistry
- State Key Laboratory of Fine Chemicals
- Dalian
- China
| |
Collapse
|
39
|
Abstract
Catalytic allylation reactions are important methodologies to produce fine chemicals and synthetic building blocks. This review discloses state-of-the-art photocatalyzed allylation methodologies, their reaction mechanisms, and synthetic applications.
Collapse
|
40
|
Seo H, Jamison TF. Catalytic Generation and Use of Ketyl Radical from Unactivated Aliphatic Carbonyl Compounds. Org Lett 2019; 21:10159-10163. [PMID: 31820654 PMCID: PMC6929042 DOI: 10.1021/acs.orglett.9b04235] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Generation of a ketyl radical from unactivated aliphatic carbonyl compounds is an important strategy in organic synthesis. Herein, catalytic generation and use of a ketyl radical for the reductive coupling of aliphatic carbonyl compounds and styrenes by organic photoredox catalysis is described. The method is applicable to both aliphatic ketones and aldehydes to afford the corresponding tertiary and secondary alcohols in continuous flow and batch. Preliminary mechanistic investigation suggests the catalytic formation of a ketyl radical intermediate.
Collapse
Affiliation(s)
- Hyowon Seo
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Timothy F Jamison
- Department of Chemistry , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| |
Collapse
|
41
|
Wang Z, Liu Q, Ji X, Deng GJ, Huang H. Bromide-Promoted Visible-Light-Induced Reductive Minisci Reaction with Aldehydes. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04411] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Zhongzhen Wang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Qiong Liu
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Xiaochen Ji
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Huawen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
42
|
Le TQ, Karmakar S, Lee S, Chai U, Le MH, Oh CH. Generation of the Icetexane Core by Use of a Heck Strategy: Total Synthesis of Taxamairin B. ChemistrySelect 2019. [DOI: 10.1002/slct.201903404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Thuy Quynh Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Swastik Karmakar
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
- Department of ChemistryBasirhat College Basirhat 743412, West Bengal India
| | - Seonmi Lee
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Uiseong Chai
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Minh Hoang Le
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| | - Chang Ho Oh
- Department of Chemistry and Research Institute of Natural ScienceHanyang University, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
43
|
Visible-light-mediated external-reductant-free reductive cross coupling of benzylammonium salts with (hetero)aryl nitriles. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9597-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Pitzer L, Schwarz JL, Glorius F. Reductive radical-polar crossover: traditional electrophiles in modern radical reactions. Chem Sci 2019; 10:8285-8291. [PMID: 32055300 PMCID: PMC7003961 DOI: 10.1039/c9sc03359a] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/16/2019] [Indexed: 12/24/2022] Open
Abstract
The concept of reductive radical-polar crossover (RRPCO) reactions has recently emerged as a valuable and powerful tool to overcome limitations of both radical and traditional polar chemistry. Especially in case of additions to carbonyl compounds, the synergy of radical and polar pathways is of great advantage since it enables the use of traditional carbonyl electrophiles in radical reactions. The most recent and synthetically important transformations following this line are summarised in the first part of this review. The second part deals with transformations, in which the concept of RRPCO promotes the usage of alkyl halides as electrophiles in radical reactions.
Collapse
Affiliation(s)
- Lena Pitzer
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany .
| | - J Luca Schwarz
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany .
| | - Frank Glorius
- Organisch-Chemisches Institut , Westfälische Wilhelms-Universität Münster , Corrensstraße 40 , 48149 Münster , Germany .
| |
Collapse
|
45
|
Rossolini T, Ferko B, Dixon DJ. Photocatalytic Reductive Formation of α-Tertiary Ethers from Ketals. Org Lett 2019; 21:6668-6673. [PMID: 31397159 DOI: 10.1021/acs.orglett.9b02273] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A general photocatalytic reductive strategy for the construction of unsymmetrical α-tertiary dialkyl ethers is reported. By merging Lewis acid-mediated ketal activation and visible-light photocatalytic reduction, in situ-generated α-alkoxy radicals were found to engage in addition reactions with a variety of olefinic partners. Good reaction efficiency is demonstrated with a range of ketals of aromatic and aliphatic ketones. Extension to acetal substrates is also described, demonstrating the overall synthetic utility of this methodology for complex ether synthesis.
Collapse
Affiliation(s)
- Thomas Rossolini
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| | - Branislav Ferko
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.,Department of Organic Chemistry, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia
| | - Darren J Dixon
- Department of Chemistry, University of Oxford, Chemistry Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
46
|
Vu MD, Das M, Guo A, Ang ZE, D̵okić M, Soo HS, Liu XW. Visible-Light Photoredox Enables Ketone Carbonyl Alkylation for Easy Access to Tertiary Alcohols. ACS Catal 2019. [DOI: 10.1021/acscatal.9b02401] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Minh Duy Vu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Mrinmoy Das
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Aoxin Guo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Zi-En Ang
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Miloš D̵okić
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Han Sen Soo
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| | - Xue-Wei Liu
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, 637371 Singapore
| |
Collapse
|
47
|
Chen Y, May O, Blakemore DC, Ley SV. A Photoredox Coupling Reaction of Benzylboronic Esters and Carbonyl Compounds in Batch and Flow. Org Lett 2019; 21:6140-6144. [PMID: 31335152 DOI: 10.1021/acs.orglett.9b02307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mild cross-coupling reaction between benzylboronic esters with carbonyl compounds and some imines was achieved under visible-light-induced iridium-catalyzed photoredox conditions. Functional group tolerance was demonstrated by 51 examples, including 13 heterocyclic compounds. Gram-scale reaction was realized through the use of computer-controlled continuous flow photoreactors.
Collapse
Affiliation(s)
- Yiding Chen
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - Oliver May
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| | - David C Blakemore
- Medicine Design , Pfizer, Inc. , Eastern Point Road , Groton , Connecticut 06340 , United States
| | - Steven V Ley
- Department of Chemistry , University of Cambridge , Lensfield Road , Cambridge CB2 1EW , United Kingdom
| |
Collapse
|
48
|
Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Photocatalytic carbanion generation - benzylation of aliphatic aldehydes to secondary alcohols. Chem Sci 2019; 10:5162-5166. [PMID: 31183069 PMCID: PMC6524566 DOI: 10.1039/c9sc01356c] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 04/15/2019] [Indexed: 12/11/2022] Open
Abstract
We present a redox-neutral method for the photocatalytic generation of carbanions.
We present a redox-neutral method for the photocatalytic generation of carbanions. Benzylic carboxylates are photooxidized by single electron transfer; immediate CO2 extrusion and reduction of the in situ formed radical yields a carbanion capable of reacting with aliphatic aldehydes as electrophiles giving the Grignard analogous reaction product.
Collapse
Affiliation(s)
- Karsten Donabauer
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Mitasree Maity
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Anna Lucia Berger
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Gregory S Huff
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Stefano Crespi
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| | - Burkhard König
- Institute of Organic Chemistry , Faculty of Chemistry and Pharmacy , University of Regensburg , Universitätsstraße 31 , 93053 Regensburg , Germany .
| |
Collapse
|
49
|
Metal-Free Photoinduced Transformation of Aryl Halides and Diketones into Aryl Ketones. European J Org Chem 2019. [DOI: 10.1002/ejoc.201801650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
50
|
Ghosh S, Kumar G, Naveen N, Pradhan S, Chatterjee I. EDA complex directed N-centred radical generation from nitrosoarenes: a divergent synthetic approach. Chem Commun (Camb) 2019; 55:13590-13593. [DOI: 10.1039/c9cc07277b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N-Centred radicals generated via the formation of EDA complexes are added to electron-deficient allylsulfones to produce isoxazolidines, aziridines or β-amino acid derivatives.
Collapse
Affiliation(s)
- Soumen Ghosh
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Gautam Kumar
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Naveen Naveen
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | - Suman Pradhan
- Department of Chemistry
- Indian Institute of Technology Ropar
- Rupnagar
- India
| | | |
Collapse
|