1
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene‐Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2‐Phenyl Migration. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering Frontiers Science Center for Transformative Molecules State Key Laboratory of Metal Matrix Composites Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
2
|
Wang J, Shen C, Zhang G, Gan F, Ding Y, Qiu H. Transformation of Crowded Oligoarylene into Perylene-Cored Chiral Nanographene by Sequential Oxidative Cyclization and 1,2-Phenyl Migration. Angew Chem Int Ed Engl 2021; 61:e202115979. [PMID: 34854182 DOI: 10.1002/anie.202115979] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Indexed: 01/07/2023]
Abstract
Synthetic innovation for constructing sophisticated nanographenes is of fundamental significance for a variety of advanced applications. Herein, we report a distinctive method to prepare π-extended chiral nanographenes with 29 benzenoid rings and two helical breaches from a highly crowded perylene-cored oligoarylene precursor. Under Scholl's conditions, the reaction predominantly involves the regioselective and sequential cyclization in the peri- and bay regions of the perylene core, and the complanation of the 1-phenyl[5]helicene intermediate module via 1,2-phenyl migration. The resulting chiral nanographenes are configurationally stable at 180 °C due to the high diastereomerization barriers of ca. 45 kcal mol-1 . These molecules also possess globally delocalized π-systems with low HOMO/LUMO gaps, leading to nearly panchromatic absorption, intensive electronic circular dichroism signals and deep-red circularly polarized luminescence.
Collapse
Affiliation(s)
- Jinghao Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Fuwei Gan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yongle Ding
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Lewis TN, Tonnelé C, Shuler WG, Kasun ZA, Sato H, Berges AJ, Rodriguez JR, Krische MJ, Casanova D, Bardeen CJ. Chemical Tuning of Exciton versus Charge-Transfer Excited States in Conformationally Restricted Arylene Cages. J Am Chem Soc 2021; 143:18548-18558. [PMID: 34709810 DOI: 10.1021/jacs.1c08176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Covalent assemblies of conjugated organic chromophores provide the opportunity to engineer new excited states with novel properties. In this work, a newly developed triple-stranded cage architecture, in which meta-substituted aromatic caps serve as covalent linking groups that attach to both top and bottom of the conjugated molecule walls, is used to tune the properties of thiophene oligomer assemblies. Benzene-capped and triazine-capped 5,5'-(2,2-bithiophene)-containing arylene cages are synthesized and characterized using steady-state and time-resolved spectroscopic methods. The conformational freedom and electronic states are analyzed using time-dependent density functional theory. The benzene cap acts as a passive spacer whose electronic states do not mix with those of the chromophore walls. The excited state properties are dominated by through-space interactions between the chromophore subunits, generating a neutral Frenkel H-type exciton state. This excitonic state undergoes intersystem crossing on a 200 ps time scale while the fluorescence output is suppressed by a factor of 2 due to a decreased radiative rate. Switching to a triazine cap enables electron transfer from the chromophore-linker after the initial excitation to the exciton state, leading to the formation of a charge-transfer state within 10 ps. This state can avoid intersystem crossing and exhibits red-shifted fluorescence with enhanced quantum yield. The ability to interchange structural modules with different electronic properties while retaining the overall cage morphology provides a new approach for tuning the properties of discrete chromophore assemblies.
Collapse
Affiliation(s)
- Taylor N Lewis
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States
| | - Claire Tonnelé
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi Spain
| | - William G Shuler
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Zachary A Kasun
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Hiroki Sato
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - Adam J Berges
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States
| | - Jacob R Rodriguez
- University of California, Riverside, Department of Materials Science and Engineering, Riverside, California 92521, United States
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, Texas 78712, United States
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018, Donostia, Euskadi Spain.,IKERBASQUE - Basque Foundation for Science, 48009, Bilbao, Euskadi Spain
| | - Christopher J Bardeen
- University of California, Riverside, Department of Chemistry, Riverside, California 92521, United States.,University of California, Riverside, Department of Materials Science and Engineering, Riverside, California 92521, United States
| |
Collapse
|
4
|
Doerksen RS, Hodík T, Hu G, Huynh NO, Shuler WG, Krische MJ. Ruthenium-Catalyzed Cycloadditions to Form Five-, Six-, and Seven-Membered Rings. Chem Rev 2021; 121:4045-4083. [PMID: 33576620 DOI: 10.1021/acs.chemrev.0c01133] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ruthenium-catalyzed cycloadditions to form five-, six-, and seven-membered rings are summarized, including applications in natural product total synthesis. Content is organized by ring size and reaction type. Coverage is limited to processes that involve formation of at least one C-C bond. Processes that are stoichiometric in ruthenium or exploit ruthenium as a Lewis acid (without intervention of organometallic intermediates), ring formations that occur through dehydrogenative condensation-reduction, σ-bond activation-initiated annulations that do not result in net reduction of bond multiplicity, and photochemically promoted ruthenium-catalyzed cycloadditions are not covered.
Collapse
Affiliation(s)
- Rosalie S Doerksen
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Tomáš Hodík
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Guanyu Hu
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Nancy O Huynh
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - William G Shuler
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin,, Welch Hall (A5300), 105 East 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
5
|
Niknam E, Mahmoodi A, Panahi F, Heydari Dokoohaki M, Zolghadr AR, Khalafi-Nezhad A. Synthesis of some new distyrylbenzene derivatives using immobilized Pd on an NHC-functionalized MIL-101(Cr) catalyst: photophysical property evaluation, DFT and TD-DFT calculations. RSC Adv 2021; 11:12374-12380. [PMID: 35423731 PMCID: PMC8696979 DOI: 10.1039/d1ra00457c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 03/22/2021] [Indexed: 12/20/2022] Open
Abstract
In this study the catalytic application of a heterogeneous Pd-catalyst system based on metal organic framework [Pd-NHC-MIL-101(Cr)] was investigated in the synthesis of distyrylbenzene derivatives using the Heck reaction. The Pd-NHC-MIL-101(Cr) catalyst showed high efficiency in the synthesis of these π-conjugated materials and products were obtained in high yields with low Pd-contamination based on ICP analysis. The photophysical behaviors for some of the synthesized distyrylbenzene derivatives were evaluated. The DFT and TD-DFT methods were employed to determine the optimized molecular geometry, band gap energy, and the electronic absorption and emission wavelengths of the new synthesized donor-π-acceptor (D-π-A) molecules in the gas phase and in various solvents using the chemical model B3LYP/6-31+G(d,p) level of theory.
Collapse
Affiliation(s)
- Esmaeil Niknam
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Ali Mahmoodi
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology Tehran Iran
| | - Farhad Panahi
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | | | - Amin Reza Zolghadr
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| | - Ali Khalafi-Nezhad
- Department of Chemistry, College of Sciences, Shiraz University Shiraz 71454 Iran
| |
Collapse
|
6
|
Shuler WG, Parvathaneni SP, Rodriguez JB, Lewis TN, Berges AJ, Bardeen CJ, Krische MJ. Synthesis and Photophysical Properties of Soluble N-Doped Rubicenes via Ruthenium-Catalyzed Transfer Hydrogenative Benzannulation. Chemistry 2021; 27:4898-4902. [PMID: 33576516 DOI: 10.1002/chem.202100134] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Indexed: 11/10/2022]
Abstract
Ruthenium-catalyzed butadiene-mediated benzannulation enabled the first synthesis of 3,10-(di-tert-butyl)rubicene and its N-doped derivatives as well as preliminary studies on their photophysical properties. Unlike the parent rubicene and 3,10-(di-tert-butyl)rubicene, which adopt classical herringbone-type packing motifs in the solid state, the N-doped congener 7 b displayed columnar packing with an alternating co-facial arrangement of aromatic and heteroaromatic substructures.
Collapse
Affiliation(s)
- William G Shuler
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Sai P Parvathaneni
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jacob B Rodriguez
- Department of Materials Science and Engineering, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Taylor N Lewis
- Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Adam J Berges
- Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Christopher J Bardeen
- Department of Materials Science and Engineering, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA.,Department of Chemistry, University of California, 501 Big Springs Road, Riverside, CA, 92521, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
7
|
Suravarapu SR, Parvathaneni SP, Bender JA, Roberts ST, Krische MJ. Benzannulation through Ruthenium(0)-Catalyzed Transfer Hydrogenative Cycloaddition: Precision Synthesis and Photophysical Characterization of Soluble Diindenoperylenes. Chemistry 2020; 26:7504-7510. [PMID: 32271965 DOI: 10.1002/chem.202001731] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Indexed: 01/10/2023]
Abstract
The first application of ruthenium(0)-catalyzed 1,2-dione-diyne [2+2+2] cycloaddition to PAH construction is achieved by the precision synthesis of soluble diindenoperylenes (DIPs), the electronic structures of which were investigated using steady-state absorption and emission, transient absorption, cyclic voltammetry and time-dependent density functional theory.
Collapse
Affiliation(s)
- Sankar Rao Suravarapu
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Sai Prathima Parvathaneni
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Jon A Bender
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Sean T Roberts
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300), Austin, TX, 78712-1167, USA
| |
Collapse
|
8
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Synthetic Applications of Oxidative Aromatic Coupling-From Biphenols to Nanographenes. Angew Chem Int Ed Engl 2020; 59:2998-3027. [PMID: 31342599 PMCID: PMC7027897 DOI: 10.1002/anie.201904934] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/28/2019] [Indexed: 12/31/2022]
Abstract
Oxidative aromatic coupling occupies a fundamental place in the modern chemistry of aromatic compounds. It is a method of choice for the assembly of large and bewildering architectures. Considerable effort was also devoted to applications of the Scholl reaction for the synthesis of chiral biphenols and natural products. The ability to form biaryl linkages without any prefunctionalization provides an efficient pathway to many complex structures. Although the chemistry of this process is only now becoming fully understood, this reaction continues to both fascinate and challenge researchers. This is especially true for heterocoupling, that is, oxidative aromatic coupling with the chemoselective formation of a C-C bond between two different arenes. Analysis of the progress achieved in this field since 2013 reveals that many groups have contributed by pushing the boundary of structural possibilities, expanding into surface-assisted (cyclo)dehydrogenation, and developing new reagents.
Collapse
Affiliation(s)
- Marek Grzybowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Bartłomiej Sadowski
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| | - Holger Butenschön
- Institut für Organische ChemieLeibniz Universität HannoverSchneiderberg 1B30167HannoverGermany
| | - Daniel T. Gryko
- Institute of Organic ChemistryPolish Academy of SciencesKasprzaka 44/5201-224WarsawPoland
| |
Collapse
|
9
|
Grzybowski M, Sadowski B, Butenschön H, Gryko DT. Syntheseanwendungen der oxidativen aromatischen Kupplung – von Biphenolen zu Nanographenen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904934] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Marek Grzybowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Bartłomiej Sadowski
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| | - Holger Butenschön
- Institut für Organische Chemie Leibniz Universität Hannover Schneiderberg 1B 30167 Hannover Deutschland
| | - Daniel T. Gryko
- Institute of Organic Chemistry Polish Academy of Sciences Kasprzaka 44/52 01-224 Warschau Polen
| |
Collapse
|
10
|
Prakash SP, Daisymol KB, Gopidas KR. Gram‐Scale Bottom‐Up Synthesis of Macrographene. ChemistrySelect 2019. [DOI: 10.1002/slct.201902213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sadasivan P. Prakash
- Photosciences and PhotonicsChemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial Research Trivandrum 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110001 India
| | - Kurisingal B. Daisymol
- Photosciences and PhotonicsChemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial Research Trivandrum 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110001 India
| | - Karical R. Gopidas
- Photosciences and PhotonicsChemical Sciences and Technology DivisionCSIR-National Institute for Interdisciplinary Science and TechnologyCouncil of Scientific and Industrial Research Trivandrum 695 019 India
- Academy of Scientific and Innovative Research (AcSIR) New Delhi 110001 India
| |
Collapse
|
11
|
Sato H, Blemker MA, Hellinghausen G, Armstrong DW, Nafie JW, Roberts ST, Krische MJ. Triple Helical Ir(ppy) 3 Phenylene Cage Prepared by Diol-Mediated Benzannulation: Synthesis, Resolution, Absolute Stereochemistry and Photophysical Properties. Chemistry 2019; 25:8719-8724. [PMID: 31070822 DOI: 10.1002/chem.201902122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Cyclometalation of a triple helical N-doped phenylene cage prepared by ruthenium(0)-catalyzed diol-diene benzannulation delivers a chiral, conformationally constrained Ir(ppy)3 analogue. Like the parent complex, fac-Ir(ppy)3 , the iridium-containing PAH-cage is phosphorescent, but displays enhanced resistance to oxygen quenching.
Collapse
Affiliation(s)
- Hiroki Sato
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300, Austin, TX, 78712-1167, USA
| | - Michelle A Blemker
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300, Austin, TX, 78712-1167, USA
| | - Garrett Hellinghausen
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas, 76019, USA
| | - Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas, 76019, USA
| | - Jordan W Nafie
- Department of Chemistry and Biochemistry, University of Texas at Arlington, 700 Planetarium Place, Arlington, Texas, 76019, USA.,BioTools Inc., 17546 Bee Line Highway, Jupiter, FL, 33478, USA
| | - Sean T Roberts
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300, Austin, TX, 78712-1167, USA
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, 105 E 24th St. (A5300, Austin, TX, 78712-1167, USA
| |
Collapse
|
12
|
Yang J, Ren Y, Wang J, Li T, Xiao T, Jiang Y. Phenanthroline‐
t
BuONa Promoted Intramolecular C−H Arylation of 1,5‐Diaryl‐1,2,3‐Triazoles for Efficient Synthesis of Triazolophenanthridines. ChemistrySelect 2019. [DOI: 10.1002/slct.201901710] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jianhua Yang
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| | - Yongsheng Ren
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| | - Jiazhuang Wang
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| | - Tao Li
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| | - Tiebo Xiao
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| | - Yubo Jiang
- Faculty of ScienceKunming University of Science and Technology Jingming South Road 727 Kunming 650500 P. R. of China
| |
Collapse
|