1
|
Nagatsuka N, Otsuki T, Kamibashira S, Koitaya T, Watanabe K. Water orientation on platinum surfaces controlled by step sites. J Chem Phys 2024; 161:094705. [PMID: 39225537 DOI: 10.1063/5.0221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
In this work, the adsorption structure of deuterated water on the stepped platinum surface is studied under an ultra-high vacuum by using heterodyne-detected sum-frequency generation spectroscopy. On a pristine Pt(553), D2O molecules adsorbed at the step sites act as hydrogen bond (H-bond) donors to the adjacent terrace sites. This ensures the net D-down orientation at the terrace sites away from the steps. In particular, the pre-adsorption of oxygen atoms at the step sites significantly alters the D-down configuration. The oxygen pre-adsorption leads to a spontaneous dissociation of the post-adsorbed water molecules at the step to form hydroxyl (OD) species. Since the hydroxyl at the step acts as a strong H-bond acceptor, D2O at the terrace no longer maintains the D-down configuration and adopts flat-lying configurations, significantly reducing the number of D-down molecules at the terrace. Density-functional theoretical calculations support these pictures. This work demonstrates the critical role of steps in controlling the net orientation of the interfacial water and provides an important reference for future considerations of the reactions at electrochemical interfaces.
Collapse
Affiliation(s)
- Naoki Nagatsuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takumi Otsuki
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shota Kamibashira
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takanori Koitaya
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| | - Kazuya Watanabe
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
2
|
Partanen L, Laasonen K. Ab initio molecular dynamics investigation of the Pt(111)-water interface structure in an alkaline environment with high surface OH-coverages. Phys Chem Chem Phys 2024; 26:18233-18243. [PMID: 38904188 DOI: 10.1039/d4cp01100g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
In this study, we investigate the structure of the Pt(111)-water interface in an alkaline environment with large OH coverages of 1/3, 2/3 and 1 monolayer using a large well-equilibrated system. We observe that the OH coverage influences both the orientational distribution of the water molecules and their density, with more structure associated with higher coverage. At the same time, there is evidence of a highly dynamic hydrogen bond network on the lower coverage systems with substantial exchange of water between the surface and the solvent. In addition to OH and H2O species, which are preferentially located at the top sites, the 1/3 and 2/3 monolayer surfaces also contain O atoms, which are relatively stable and prefer the hollow sites. In contrast, the 1 monolayer surface shows none of these dynamics, and is unlikely to be active. The dynamic coexistence of O, OH and H2O on Pt(111) electrodes in alkaline conditions necessitates the investigation of several possible reaction paths for processess like ORR and water splitting. Finally, the exchange processes observed between the solvent and the interface underscore the need to explicitly include liquid water in simulations of systems similar to Pt(111).
Collapse
Affiliation(s)
- Lauri Partanen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, FI-00076 Aalto, Finland.
| |
Collapse
|
3
|
Li Y, Liu BY, Chen Y, Liu ZF. From 2e- to 4e- pathway in the alkaline oxygen reduction reaction on Au(100): Kinetic circumvention of the volcano curve. J Chem Phys 2024; 160:244705. [PMID: 38916267 DOI: 10.1063/5.0211477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024] Open
Abstract
We report the free energy barriers for the elementary reactions in the 2e- and 4e- oxygen reduction reaction (ORR) steps on Au(100) in an alkaline solution. Due to the weak adsorption energy of O2 on Au(100), the barrier for the association channel is very low, and the 2e- pathway is clearly favored, while the barrier for the O-O dissociation channel is significantly higher at 0.5 eV. Above 0.7 V reversible hydrogen electrode (RHE), the association channel becomes thermodynamically unfavorable, which opens up the O-O dissociation channel, leading to the 4e- pathway. The low adsorption energy of oxygenated species on Au is now an advantage, and residue ORR current can be observed up to the 1.0-1.2 V region (RHE). In contrast, the O-O dissociation barrier on Au(111) is significantly higher, at close to 0.9 eV, due to coupling with surface reorganization, which explains the lower ORR activity on Au(111) than that on Au(100). In combination with the previously suggested outer sphere electron transfer to O2 for its initial adsorption, these results provide a consistent explanation for the features in the experimentally measured polarization curve for the alkaline ORR on Au(100) and demonstrate an ORR mechanism distinct from that on Pt(111). It also highlights the importance to consider the spin state of O2 in ORR and to understand the activation barriers, in addition to the adsorption energies, to account for the features observed in electrochemical measurements.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Bing-Yu Liu
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Yanxia Chen
- Hefei National Research Center for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen, China
| |
Collapse
|
4
|
Surendralal S, Todorova M, Neugebauer J. Laterally Resolved Free Energy Profiles and Vibrational Spectra of Chemisorbed H Atoms on Pt(111). J Chem Theory Comput 2024; 20:2192-2201. [PMID: 38324701 PMCID: PMC10938496 DOI: 10.1021/acs.jctc.3c00997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
A scheme to compute laterally resolved free energy surfaces and spectral signatures of specifically adsorbed ions on electrode surfaces from their ab initio molecular dynamics (AIMD) trajectories is proposed. Considering H-covered Pt(111) electrodes, both in contact with water and vacuum and for various H coverages, we systematically explore the impact of explicit water and H-coverage on site occupancy, providing direct insight into the proportion of underpotential and overpotential deposited hydrogen adsorbates. Extending this approach further, we can obtain laterally resolved vibrational spectra of the Pt-H stretch modes. We discuss how the difference between the free energy basins of the on-top and fcc-hollow adsorption sites explains the features of the experimentally observed spectral fingerprints in this system. These fingerprints do not contain only information about the stable and metastable adsorption sites but also about intermediate short-lived adsorbate configurations. Our results also show that for these properties chemisorbed H2O acts as a spectator and does not qualitatively influence the relative stabilities of the adsorption sites and their spectral fingerprints.
Collapse
Affiliation(s)
- Sudarsan Surendralal
- Department of Computational Materials
Design, Max-Planck-Institut für Eisenforschung
GmbH, Max-Planck-Straße 1, Düsseldorf D-40237, Germany
| | - Mira Todorova
- Department of Computational Materials
Design, Max-Planck-Institut für Eisenforschung
GmbH, Max-Planck-Straße 1, Düsseldorf D-40237, Germany
| | - Jörg Neugebauer
- Department of Computational Materials
Design, Max-Planck-Institut für Eisenforschung
GmbH, Max-Planck-Straße 1, Düsseldorf D-40237, Germany
| |
Collapse
|
5
|
Ramzan MA, Wischert R, Steinmann SN, Michel C. Toward a Realistic Surface State of Ru in Aqueous and Gaseous Environments. J Phys Chem Lett 2023; 14:4241-4246. [PMID: 37126518 DOI: 10.1021/acs.jpclett.3c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Identifying the surface species is critical in developing a realistic understanding of supported metal catalysts working in water. To this end, we have characterized the surface species present at a Ru/water interface by employing a hybrid computational approach involving an explicit description of the liquid water and a possible pressure of H2. On the close-packed, most stable Ru(0001) facet, the solvation tends to favor the full dissociation of water into atomic O and H in contrast with the partially dissociated water layer reported for ultra-high-vacuum conditions. The solvation stabilization was found to reach -0.279 J m2, which results in stable O and H species on Ru(0001) in the presence of liquid water even at room temperature. Conversely, introducing even a small H2 pressure (10-2 bar) results in a monolayer of chemisorbed H at the interface, a general trend found on the three most exposed facets of Ru nanoparticles. While hydroxyls were often hypothesized as possible surface species at the Ru/water interface, this computational study clearly demonstrates that they are not stabilized by liquid water and are not found under realistic reductive catalytic conditions.
Collapse
Affiliation(s)
| | - Raphaël Wischert
- Eco-Efficient Products and Processes Laboratory (E2P2L), UMI 3464 CNRS-Solvay, 3966 Jin Du Road, Xin Zhuang Industrial Zone, 201108 Shanghai, China
| | | | - Carine Michel
- ENS de Lyon, CNRS UMR 5182, Laboratoire de Chimie, F69342 Lyon, France
| |
Collapse
|
6
|
Yang X, Bhowmik A, Vegge T, Hansen HA. Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au-water interfaces. Chem Sci 2023; 14:3913-3922. [PMID: 37035698 PMCID: PMC10074416 DOI: 10.1039/d2sc06696c] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The application of ab initio molecular dynamics (AIMD) for the explicit modeling of reactions at solid-liquid interfaces in electrochemical energy conversion systems like batteries and fuel cells can provide new understandings towards reaction mechanisms. However, its prohibitive computational cost severely restricts the time- and length-scales of AIMD. Equivariant graph neural network (GNN) based accurate surrogate potentials can accelerate the speed of performing molecular dynamics after learning on representative structures in a data efficient manner. In this study, we combined uncertainty-aware GNN potentials and enhanced sampling to investigate the reactive process of the oxygen reduction reaction (ORR) at an Au(100)-water interface. By using a well-established active learning framework based on CUR matrix decomposition, we can evenly sample equilibrium structures from MD simulations and non-equilibrium reaction intermediates that are rarely visited during the reaction. The trained GNNs have shown exceptional performance in terms of force prediction accuracy, the ability to reproduce structural properties, and low uncertainties when performing MD and metadynamics simulations. Furthermore, the collective variables employed in this work enabled the automatic search of reaction pathways and provide a detailed understanding towards the ORR reaction mechanism on Au(100). Our simulations identified the associative reaction mechanism without the presence of *O and a low reaction barrier of 0.3 eV, which is in agreement with experimental findings. The methodology employed in this study can pave the way for modeling complex chemical reactions at electrochemical interfaces with an explicit solvent under ambient conditions.
Collapse
Affiliation(s)
- Xin Yang
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Arghya Bhowmik
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark Anker Engelunds Vej, 2800 Kgs Lyngby Denmark
| |
Collapse
|
7
|
Zhou Y, Ouyang Y, Zhang Y, Li Q, Wang J. Machine Learning Assisted Simulations of Electrochemical Interfaces: Recent Progress and Challenges. J Phys Chem Lett 2023; 14:2308-2316. [PMID: 36847421 DOI: 10.1021/acs.jpclett.2c03288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The electrochemical interface, where the adsorption of reactants and electrocatalytic reactions take place, has long been a focus of attention. Some of the important processes on it tend to possess relatively slow kinetic characteristics, which are usually beyond the scope of ab initio molecular dynamics. The newly emerging technique, machine learning methods, provides an alternative approach to achieve thousands of atoms and nanosecond time scale while ensuring precision and efficiency. In this Perspective, we summarize in detail the recent progress and achievements made by the introduction of machine learning to simulate electrochemical interfaces, and focus on the limitations of current machine learning models, such as accurate descriptions of long-range electrostatic interactions and the kinetics of the electrochemical reactions occurring at the interface. Finally, we further point out the future directions for machine learning to expand in the field of electrochemical interfaces.
Collapse
Affiliation(s)
- Yipeng Zhou
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yixin Ouyang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Yehui Zhang
- School of Physics, Southeast University, Nanjing 211189, China
| | - Qiang Li
- School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
8
|
Petersen AS, Jensen KD, Wan H, Bagger A, Chorkendorff I, Stephens IEL, Rossmeisl J, Escudero-Escribano M. Modeling Anion Poisoning during Oxygen Reduction on Pt Near-Surface Alloys. ACS Catal 2023. [DOI: 10.1021/acscatal.2c04808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Amanda S. Petersen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Kim D. Jensen
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - Hao Wan
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin 14195, Germany
| | - Alexander Bagger
- Department of Materials, Imperial College London, 2.03b, Royal School of Mines, Prince Consort Rd., London SW7 2AZ, England
| | - Ib Chorkendorff
- Department of Physics, Surface Physics and Catalysis, Technical University of Denmark, Fysikvej, Building 312, Kgs. Lyngby DK-2800, Denmark
| | - Ifan E. L. Stephens
- Department of Materials, Imperial College London, 2.03b, Royal School of Mines, Prince Consort Rd., London SW7 2AZ, England
| | - Jan Rossmeisl
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
| | - María Escudero-Escribano
- Department of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, Universitetsparken 5, Copenhagen Ø DK-2100, Denmark
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC, Barcelona Institute of Science and Technology, UAB Campus, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| |
Collapse
|
9
|
Inverse kinetic isotope effects in the oxygen reduction reaction at platinum single crystals. Nat Chem 2023; 15:271-277. [PMID: 36357789 DOI: 10.1038/s41557-022-01084-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 10/03/2022] [Indexed: 11/12/2022]
Abstract
Although the oxygen reduction reaction (ORR) involves multiple proton-coupled electron transfer processes, early studies reported the absence of kinetic isotope effects (KIEs) on polycrystalline platinum, probably due to the use of unpurified D2O. Here we developed a methodology to prepare ultra-pure D2O, which is indispensable for reliably investigating extremely surface-sensitive platinum single crystals. We find that Pt(111) exhibits much higher ORR activity in D2O than in H2O, with potential-dependent inverse KIEs of ~0.5, whereas Pt(100) and Pt(110) exhibit potential-independent inverse KIEs of ~0.8. Such inverse KIEs are closely correlated to the lower *OD coverage and weakened *OD binding strength relative to *OH, which, based on theoretical calculations, are attributed to the differences in their zero-point energies. This study suggests that the competing adsorption between *OH/*OD and *O2 probably plays an important role in the ORR rate-determining steps that involve a chemical step preceding an electrochemical step (CE mechanism).
Collapse
|
10
|
Braunwarth L, Jung C, Jacob T. Potential-Dependent Pt(111)/Water Interface: Tackling the Challenge of a Consistent Treatment of Electrochemical Interfaces. Chemphyschem 2023; 24:e202200336. [PMID: 36123306 PMCID: PMC10092414 DOI: 10.1002/cphc.202200336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/19/2022] [Indexed: 01/04/2023]
Abstract
The interface between an electrode and an electrolyte is where electrochemical processes take place for countless technologically important applications. Despite its high relevance and intense efforts to elucidate it, a description of the interfacial structure and, in particular, the dynamics of the electric double layer at the atomic level is still lacking. Here we present reactive force-field molecular dynamics simulations of electrified Pt(111)/water interfaces, shedding light on the orientation of water molecules in the vicinity of the Pt(111) surface, taking into account the influence of potential, adsorbates, and ions simultaneously. We obtain a shift in the preferred orientation of water in the surface oxidation potential region, which breaks with the previously proclaimed strict correlation to the free charge density. Moreover, the characterization is complemented by course of the entropy and the intermolecular ordering in the interfacial region complements the characterization. Our work contributes to the ongoing process of understanding electric double layers and, in particular, the structure of the electrified Pt(111)/water interface, and aims to provide insights into the electrochemical processes occurring there.
Collapse
Affiliation(s)
- Laura Braunwarth
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
| | - Christoph Jung
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 3640D-76021KarlsruheGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 11D-89081UlmGermany
| | - Timo Jacob
- Institute of ElectrochemistryUlm UniversityAlbert-Einstein-Allee 47D-89081UlmGermany
- Karlsruhe Institute of Technology (KIT)P.O. Box 3640D-76021KarlsruheGermany
- Helmholtz Institute Ulm (HIU) Electrochemical Energy StorageHelmholtzstr. 11D-89081UlmGermany
| |
Collapse
|
11
|
Li M, Li L, Huang X, Qi X, Deng M, Jiang S, Wei Z. Platinum-Water Interaction Induced Interfacial Water Orientation That Governs the pH-Dependent Hydrogen Oxidation Reaction. J Phys Chem Lett 2022; 13:10550-10557. [PMID: 36342770 DOI: 10.1021/acs.jpclett.2c02907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Understanding the electrode-water interface structure in acid and alkali is crucial to unveiling the underlying mechanism of pH-dependent hydrogen oxidation reaction (HOR) kinetics. In this work, we construct the explicit Pt(111)-H2O interface models in both acid and alkali to investigate the relationship between the HOR mechanism and electrode-electrolyte interface structure using ab initio molecular dynamics and density functional theory. We find that the interfacial water orientation in the outer Helmholtz layer (OHP) induced by the Pt-water interaction governs the pH-dependent HOR kinetics on Pt(111). In alkali, the strong Pt-interfacial water electrostatic interaction behaves as a narrow OHP, which increases the proportion of "H-down" interfacial water and leads to less adsorbed water entering the inner Helmholtz plane (IHP), decreasing the work function of Pt(111). Furthermore, the more "H-down" interfacial water stabilizes the Had adsorption, prevents Had desorption, and suppresses the Volmer step of HOR by forming the solvated [Had···H2O···H2O] complex. Our work provided a visualized molecular-level mechanism to understand the nature of pH-dependent HOR kinetics.
Collapse
Affiliation(s)
- Mengting Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Li Li
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Xun Huang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Xueqiang Qi
- College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing400054, China
| | - Mingming Deng
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Shangkun Jiang
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| | - Zidong Wei
- The State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing400044, China
| |
Collapse
|
12
|
Munarriz J, Zhang Z, Sautet P, Alexandrova AN. Graphite-Supported Pt n Cluster Electrocatalysts: Major Change of Active Sites as a Function of the Applied Potential. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Julen Munarriz
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Departamento de Química Física y Analítica, Universidad de Oviedo, Julián Clavería no. 8, Campus Universitario de El Cristo, Oviedo, 33006 Spain
| | - Zisheng Zhang
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| | - Philippe Sautet
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- California NanoSystem Institute, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, 5531 Boelter Hall, Los Angeles, California 90095, United States
| | - Anastassia N. Alexandrova
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
- California NanoSystem Institute, University of California, Los Angeles, 607 Charles E. Young Drive, Los Angeles, California 90095-1569, United States
| |
Collapse
|
13
|
Xi C, Zheng F, Gao G, Song Z, Zhang B, Dong C, Du XW, Wang LW. Ion Solvation Free Energy Calculation Based on Ab Initio Molecular Dynamics Using a Hybrid Solvent Model. J Chem Theory Comput 2022; 18:6878-6891. [PMID: 36253911 DOI: 10.1021/acs.jctc.1c01298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Free energy calculation of small molecules or ion species in aqueous solvent is one of the most important problems in electrochemistry study. Although there are many previous approaches to calculate such free energies, they are based on ab initio methods and suffer from various limitations and approximations. In the current work, we developed a hybrid approach based on ab initio molecular dynamics (AIMD) simulations to calculate the ion solvation energy. In this approach, a small water cluster surrounding the central ion is used, and implicit solvent model is applied outside the water cluster. A dynamic potential well is used during AIMD to keep the water cluster together. Quasi-harmonic approximation is used to calculate the entropy contribution, while the total energy average is used to calculate the enthalpy term. The obtained solvation voltages of the bulk metal agree with experiments within 0.3 eV, and the simulation results for the solvation energies of gaseous ions are close to the experimental observations. Besides the free energies, radial pair distribution functions and coordination numbers of hydrated cations are also obtained. The remaining challenges of this method are also discussed.
Collapse
Affiliation(s)
- Cong Xi
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States.,Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Fan Zheng
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Guoping Gao
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Zhigang Song
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Buyu Zhang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| | - Cunku Dong
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Xi-Wen Du
- Institute of New Energy Materials, School of Materials Science and Engineering, Tianjin University, Tianjin30072, People's Republic of China
| | - Lin-Wang Wang
- Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, California94720, United States
| |
Collapse
|
14
|
Mikkelsen AEG, Kristoffersen HH, Schiøtz J, Vegge T, Hansen HA, Jacobsen KW. Structure and energetics of liquid water-hydroxyl layers on Pt(111). Phys Chem Chem Phys 2022; 24:9885-9890. [PMID: 35416202 DOI: 10.1039/d2cp00190j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interactions between liquid water and hydroxyl species on Pt(111) surfaces have been intensely investigated due to their importance to fuel cell electrocatalysis. Here we present a molecular dynamics study of their structure and energetics using an ensemble of neural network potentials, which allow us to obtain unprecedented statistical sampling. We first study the energetics of hydroxyl formation, where we find a near-linear adsorption energy profile, which exhibits a soft and gradual increase in the differential adsorption energy at high hydroxyl coverages. This is strikingly different from the predictions of the conventional bilayer model, which displays a kink at 1/3ML OH coverage indicating a sizeable jump in differential adsorption energy, but within the statistical uncertainty of previously reported ab initio molecular dynamics studies. We then analyze the structure of the interface, where we provide evidence for the water-OH/Pt(111) interface being hydrophobic at high hydroxyl coverages. We furthermore explain the observed adsorption energetics by analyzing the hydrogen bonding in the water-hydroxyl adlayers, where we argue that the increase in differential adsorption energy at high OH coverage can be explained by a reduction in the number of hydrogen bonds from the adsorbed water molecules to the hydroxyls.
Collapse
Affiliation(s)
- August E G Mikkelsen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | | | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Heine A Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| | - Karsten W Jacobsen
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
15
|
Korpelin V, Kiljunen T, Melander MM, Caro MA, Kristoffersen HH, Mammen N, Apaja V, Honkala K. Addressing Dynamics at Catalytic Heterogeneous Interfaces with DFT-MD: Anomalous Temperature Distributions from Commonly Used Thermostats. J Phys Chem Lett 2022; 13:2644-2652. [PMID: 35297635 PMCID: PMC8959310 DOI: 10.1021/acs.jpclett.2c00230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/11/2022] [Indexed: 05/28/2023]
Abstract
Density functional theory-based molecular dynamics (DFT-MD) has been widely used for studying the chemistry of heterogeneous interfacial systems under operational conditions. We report frequently overlooked errors in thermostated or constant-temperature DFT-MD simulations applied to study (electro)catalytic chemistry. Our results demonstrate that commonly used thermostats such as Nosé-Hoover, Berendsen, and simple velocity-rescaling methods fail to provide a reliable temperature description for systems considered. Instead, nonconstant temperatures and large temperature gradients within the different parts of the system are observed. The errors are not a "feature" of any particular code but are present in several ab initio molecular dynamics implementations. This uneven temperature distribution, due to inadequate thermostatting, is well-known in the classical MD community, where it is ascribed to the failure in kinetic energy equipartition among different degrees of freedom in heterogeneous systems (Harvey et al. J. Comput. Chem. 1998, 726-740) and termed the flying ice cube effect. We provide tantamount evidence that interfacial systems are susceptible to substantial flying ice cube effects and demonstrate that the traditional Nosé-Hoover and Berendsen thermostats should be applied with care when simulating, for example, catalytic properties or structures of solvated interfaces and supported clusters. We conclude that the flying ice cube effect in these systems can be conveniently avoided using Langevin dynamics.
Collapse
Affiliation(s)
- Ville Korpelin
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Toni Kiljunen
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Marko M. Melander
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| | - Miguel A. Caro
- Department
of Electrical Engineering and Automation, Aalto University, FIN-02150 Espoo, Finland
| | | | - Nisha Mammen
- Department
of Physics,Nanoscience Center, University
of Jyväskylä, P.O. Box
35 (YN), FI-40014 Jyväskylä, Finland
| | - Vesa Apaja
- Department
of Physics,Nanoscience Center, University
of Jyväskylä, P.O. Box
35 (YN), FI-40014 Jyväskylä, Finland
| | - Karoliina Honkala
- Department
of Chemistry, Nanoscience Center, University
of Jyväskylä, P.O. Box 35 (YN), FI-40014 Jyväskylä, Finland
| |
Collapse
|
16
|
Abstract
Structures and processes at water/metal interfaces play an important technological role in electrochemical energy conversion and storage, photoconversion, sensors, and corrosion, just to name a few. However, they are also of fundamental significance as a model system for the study of solid-liquid interfaces, which requires combining concepts from the chemistry and physics of crystalline materials and liquids. Particularly interesting is the fact that the water-water and water-metal interactions are of similar strength so that the structures at water/metal interfaces result from a competition between these comparable interactions. Because water is a polar molecule and water and metal surfaces are both polarizable, explicit consideration of the electronic degrees of freedom at water/metal interfaces is mandatory. In principle, ab initio molecular dynamics simulations are thus the method of choice to model water/metal interfaces, but they are computationally still rather demanding. Here, ab initio simulations of water/metal interfaces will be reviewed, starting from static systems such as the adsorption of single water molecules, water clusters, and icelike layers, followed by the properties of liquid water layers at metal surfaces. Technical issues such as the appropriate first-principles description of the water-water and water-metal interactions will be discussed, and electrochemical aspects will be addressed. Finally, more approximate but numerically less demanding approaches to treat water at metal surfaces from first-principles will be briefly discussed.
Collapse
Affiliation(s)
- Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany.,Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany
| |
Collapse
|
17
|
Lin X, Shao A, Hua M, Tian X. A first principle study of water adsorbed on flat and stepped silver surfaces. Phys Chem Chem Phys 2022; 24:6803-6810. [DOI: 10.1039/d1cp04618g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first principles calculations and ab initio molecular dynamics simulations. The most stable...
Collapse
|
18
|
Ringe S, Hörmann NG, Oberhofer H, Reuter K. Implicit Solvation Methods for Catalysis at Electrified Interfaces. Chem Rev 2021; 122:10777-10820. [PMID: 34928131 PMCID: PMC9227731 DOI: 10.1021/acs.chemrev.1c00675] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
![]()
Implicit solvation
is an effective, highly coarse-grained approach
in atomic-scale simulations to account for a surrounding liquid electrolyte
on the level of a continuous polarizable medium. Originating in molecular
chemistry with finite solutes, implicit solvation techniques are now
increasingly used in the context of first-principles modeling of electrochemistry
and electrocatalysis at extended (often metallic) electrodes. The
prevalent ansatz to model the latter electrodes and the reactive surface
chemistry at them through slabs in periodic boundary condition supercells
brings its specific challenges. Foremost this concerns the difficulty
of describing the entire double layer forming at the electrified solid–liquid
interface (SLI) within supercell sizes tractable by commonly employed
density functional theory (DFT). We review liquid solvation methodology
from this specific application angle, highlighting in particular its
use in the widespread ab initio thermodynamics approach
to surface catalysis. Notably, implicit solvation can be employed
to mimic a polarization of the electrode’s electronic density
under the applied potential and the concomitant capacitive charging
of the entire double layer beyond the limitations of the employed
DFT supercell. Most critical for continuing advances of this effective
methodology for the SLI context is the lack of pertinent (experimental
or high-level theoretical) reference data needed for parametrization.
Collapse
Affiliation(s)
- Stefan Ringe
- Department of Energy Science and Engineering, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea.,Energy Science & Engineering Research Center, Daegu Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany.,Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany
| | - Harald Oberhofer
- Chair for Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstraße 4, D-85747 Garching, Germany.,Chair for Theoretical Physics VII and Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| |
Collapse
|
19
|
Mikkelsen AEG, Schiøtz J, Vegge T, Jacobsen KW. Is the water/Pt(111) interface ordered at room temperature? J Chem Phys 2021; 155:224701. [PMID: 34911304 DOI: 10.1063/5.0077580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The structure of the water/Pt(111) interface has been a subject of debate over the past decades. Here, we report the results of a room temperature molecular dynamics study based on neural network potentials, which allow us to access long time scale simulations while retaining ab initio accuracy. We find that the water/Pt(111) interface is characterized by a double layer composed of a primary, strongly bound adsorption layer with a coverage of ∼0.15 ML, which is coupled to a secondary, weakly bound adsorption layer with a coverage of ∼0.58 ML. By studying the order of the primary adsorption layer, we find that there is an effective repulsion between the adsorbed water molecules, which gives rise to a dynamically changing, semi-ordered interfacial structure, where the water molecules in the primary adsorption layer are distributed homogeneously across the interface, forming frequent hydrogen bonds to water molecules in the secondary adsorption layer. We further show that these conclusions are beyond the time scales accessible to ab initio molecular dynamics.
Collapse
Affiliation(s)
- August E G Mikkelsen
- Department of Energy Conversion and Storage, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Jakob Schiøtz
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Karsten W Jacobsen
- CAMD, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Dávila López AC, Eggert T, Reuter K, Hörmann NG. Static and dynamic water structures at interfaces: A case study with focus on Pt(111). J Chem Phys 2021; 155:194702. [PMID: 34800953 DOI: 10.1063/5.0067106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An accurate atomistic treatment of aqueous solid-liquid interfaces necessitates the explicit description of interfacial water ideally via ab initio molecular dynamics simulations. Many applications, however, still rely on static interfacial water models, e.g., for the computation of (electro)chemical reaction barriers and focus on a single, prototypical structure. In this work, we systematically study the relation between density functional theory-derived static and dynamic interfacial water models with specific focus on the water-Pt(111) interface. We first introduce a general construction protocol for static 2D water layers on any substrate, which we apply to the low index surfaces of Pt. Subsequently, we compare these with structures from a broad selection of reference works based on the Smooth Overlap of Atomic Positions descriptor. The analysis reveals some structural overlap between static and dynamic water ensembles; however, static structures tend to overemphasize the in-plane hydrogen bonding network. This feature is especially pronounced for the widely used low-temperature hexagonal ice-like structure. In addition, a complex relation between structure, work function, and adsorption energy is observed, which suggests that the concentration on single, static water models might introduce systematic biases that are likely reduced by averaging over consistently created structural ensembles, as introduced here.
Collapse
Affiliation(s)
| | - Thorben Eggert
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Nicolas G Hörmann
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
21
|
Qin X, Vegge T, Hansen HA. CO 2 activation at Au(110)-water interfaces: An ab initio molecular dynamics study. J Chem Phys 2021; 155:134703. [PMID: 34624986 DOI: 10.1063/5.0066196] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The electrochemical reduction of CO2 into valuable chemicals under mild conditions has become a promising technology for energy storage and conversion in the past few years, receiving much attention from theoretical researchers investigating the reaction mechanisms. However, most of the previous simulations are related to the key intermediates of *COOH and *CO using the computational hydrogen electrode approach under vacuum conditions, and the details of the CO2 activation are usually ignored due to the model simplicity. Here, we study the CO2 activation at the Au-water interfaces by considering the dynamics of an explicit water solvent, where both regular ab initio molecular dynamics and constrained ab initio molecular dynamics simulations are carried out to explore the CO2 adsorption/desorption reactions from the atomic level. By introducing K+ cations into Au(110)-water interfacial models, an electrochemical environment under reducing potentials is constructed, where the reaction free energy (0.26 eV) and activation energy (0.61 eV) are obtained for CO2 adsorption based on the thermodynamic integration. Moreover, the Bader charge analysis demonstrates that CO2 adsorption is activated by the first-electron transfer, forming the adsorbed CO2 - anion initiating the overall catalytic reaction.
Collapse
Affiliation(s)
- Xueping Qin
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Tesch R, Kowalski PM, Eikerling MH. Properties of the Pt(111)/electrolyte electrochemical interface studied with a hybrid DFT-solvation approach. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:444004. [PMID: 34348250 DOI: 10.1088/1361-648x/ac1aa2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Self-consistent modeling of the interface between solid metal electrode and liquid electrolyte is a crucial challenge in computational electrochemistry. In this contribution, we adopt the effective screening medium reference interaction site method (ESM-RISM) to study the charged interface between a Pt(111) surface that is partially covered with chemisorbed oxygen and an aqueous acidic electrolyte. This method proves to be well suited to describe the chemisorption and charging state of the interface at controlled electrode potential. We present an in-depth assessment of the ESM-RISM parameterization and of the importance of computing near-surface water molecules explicitly at the quantum mechanical level. We found that ESM-RISM is able to reproduce some key interface properties, including the peculiar, non-monotonic charging relation of the Pt(111)/electrolyte interface. The comparison with independent theoretical models and explicit simulations of the interface reveals strengths and limitations of ESM-RISM for modeling electrochemical interfaces.
Collapse
Affiliation(s)
- Rebekka Tesch
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Piotr M Kowalski
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK-13), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Engineering, RWTH Aachen University, 52062 Aachen, Germany
- Jülich Aachen Research Alliance, JARA-CSD and JARA-ENERGY, 52425 Jülich, Germany
| |
Collapse
|
23
|
Li Y, Liu ZF. Cross-Sphere Electrode Reaction: The Case of Hydroxyl Desorption during the Oxygen Reduction Reaction on Pt(111) in Alkaline Media. J Phys Chem Lett 2021; 12:6448-6456. [PMID: 34236872 DOI: 10.1021/acs.jpclett.1c01800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Hydroxide ion is a common electrolyte when electrode reactions take place in alkaline media. In the case of oxygen reduction reaction on Pt(111), we demonstrate by ab initio molecular dynamics calculations that the desorption of hydroxyl (OH*) from the electrode surface to form a solvated OH- is a cross-sphere process, with the OH* reactant in the inner sphere and the OH- product directly generated in the aqueous outer sphere. Such a mechanism is distinct from the typical inner sphere and outer sphere reactions. It is dictated by the strong hydrogen bonding interactions between a hydroxide ion and water molecules and is facilitated by proton transfer through solvation layers. It should play a significant role whenever OH* desorption, or its reverse, OH- adsorption, is involved in an electrochemical reaction.
Collapse
Affiliation(s)
- Yuke Li
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Zhi-Feng Liu
- Department of Chemistry and Centre for Scientific Modeling and Computation, Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, No. 10, 2nd Yuexing Road, Nanshan District, Shenzhen China
| |
Collapse
|
24
|
Hörmann NG, Reuter K. Thermodynamic cyclic voltammograms: peak positions and shapes. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:264004. [PMID: 33848987 DOI: 10.1088/1361-648x/abf7a1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Based on a mean-field description of thermodynamic cyclic voltammograms (CVs), we analyze here in full generality, how CV peak positions and shapes are related to the underlying interface energetics, in particular when also including electrostatic double layer (DL) effects. We show in particular, how non-Nernstian behaviour is related to capacitive DL charging, and how this relates to common adsorbate-centered interpretations such as a changed adsorption energetics due to dipole-field interactions and the electrosorption valency - the number of exchanged electrons upon electrosorption per adsorbate. Using Ag(111) in halide-containing solutions as test case, we demonstrate that DL effects can introduce peak shifts that are already explained by rationalizing the interaction of isolated adsorbates with the interfacial fields, while alterations of the peak shape are mainly driven by the coverage-dependence of the adsorbate dipoles. In addition, we analyze in detail how changing the experimental conditions such as the ion concentrations in the solvent but also of the background electrolyte can affect the CV peaks via their impact on the potential drop in the DL and the DL capacitance, respectively. These results suggest new routes to analyze experimental CVs and use of those for a detailed assessment of the accuracy of atomistic models of electrified interfaces e.g. with and without explicitly treated interfacial solvent and/or approximate implicit solvent models.
Collapse
Affiliation(s)
- Nicolas Georg Hörmann
- Theoretical Chemistry, Technische Universitaet Muenchen, Lichtenbergstraße 4, Garching, DE 85748, Germany
- Theory, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, DE 14195, Germany
| | - Karsten Reuter
- Theory, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, Berlin, DE 14195, Germany
| |
Collapse
|
25
|
Le JB, Chen A, Li L, Xiong JF, Lan J, Liu YP, Iannuzzi M, Cheng J. Modeling Electrified Pt(111)-H ad/Water Interfaces from Ab Initio Molecular Dynamics. JACS AU 2021; 1:569-577. [PMID: 34467320 PMCID: PMC8395682 DOI: 10.1021/jacsau.1c00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 05/08/2023]
Abstract
Unraveling the atomistic structures of electric double layers (EDL) at electrified interfaces is of paramount importance for understanding the mechanisms of electrocatalytic reactions and rationally designing electrode materials with better performance. Despite numerous efforts dedicated in the past, a molecular level understanding of the EDL is still lacking. Combining the state-of-the-art ab initio molecular dynamics (AIMD) and recently developed computational standard hydrogen electrode (cSHE) method, it is possible to realistically simulate the EDL under well-defined electrochemical conditions. In this work, we report extensive AIMD calculation of the electrified Pt(111)-Had/water interfaces at the saturation coverage of adsorbed hydrogen (Had) corresponding to the typical hydrogen evolution reaction conditions. We calculate the electrode potentials of a series of EDL models with various surface charge densities using the cSHE method and further obtain the Helmholtz capacitance that agrees with experiment. Furthermore, the AIMD simulations allow for detailed structural analyses of the electrified interfaces, such as the distribution of adsorbate Had and the structures of interface water and counterions, which can in turn explain the computed dielectric property of interface water. Our calculation provides valuable molecular insight into the electrified interfaces and a solid basis for understanding a variety of electrochemical processes occurring inside the EDL.
Collapse
Affiliation(s)
- Jia-Bo Le
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Ningbo
Institute of Materials Technology and Engineering, Chinese Academy
of Sciences, Ningbo 315201, China
| | - Ao Chen
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lang Li
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jing-Fang Xiong
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jinggang Lan
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Yun-Pei Liu
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Marcella Iannuzzi
- Department
of Physical Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jun Cheng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
26
|
Surendralal S, Todorova M, Neugebauer J. Impact of Water Coadsorption on the Electrode Potential of H-Pt(1 1 1)-Liquid Water Interfaces. PHYSICAL REVIEW LETTERS 2021; 126:166802. [PMID: 33961474 DOI: 10.1103/physrevlett.126.166802] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/10/2021] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Density functional theory molecular dynamics simulations of H-covered Pt(111)-H_{2}O interfaces reveal that, in contrast to common understanding, H_{2}O coadsorption has a significant impact on the electrode potential of and plays a major role in determining the stability of H adsorbates under electrochemical conditions. Based on these insights, we explain the origin behind the experimentally observed upper limit of H coverage well below one monolayer and derive a chemically intuitive model for metal-water bonding that explains an unexpectedly large interaction between coadsorbed water and adsorbates.
Collapse
Affiliation(s)
- Sudarsan Surendralal
- Department of Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Mira Todorova
- Department of Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| | - Jörg Neugebauer
- Department of Computational Materials Design, Max-Planck-Institut für Eisenforschung GmbH, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany
| |
Collapse
|
27
|
Size dependence of hydrophobic hydration at electrified gold/water interfaces. Proc Natl Acad Sci U S A 2021; 118:2023867118. [PMID: 33876767 DOI: 10.1073/pnas.2023867118] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hydrophobic hydration at metal/water interfaces actively contributes to the energetics of electrochemical reactions, e.g. [Formula: see text] and [Formula: see text] reduction, where small hydrophobic molecules are involved. In this work, constant applied potential molecular dynamics is employed to study hydrophobic hydration at a gold/water interface. We propose an adaptation of the Lum-Chandler-Weeks (LCW) theory to describe the free energy of hydrophobic hydration at the interface as a function of solute size and applied voltage. Based on this model we are able to predict the free energy cost of cavity formation at the interface directly from the free energy cost in the bulk plus an interface-dependent correction term. The interfacial water network contributes significantly to the free energy, yielding a preference for outer-sphere adsorption at the gold surface for ideal hydrophobes. We predict an accumulation of small hydrophobic solutes of sizes comparable to CO or [Formula: see text], while the free energy cost to hydrate larger hydrophobes, above 2.5-Å radius, is shown to be greater at the interface than in the bulk. Interestingly, the transition from the volume dominated to the surface dominated regimes predicted by the LCW theory in the bulk is also found to take place for hydrophobes at the Au/water interface but occurs at smaller cavity radii. By applying the adapted LCW theory to a simple model addition reaction, we illustrate some implications of our findings for electrochemical reactions.
Collapse
|
28
|
|
29
|
Yang K, Liu J, Yang B. Mechanism and Active Species in NH3 Dehydrogenation under an Electrochemical Environment: An Ab Initio Molecular Dynamics Study. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05247] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kunran Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
- CAS Key Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Liu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Bo Yang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
30
|
Hörmann NG, Reuter K. Thermodynamic Cyclic Voltammograms Based on Ab Initio Calculations: Ag(111) in Halide-Containing Solutions. J Chem Theory Comput 2021; 17:1782-1794. [PMID: 33606513 PMCID: PMC8023662 DOI: 10.1021/acs.jctc.0c01166] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Cyclic voltammograms
(CVs) are a central experimental tool for
assessing the structure and activity of electrochemical interfaces.
Based on a mean-field ansatz for the interface energetics under applied
potential conditions, we here derive an ab initio thermodynamics approach to efficiently simulate thermodynamic CVs.
All unknown parameters are determined from density functional theory
(DFT) calculations coupled to an implicit solvent model. For the showcased
CVs of Ag(111) electrodes in halide-anion-containing solutions, these
simulations demonstrate the relevance of double-layer contributions
to explain experimentally observed differences in peak shapes over
the halide series. Only the appropriate account of interfacial charging
allows us to capture the differences in equilibrium coverage and total
electronic surface charge that cause the varying peak shapes. As a
case in point, this analysis demonstrates that prominent features
in CVs do not only derive from changes in adsorbate structure or coverage
but can also be related to variations of the electrosorption valency.
Such double-layer effects are proportional to adsorbate-induced changes
in the work function and/or interfacial capacitance. They are thus
especially pronounced for electronegative halides and other adsorbates
that affect these interface properties. In addition, the analysis
allows us to draw conclusions on how the possible inaccuracy of implicit
solvation models can indirectly affect the accuracy of other predicted
quantities such as CVs.
Collapse
Affiliation(s)
- Nicolas G Hörmann
- Chair of Theoretical Chemistry and Catalysis Research Center, Technische Universität München, Lichtenbergstr. 4, 85748 Garching, Germany.,Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Karsten Reuter
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
31
|
Rebollar L, Intikhab S, Oliveira NJ, Yan Y, Xu B, McCrum IT, Snyder JD, Tang MH. “Beyond Adsorption” Descriptors in Hydrogen Electrocatalysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03801] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luis Rebollar
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Saad Intikhab
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Nicholas J. Oliveira
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Bingjun Xu
- Department of Chemical and Biomolecular Engineering, Center for Catalysis Science and Technology, University of Delaware, Newark, Delaware 19716, United States
| | - Ian T. McCrum
- Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, New York 13699, United States
| | - Joshua D. Snyder
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Maureen H. Tang
- Department of Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
32
|
Le JB, Fan QY, Li JQ, Cheng J. Molecular origin of negative component of Helmholtz capacitance at electrified Pt(111)/water interface. SCIENCE ADVANCES 2020; 6:6/41/eabb1219. [PMID: 33028519 PMCID: PMC7541063 DOI: 10.1126/sciadv.abb1219] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 08/20/2020] [Indexed: 05/17/2023]
Abstract
Electrified solid/liquid interfaces are the key to many physicochemical processes in a myriad of areas including electrochemistry and colloid science. With tremendous efforts devoted to this topic, it is unexpected that molecular-level understanding of electric double layers is still lacking. Particularly, it is perplexing why compact Helmholtz layers often show bell-shaped differential capacitances on metal electrodes, as this would suggest a negative capacitance in some layer of interface water. Here, we report state-of-the-art ab initio molecular dynamics simulations of electrified Pt(111)/water interfaces, aiming at unraveling the structure and capacitive behavior of interface water. Our calculation reproduces the bell-shaped differential Helmholtz capacitance and shows that the interface water follows the Frumkin adsorption isotherm when varying the electrode potential, leading to a peculiar negative capacitive response. Our work provides valuable insight into the structure and capacitance of interface water, which can help understand important processes in electrocatalysis and energy storage in supercapacitors.
Collapse
Affiliation(s)
- Jia-Bo Le
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Qi-Yuan Fan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jie-Qiong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jun Cheng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
33
|
Nguyen MT, Akhade SA, Cantu DC, Lee MS, Glezakou VA, Rousseau R. Electro-reduction of organics on metal cathodes: A multiscale-modeling study of benzaldehyde on Au (111). Catal Today 2020. [DOI: 10.1016/j.cattod.2019.05.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Heenen HH, Gauthier JA, Kristoffersen HH, Ludwig T, Chan K. Solvation at metal/water interfaces: An ab initio molecular dynamics benchmark of common computational approaches. J Chem Phys 2020; 152:144703. [DOI: 10.1063/1.5144912] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Hendrik H. Heenen
- Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Joseph A. Gauthier
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | | | - Thomas Ludwig
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, USA
| | - Karen Chan
- Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
35
|
Gurentsov EV, Eremin AV, Kolotushkin RN, Khmelenin DN, Grigoriev YV. Methane Decomposition on the Surface of Molybdenum Nanoparticles at Room Temperature. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420020068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Kristoffersen HH, Chan K, Vegge T, Hansen HA. Energy–entropy competition in cation–hydroxyl interactions at the liquid water–Pt(111) interface. Chem Commun (Camb) 2020; 56:427-430. [DOI: 10.1039/c9cc07769c] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
At water–Pt(111) interfaces, cation–*OH interactions are found to consist of both internal energy stabilizations and entropy costs emphasizing the complexity of such systems.
Collapse
Affiliation(s)
| | - Karen Chan
- Department of Physics
- Technical University of Denmark
- DK-2800 Kgs. Lyngby
- Denmark
| | - Tejs Vegge
- Department of Energy Conversion and Storage
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| | - Heine Anton Hansen
- Department of Energy Conversion and Storage
- Technical University of Denmark
- 2800 Kgs. Lyngby
- Denmark
| |
Collapse
|
37
|
Sakong S, Groß A. Water structures on a Pt(111) electrode from ab initio molecular dynamic simulations for a variety of electrochemical conditions. Phys Chem Chem Phys 2020; 22:10431-10437. [PMID: 31976502 DOI: 10.1039/c9cp06584a] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A structural analysis of solvating water layers on a Pt(111) electrode has been performed based on extensive ab initio molecular dynamics simulations. We have emulated different electrochemical conditions by varying the concentration of hydrogen ions in the water layers, which effectively corresponds to a variation in the electrode potential. We present a detailed analysis of the arrangement and orientation of the water molecules and also address their mobility in the solvation layer.
Collapse
Affiliation(s)
- Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89069 Ulm, Germany.
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, and Helmholtz Institute Ulm (HIU) Electrochemical Energy Storage, 89069 Ulm, Germany.
| |
Collapse
|
38
|
Foucaud Y, Badawi M, Filippov LO, Barres O, Filippova IV, Lebègue S. Synergistic adsorptions of Na 2CO 3 and Na 2SiO 3 on calcium minerals revealed by spectroscopic and ab initio molecular dynamics studies. Chem Sci 2019; 10:9928-9940. [PMID: 32190236 PMCID: PMC7066678 DOI: 10.1039/c9sc03366a] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 10/05/2019] [Indexed: 11/23/2022] Open
Abstract
FTIR, XPS, and ab initio molecular dynamics studies demonstrated that sodium silicate (Na2SiO3) adsorbs on fluorite with a higher affinity when they are treated beforehand by sodium carbonate (Na2CO3) due to proton exchange(s).
The synergistic effects between sodium silicate (Na2SiO3) and sodium carbonate (Na2CO3) adsorbed on mineral surfaces are not yet understood, making it impossible to finely tune their respective amounts in various industrial processes. In order to unravel this phenomenon, diffuse reflectance infrared Fourier transform and X-ray photoelectron spectroscopies were combined with ab initio molecular dynamics to investigate the adsorption of Na2SiO3 onto bare and carbonated fluorite (CaF2), an archetypal calcium mineral. Both experimental and theoretical results proved that Na2CO3 adsorbs onto CaF2 with a high affinity and forms a layer of Na2CO3 on the surface. Besides, at low Na2SiO3 concentration, silica mainly physisorbs in a monomeric protonated form, Si(OH)4, while at larger concentration, significant amounts of polymerised and deprotonated forms are identified. Prior surface carbonation induces an acid–base reaction on the surface, which results in the formation of the basic forms of the monomers and the dimers, i.e. SiO(OH)3– and Si2O3(OH)42–, even at low coverage. Their adsorption is highly favoured compared to the acid forms, which explains the synergistic effects observed when Na2SiO3 is used after Na2CO3. The formation of the basic form on the bare surface is observed only by increasing the surface coverage to 100%. Hence, when Na2CO3 is used during a separation process, lower Na2SiO3 concentrations are needed to obtain the same effect as with lone Na2SiO3 in the separation process.
Collapse
Affiliation(s)
- Yann Foucaud
- Université de Lorraine , CNRS, GeoRessources Laboratory , F-54000 Nancy , France . ; ;
| | - Michaël Badawi
- Laboratoire de Physique et Chimie Théoriques , Université de Lorraine , UMR 7019 - CNRS , BP239 , Boulevard des Aiguillettes , 54 506 Vandoeuvre-lès-Nancy Cedex , France
| | - Lev O Filippov
- Université de Lorraine , CNRS, GeoRessources Laboratory , F-54000 Nancy , France . ; ; .,National University of Science and Technology MISIS , 119049 Moscow , Russia
| | - Odile Barres
- Université de Lorraine , CNRS, GeoRessources Laboratory , F-54000 Nancy , France . ; ;
| | - Inna V Filippova
- Université de Lorraine , CNRS, GeoRessources Laboratory , F-54000 Nancy , France . ; ; .,National University of Science and Technology MISIS , 119049 Moscow , Russia
| | - Sébastien Lebègue
- Laboratoire de Physique et Chimie Théoriques , Université de Lorraine , UMR 7019 - CNRS , BP239 , Boulevard des Aiguillettes , 54 506 Vandoeuvre-lès-Nancy Cedex , France
| |
Collapse
|
39
|
Gauthier JA, Dickens CF, Heenen HH, Vijay S, Ringe S, Chan K. Unified Approach to Implicit and Explicit Solvent Simulations of Electrochemical Reaction Energetics. J Chem Theory Comput 2019; 15:6895-6906. [DOI: 10.1021/acs.jctc.9b00717] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph A. Gauthier
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Colin F. Dickens
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Hendrik H. Heenen
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Sudarshan Vijay
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Stefan Ringe
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Karen Chan
- Department of Physics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| |
Collapse
|
40
|
Bruix A, Margraf JT, Andersen M, Reuter K. First-principles-based multiscale modelling of heterogeneous catalysis. Nat Catal 2019. [DOI: 10.1038/s41929-019-0298-3] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Magnussen OM, Groß A. Toward an Atomic-Scale Understanding of Electrochemical Interface Structure and Dynamics. J Am Chem Soc 2019; 141:4777-4790. [DOI: 10.1021/jacs.8b13188] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Olaf M. Magnussen
- Institute of Experimental and Applied Physics, Kiel University, Olshausenstr. 40, 24098 Kiel, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Helmholtz-Institute Ulm, Helmholtzstr. 11, 89081 Ulm, Germany
| |
Collapse
|
42
|
Bagger A, Arnarson L, Hansen MH, Spohr E, Rossmeisl J. Electrochemical CO Reduction: A Property of the Electrochemical Interface. J Am Chem Soc 2019; 141:1506-1514. [DOI: 10.1021/jacs.8b08839] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alexander Bagger
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Logi Arnarson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Martin H. Hansen
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Eckhard Spohr
- Faculty for Chemistry and Center for Computational Sciences and Simulation, University of Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Jan Rossmeisl
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| |
Collapse
|
43
|
Kristoffersen HH, Chang JH. Effect of Competitive Adsorption at the Interface between Aqueous Electrolyte and Solid Electrode. ACS SYMPOSIUM SERIES 2019. [DOI: 10.1021/bk-2019-1331.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Jin Hyun Chang
- Department of Energy Conversion and Storage, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
44
|
Singh N, Lee MS, Akhade SA, Cheng G, Camaioni DM, Gutiérrez OY, Glezakou VA, Rousseau R, Lercher JA, Campbell CT. Impact of pH on Aqueous-Phase Phenol Hydrogenation Catalyzed by Carbon-Supported Pt and Rh. ACS Catal 2018. [DOI: 10.1021/acscatal.8b04039] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nirala Singh
- Department of Chemistry, University of Washington, Seattle, Washington 98105-1700, United States
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Mal-Soon Lee
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Sneha A. Akhade
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Guanhua Cheng
- Department of Chemistry and Catalysis Research Center, Technische Universität München, D-85748 Garching, Germany
| | - Donald M. Camaioni
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Oliver Y. Gutiérrez
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Vassiliki-Alexandra Glezakou
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Roger Rousseau
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Johannes A. Lercher
- Institute for Integrated Catalysis, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
- Department of Chemistry and Catalysis Research Center, Technische Universität München, D-85748 Garching, Germany
| | - Charles T. Campbell
- Department of Chemistry, University of Washington, Seattle, Washington 98105-1700, United States
| |
Collapse
|
45
|
Gauthier JA, Ringe S, Dickens CF, Garza AJ, Bell AT, Head-Gordon M, Nørskov JK, Chan K. Challenges in Modeling Electrochemical Reaction Energetics with Polarizable Continuum Models. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02793] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph A. Gauthier
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Stefan Ringe
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Colin F. Dickens
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Alejandro J. Garza
- The Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
| | - Alexis T. Bell
- The Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Chemical and Biomolecular Engineering, University of California at Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- The Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley California 94720, United States
- Department of Chemistry, University of California at Berkeley, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jens K. Nørskov
- SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - Karen Chan
- SUNCAT Center for Interface Science and Catalysis, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|