1
|
Wu J, Wang Y, Wang Y, Li X, Li Y, Zhang M, Xiong J, Yin C, Zhang S, Liu X, Zhang Y. A combination of genome mining with OSMAC strategy facilitates the discovery of bioactive metabolites produced from termite-associated Streptomyces tanashiensis BYF-112. PEST MANAGEMENT SCIENCE 2025. [PMID: 39797495 DOI: 10.1002/ps.8640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/20/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025]
Abstract
BACKGROUND Previously, eight new alkaloids were obtained from the fermentation extract of termite-associated Streptomyces tanashiensis BYF-112. However, genome analysis indicated the presence of many undiscovered secondary metabolites in S. tanashiensis BYF-112. RESULTS Herein, 12 new alkaloids, tianwuine A-E (1-5), cephalandole C (6), venezuelines I-L (7-10), N-(4-methylphenyl-2-hydroxy) formamide (11) and N-(5-formyl-2-hydroxyphenyl) formamide (12), as well as three known metabolites (13-15) were discovered from BYF-112 based on a combination of genome mining and the one strain many compounds (OSMAC) strategy. Plausible biosynthetic pathways of 1-13 were proposed using bioinformatic analysis of the full genome of BYF-112. Partial metabolites were evaluated in vitro for their antibacterial, phytotoxic, and anti-inflammatory activities. Pyrroloformamide A (14) showed strong antibacterial activities against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, Pseudomonas syringae pv. actinidae, Xanthomonas oryzae pv. oryzae and Xanthomonas oryzae pv. oryzicola at a concentration of 50 μg per 6 mm disk. Simultaneously, pyrroloformamide A (14) also had a strong inhibitory effect on the radicle growth of Echinochloa crusgalli with an inhibition rate of 98.01% at a concentration of 100 μg/mL, equivalent to the positive 2,4-dichlorophenoxyacetic acid. Subsequently, the possible herbicidal mechanism of 14 was explored using molecular docking simulation. In addition, venezueline G (13) displayed a strong inhibitory effect of NO production, with an half-maximal inhibitory concentration (IC50) value of 2.3 μm, which was comparable with that of BAY 11-7082 with an IC50 value of 2.1 μm. CONCLUSION These findings revealed a perspective for the development of novel bioactive drugs in the food, agricultural, and biomedical fields utilizing the metabolites of BYF-112. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jun Wu
- School of Life Science, Anhui Agricultural University, Hefei, China
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai, China
| | - YiHeng Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YaXuan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XiaoHong Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - YueYue Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Miao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - JianHao Xiong
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - CaiPing Yin
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - ShuXiang Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - XinHua Liu
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - YingLao Zhang
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
2
|
Lv XJ, Ai CZ, Zhang LR, Ma XX, Zhang JJ, Zhu JP, Tan RX. Regioselectivity switches between anthraquinone precursor fissions involved in bioactive xanthone biosynthesis. Chem Sci 2024; 15:19534-19545. [PMID: 39568878 PMCID: PMC11575538 DOI: 10.1039/d4sc06369d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024] Open
Abstract
Xanthone-based polyketides with complex molecular frameworks and potent bioactivities distribute and function in different biological kingdoms, yet their biosynthesis remains under-investigated. In particular, nothing is known regarding how to switch between the C4a-C10 (C4a-selective) and C10a-C10 bond (C10a-selective) cleavages of anthraquinone intermediates involved in biosynthesizing strikingly different frameworks of xanthones and their siblings. Enabled by our characterization of antiosteoporotic brunneoxanthones, a subfamily of polyketides from Aspergillus brunneoviolaceus FB-2, we present herein the brunneoxanthone biosynthetic gene cluster and the C10a-selective cleavage of anthraquinone (chrysophanol) hydroquinone leading ultimately to the bioactive brunneoxanthones under the catalysis of BruN (an undescribed atypical non-heme iron dioxygenase) in collaboration with BruM as a new oxidoreductase that reduces the anthraquinone into its hydroquinone using NADPH as a cofactor. The insights into the driving force that determines whether the C10a- or C4a-selective cleavages of anthraquinone hydroquinones take place were achieved by a combination of multiprotein sequence alignment, directed protein evolution, theoretical simulation, chemical capture of hydroquinone tautomer, 18O chasing, and X-ray crystal structure of the BruNN441M mutant, eventually allowing for the protocol establishment for the on-demand switch between the two ways of anthraquinone openings. Collectively, the work paves the way for the synthetic biology-based regeneration of uniquely structured high-value xanthones present in low abundance in complex mixtures, and helps to deepen the understanding on why and how such xanthones and their congeners are biosynthesized by different (micro)organisms in nature.
Collapse
Affiliation(s)
- Xiao Jing Lv
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Chun Zhi Ai
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004 China
| | - Li Rong Zhang
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Xiu Xiu Ma
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Juan Juan Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University Nanjing 210023 China
| | - Jia Peng Zhu
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine Nanjing 210023 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine Nanjing 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University Nanjing 210023 China
| |
Collapse
|
3
|
Petijová L, Henzelyová J, Kuncová J, Matoušková M, Čellárová E. In silico prediction of polyketide biosynthetic gene clusters in the genomes of Hypericum-borne endophytic fungi. BMC Genomics 2024; 25:555. [PMID: 38831295 PMCID: PMC11149221 DOI: 10.1186/s12864-024-10475-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 05/29/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND The search for new bioactive natural compounds with anticancer activity is still of great importance. Even though their potential for diagnostics and treatment of cancer has already been proved, the availability is still limited. Hypericin, a naphthodianthrone isolated essentially from plant source Hypericum perforatum L. along with other related anthraquinones and bisanthraquinones belongs to this group of compounds. Although it has been proven that hypericin is synthesized by the polyketide pathway in plants, none of the candidate genes coding for key enzymes has been experimentally validated yet. Despite the rare occurrence of anthraquinones in plants, their presence in microorganisms, including endophytic fungi, is quite common. Unlike plants, several biosynthetic genes grouped into clusters (BGCs) in fungal endophytes have already been characterized. RESULTS The aim of this work was to predict, identify and characterize the anthraquinone BGCs in de novo assembled and functionally annotated genomes of selected endophytic fungal isolates (Fusarium oxysporum, Plectosphaerella cucumerina, Scedosporium apiospermum, Diaporthe eres, Canariomyces subthermophilus) obtained from different tissues of Hypericum spp. The number of predicted type I polyketide synthase (PKS) BGCs in the studied genomes varied. The non-reducing type I PKS lacking thioesterase domain and adjacent discrete gene encoding protein with product release function were identified only in the genomes of C. subthermophilus and D. eres. A candidate bisanthraquinone BGC was predicted in C. subthermophilus genome and comprised genes coding the enzymes that catalyze formation of the basic anthraquinone skeleton (PKS, metallo-beta-lactamase, decarboxylase, anthrone oxygenase), putative dimerization enzyme (cytochrome P450 monooxygenase), other tailoring enzymes (oxidoreductase, dehydrogenase/reductase), and non-catalytic proteins (fungal transcription factor, transporter protein). CONCLUSIONS The results provide an insight into genetic background of anthraquinone biosynthesis in Hypericum-borne endophytes. The predicted bisanthraquinone gene cluster represents a basis for functional validation of the candidate biosynthetic genes in a simple eukaryotic system as a prospective biotechnological alternative for production of hypericin and related bioactive anthraquinones.
Collapse
Affiliation(s)
- Linda Petijová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia.
| | - Jana Henzelyová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Júlia Kuncová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Martina Matoušková
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| | - Eva Čellárová
- Department of Genetics, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Šafárik University in Košice, Mánesova 23, Košice, 04154, Slovakia
| |
Collapse
|
4
|
Zhang S, Gu L, Lin Y, Zeng H, Ding N, Wei J, Gu X, Liu C, Sun W, Zhou Y, Zhang Y, Hu Z. Chaetoxylariones A-G: undescribed chromone-derived polyketides from co-culture of Chaetomium virescens and Xylaria grammica enabled via the molecular networking strategy. Bioorg Chem 2024; 147:107329. [PMID: 38608410 DOI: 10.1016/j.bioorg.2024.107329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/28/2024] [Accepted: 04/01/2024] [Indexed: 04/14/2024]
Abstract
By co-culturing two endophytic fungi (Chaetomium virescens and Xylaria grammica) collected from the medicinal and edible plant Smilax glabra Roxb. and analyzing them with MolNetEnhancer module on GNPS platform, seven undescribed chromone-derived polyketides (chaetoxylariones A-G), including three pairs of enantiomer ones (2a/2b, 4a/4b and 6a/6b) and four optical pure ones (1, 3, 5 and 7), as well as five known structural analogues (8-12), were obtained. The structures of these new compounds were characterized by NMR spectroscopy, single-crystal X-ray diffraction, 13C NMR calculation and DP4+ probability analyses, as well as the comparison of the experimental electronic circular dichroism (ECD) data. Structurally, compound 1 featured an unprecedented chromone-derived sulfonamide tailored by two isoleucine-derived δ-hydroxy-3-methylpentenoic acids via the acylamide and NO bonds, respectively; compound 2 represented the first example of enantiomeric chromone derivative bearing a unique spiro-[3.3]alkane ring system; compound 3 featured a decane alkyl side chain that formed an undescribed five-membered lactone ring between C-7' and C-10'; compound 4 contained an unexpected highly oxidized five-membered carbocyclic system featuring rare adjacent keto groups; compound 7 featured a rare methylsulfonyl moiety. In addition, compound 10 showed a significant inhibition towards SW620/AD300 cells with an IC50 value of PTX significantly decreased from 4.09 μM to 120 nM, and a further study uncovered that compound 10 could obviously reverse the MDR of SW620/AD300 cells.
Collapse
Affiliation(s)
- Sitian Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Lianghu Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yongtong Lin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Hanxiao Zeng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Nanjin Ding
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Jiangchun Wei
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Xiaoxia Gu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Chang Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Weiguang Sun
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yuan Zhou
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Yonghui Zhang
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| | - Zhengxi Hu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.
| |
Collapse
|
5
|
Lee S, Park IG, Choi JW, Son JY, Lee JW, Hur JS, Kim Y, Nam SJ, Kang HS, Deyrup ST, Noh M, Shim SH. Daldipyrenones A-C: Caged [6,6,6,6,6] Polyketides Derived from an Endolichenic Fungus Daldinia pyrenaica 047188. Org Lett 2023; 25:6725-6729. [PMID: 37650559 DOI: 10.1021/acs.orglett.3c02583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Daldipyrenones A-C (1-3), three unprecedented caged xanthone [6,6,6,6,6] polyketides featuring a spiro-azaphilone unit, were discovered from an endolichenic fungus, Daldinia pyrenaica 047188. The structures of 1-3 were determined by using spectroscopic analysis and chemical derivatization. Daldipyrenones are likely derived by combining a chromane biosynthesis intermediate, 1-(2,6-dihydroxyphenyl)but-2-en-2-one, and a spiro-azaphilone, pestafolide A, via radical coupling or Michael addition to form a bicyclo[2.2.2]octane ring. Genome sequencing of the strain revealed two separate biosynthetic gene clusters responsible for forming two biosynthetic intermediates, suggesting a proposed biosynthetic pathway. Daldipyrenone A (1) exhibited significant antimelanogenic activity with lower EC50's than positive controls and moderate adiponectin-secretion promoting activity.
Collapse
Affiliation(s)
- Seungjin Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - In Guk Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Won Choi
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jin Young Son
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Jae-Seoun Hur
- Korean Lichen Research Institute, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Youngmee Kim
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, College of Natural Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Minsoo Noh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Schüller A, Studt-Reinhold L, Berger H, Silvestrini L, Labuda R, Güldener U, Gorfer M, Bacher M, Doppler M, Gasparotto E, Gattesco A, Sulyok M, Strauss J. Genome analysis of Cephalotrichum gorgonifer and identification of the biosynthetic pathway for rasfonin, an inhibitor of KRAS dependent cancer. Fungal Biol Biotechnol 2023; 10:13. [PMID: 37355668 PMCID: PMC10290801 DOI: 10.1186/s40694-023-00158-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/28/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND Fungi are important sources for bioactive compounds that find their applications in many important sectors like in the pharma-, food- or agricultural industries. In an environmental monitoring project for fungi involved in soil nitrogen cycling we also isolated Cephalotrichum gorgonifer (strain NG_p51). In the course of strain characterisation work we found that this strain is able to naturally produce high amounts of rasfonin, a polyketide inducing autophagy, apoptosis, necroptosis in human cell lines and showing anti-tumor activity in KRAS-dependent cancer cells. RESULTS In order to elucidate the biosynthetic pathway of rasfonin, the strain was genome sequenced, annotated, submitted to transcriptome analysis and genetic transformation was established. Biosynthetic gene cluster (BGC) prediction revealed the existence of 22 BGCs of which the majority was not expressed under our experimental conditions. In silico prediction revealed two BGCs with a suite of enzymes possibly involved in rasfonin biosynthesis. Experimental verification by gene-knock out of the key enzyme genes showed that one of the predicted BGCs is indeed responsible for rasfonin biosynthesis. CONCLUSIONS This study identified a biosynthetic gene cluster containing a key-gene responsible for rasfonin production. Additionally, molecular tools were established for the non-model fungus Cephalotrichum gorgonifer which allows strain engineering and heterologous expression of the BGC for high rasfonin producing strains and the biosynthesis of rasfonin derivates for diverse applications.
Collapse
Affiliation(s)
- Andreas Schüller
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Lucia Silvestrini
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- DGforLife, Operations - Research and Development, Via Albert Einstein, Marcallo c.C., 20010, Milan, Italy
| | - Roman Labuda
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department for Farm Animals and Veterinary Public Health, Institute of Food Safety, Food Technology and Veterinary Public Health, Unit of Food Microbiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Ulrich Güldener
- Department of Bioinformatics, Technical University of Munich, TUM School of Life Sciences Weihenstephan, Freising, Germany
- German Heart Center Munich, Technical University Munich, Lazarettstraße 36, 80636, Munich, Germany
| | - Markus Gorfer
- AIT Austrian Institute of Technology GmbH, Bioresources, 3430, Tulln, Austria
| | - Markus Bacher
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-LorenzStraße 24, 3430, Tulln, Austria
| | - Maria Doppler
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
- Core Facility Bioactive Molecules, Screening and Analysis, University of Natural Resources and Life Sciences, Vienna, 3430, Tulln an der Donau, Austria
| | - Erika Gasparotto
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Department of Biological Chemistry, Faculty of Chemistry, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Arianna Gattesco
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria
| | - Michael Sulyok
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Strasse 20, 3430, Tulln an der Donau, Austria
| | - Joseph Strauss
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Campus Tulln, Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
- Research Platform Bioactive Microbial Metabolites (BiMM), Konrad Lorenz Strasse 24, 3430, Tulln an der Donau, Austria.
| |
Collapse
|
7
|
D’Ambrosio HK, Ganley JG, Keeler AM, Derbyshire ER. A single amino acid residue controls acyltransferase activity in a polyketide synthase from Toxoplasma gondii. iScience 2022; 25:104443. [PMID: 35874921 PMCID: PMC9301873 DOI: 10.1016/j.isci.2022.104443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/12/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
Type I polyketide synthases (PKSs) are multidomain, multimodule enzymes capable of producing complex polyketide metabolites. These modules contain an acyltransferase (AT) domain, which selects acyl-CoA substrates to be incorporated into the metabolite scaffold. Herein, we reveal the sequences of three AT domains from a polyketide synthase (TgPKS2) from the apicomplexan parasite Toxoplasma gondii. Phylogenic analysis indicates these ATs (AT1, AT2, and AT3) are distinct from domains in well-characterized microbial biosynthetic gene clusters. Biochemical investigations revealed that AT1 and AT2 hydrolyze malonyl-CoA but the terminal AT3 domain is non-functional. We further identify an "on-off switch" residue that controls activity such that a single amino acid change in AT3 confers hydrolysis activity while the analogous mutation in AT2 eliminates activity. This biochemical analysis of AT domains from an apicomplexan PKS lays the foundation for further molecular and structural studies on PKSs from T. gondii and other protists.
Collapse
Affiliation(s)
- Hannah K. D’Ambrosio
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Jack G. Ganley
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Aaron M. Keeler
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
| | - Emily R. Derbyshire
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC 27708, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, 213 Research Drive, Durham, NC 27710, USA
| |
Collapse
|
8
|
Lin LP, Wu M, Jiang N, Wang W, Tan RX. Carbon-nitrogen bond formation to construct novel polyketide-indole hybrids from the indole-3-carbinol exposed culture of Daldinia eschscholzii. Synth Syst Biotechnol 2022; 7:750-755. [PMID: 35387230 PMCID: PMC8943216 DOI: 10.1016/j.synbio.2022.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 11/26/2022] Open
Abstract
A plenty of cytochrome P450s have been annotated in the Daldinia eschosholzii genome. Inspired by the fact that some P450s have been reported to catalyze the carbon-nitrogen (C-N) bond formation, we were curious about whether hybrids through C-N bond formation could be generated in the indole-3-carbinol (I3C) exposed culture of D. eschscholzii. As expected, two skeletally undescribed polyketide-indole hybrids, designated as indolpolyketone A and B (1 and 2), were isolated and assigned to be constructed through C-N bond formation. Their structures were elucidated by 1D and 2D NMR spectra. The absolute configurations of 1 and 2 were determined by comparing the recorded and calculated electronic circular dichroism (ECD) spectra. Furthermore, the plausible biosynthetic pathways for 1 and 2 were proposed. Compounds 1 and 2 exhibited significant antiviral activity against H1N1 with IC50 values of 45.2 and 31.4 μM, respectively. In brief, compounds 1 and 2 were reported here for the first time and were the first example of polyketide-indole hybrids pieced together through C-N bond formation in the I3C-exposed culture of D. eschscholzii. Therefore, this study expands the knowledge about the chemical production of D. eschscholzii through precursor-directed biosynthesis (PDB).
Collapse
Affiliation(s)
- Li Ping Lin
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Min Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nan Jiang
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Wei Wang
- Key Laboratory of Marine Drugs, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, Nanjing University of Chinese Medicine, Nanjing, 210023, China
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Skellam E. Biosynthesis of fungal polyketides by collaborating and trans-acting enzymes. Nat Prod Rep 2022; 39:754-783. [PMID: 34842268 DOI: 10.1039/d1np00056j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Covering: 1999 up to 2021Fungal polyketides encompass a range of structurally diverse molecules with a wide variety of biological activities. The giant multifunctional enzymes that synthesize polyketide backbones remain enigmatic, as do many of the tailoring enzymes involved in functional modifications. Recent advances in elucidating biosynthetic gene clusters (BGCs) have revealed numerous examples of fungal polyketide synthases that require the action of collaborating enzymes to synthesize the carbon backbone. This review will discuss collaborating and trans-acting enzymes involved in loading, extending, and releasing polyketide intermediates from fungal polyketide synthases, and additional modifications introduced by trans-acting enzymes demonstrating the complexity encountered when investigating natural product biosynthesis in fungi.
Collapse
Affiliation(s)
- Elizabeth Skellam
- Department of Chemistry, BioDiscovery Institute, University of North Texas, 1155 Union Circle, Denton, TX 76203, USA.
| |
Collapse
|
10
|
Biosynthesis of Fungal Natural Products Involving Two Separate Pathway Crosstalk. J Fungi (Basel) 2022; 8:jof8030320. [PMID: 35330322 PMCID: PMC8948627 DOI: 10.3390/jof8030320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 01/21/2023] Open
Abstract
Fungal natural products (NPs) usually possess complicated structures, exhibit satisfactory bioactivities, and are an outstanding source of drug leads, such as the cholesterol-lowering drug lovastatin and the immunosuppressive drug mycophenolic acid. The fungal NPs biosynthetic genes are always arranged within one single biosynthetic gene cluster (BGC). However, a rare but fascinating phenomenon that a crosstalk between two separate BGCs is indispensable to some fungal dimeric NPs biosynthesis has attracted increasing attention. The hybridization of two separate BGCs not only increases the structural complexity and chemical diversity of fungal NPs, but also expands the scope of bioactivities. More importantly, the underlying mechanism for this hybridization process is poorly understood and needs further exploration, especially the determination of BGCs for each building block construction and the identification of enzyme(s) catalyzing the two biosynthetic precursors coupling processes such as Diels–Alder cycloaddition and Michael addition. In this review, we summarized the fungal NPs produced by functional crosstalk of two discrete BGCs, and highlighted their biosynthetic processes, which might shed new light on genome mining for fungal NPs with unprecedented frameworks, and provide valuable insights into the investigation of mysterious biosynthetic mechanisms of fungal dimeric NPs which are constructed by collaboration of two separate BGCs.
Collapse
|
11
|
Ma GL, Candra H, Pang LM, Xiong J, Ding Y, Tran HT, Low ZJ, Ye H, Liu M, Zheng J, Fang M, Cao B, Liang ZX. Biosynthesis of Tasikamides via Pathway Coupling and Diazonium-Mediated Hydrazone Formation. J Am Chem Soc 2022; 144:1622-1633. [DOI: 10.1021/jacs.1c10369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Guang-Lei Ma
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Li Mei Pang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Juan Xiong
- School of Pharmacy, Fudan University, Shanghai 201203, P. R. China
| | - Yichen Ding
- Temasek Life Sciences Laboratory Limited, Research Link, National University of Singapore, 117604 Singapore
| | - Hoa Thi Tran
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Zhen Jie Low
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Hong Ye
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Min Liu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Jie Zheng
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Mingliang Fang
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
| | - Bin Cao
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798 Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551 Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
12
|
Wu XM, Guan QY, Han YB, Wang XC, Zhuang WY, Tan RX. Regeneration of Phytochemicals by Structure‐Driven Organization of Microbial Biosynthetic Steps. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202114919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy Nanjing University of Chinese Medicine No. 138 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Qiu Yan Guan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy Nanjing University of Chinese Medicine No. 138 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Yun Bin Han
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy Nanjing University of Chinese Medicine No. 138 Xianlin Avenue Nanjing Jiangsu 210023 China
| | - Xin Cun Wang
- Insitute of Microbiology Chinese Academy of Sciences Beijing 100101 China
| | - Wen Ying Zhuang
- Insitute of Microbiology Chinese Academy of Sciences Beijing 100101 China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy School of Pharmacy Nanjing University of Chinese Medicine No. 138 Xianlin Avenue Nanjing Jiangsu 210023 China
- State Key Laboratory of Pharmaceutical Biotechnology Institute of Functional Biomolecules, School of Life Sciences Nanjing University No. 163 Xianlin Avenue Nanjing Jiangsu 210023 China
| |
Collapse
|
13
|
Wu XM, Guan QY, Han YB, Wang XC, Zhuang WY, Tan RX. Regeneration of Phytochemicals by Structure-Driven Organization of Microbial Biosynthetic Steps. Angew Chem Int Ed Engl 2021; 61:e202114919. [PMID: 34931419 DOI: 10.1002/anie.202114919] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Indexed: 11/05/2022]
Abstract
Medicinal phytochemicals, such as artemisinin and taxol, have impacted the world, and hypericin might do so if its availability issue could be addressed. Hypericin is the hallmark component of Saint John's wort (Hypericum perforatum L.), an approved depression alleviator documented in the US, European, and British pharmacopoeias with its additional effectiveness against diverse cancers and viruses. However, the academia-to-industry transition of hypericin remain hampered by its low in planta abundance, unfeasible bulk chemical synthesis, and unclear biosynthetic mechanism. Here, we present a strategy consisting of the hypericin-structure-centered modification and reorganization of microbial biosynthetic steps in the repurposed cells that have been tamed to enable the designed consecutive reactions to afford hypericin (43.1 mg L-1 ), without acquiring its biosynthetic knowledge in native plants. The study provides a synthetic biology route to hypericin and establishes a platform for biosustainable access to medicinal phytochemicals.
Collapse
Affiliation(s)
- Xue Ming Wu
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Qiu Yan Guan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Yun Bin Han
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| | - Xin Cun Wang
- Insitute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wen Ying Zhuang
- Insitute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ren Xiang Tan
- State Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, No. 138 Xianlin Avenue, Nanjing, Jiangsu, 210023, China.,State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, No. 163 Xianlin Avenue, Nanjing, Jiangsu, 210023, China
| |
Collapse
|
14
|
Wang L, Huang Y, Zhang L, Liu Z, Liu W, Xu H, Zhang Q, Zhang H, Yan Y, Liu Z, Zhang T, Zhang W, Zhang C. Structures and absolute configurations of phomalones from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. Org Biomol Chem 2021; 19:6030-6037. [PMID: 34190307 DOI: 10.1039/d1ob00869b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Coral-associated microorganisms are likely to play an important role in host defense by the production of antimicrobials. Six new chromanones, namely, phomalichenones H-M (5, 6, and 8-11), and ten known analogues (1-4, 7, and 12-16) were isolated from the coral-associated fungus Parengyodontium album sp. SCSIO 40430. Their structures were elucidated by comprehensive spectroscopic analyses. In addition, the structure of 8 was confirmed by X-ray crystallographic analysis. Resolution using a chiral column showed that each of the compounds 1-8 was an enantiomeric mixture with variable enantiomeric excess (ee) values. Their absolute configurations were determined by a comparison of the experimental and calculated ECD data and by a modified Mosher's method. A plausible biosynthetic scheme was proposed for the production of 1-16. Compounds 2, 3, 13, and 14 were found to be active against Mycobacterium tuberculosis H37Ra with MIC values of 16-64 μg mL-1.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanbing Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning 530007, China
| | - Liping Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhiwen Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Wei Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Huixin Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingbo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Haibo Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Yan Yan
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Zhiyong Liu
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, China
| | - Tianyu Zhang
- Tuberculosis Research Laboratory, State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China and Guangdong-Hong Kong-Macao Joint Laboratory of Respiratory Infectious Disease, Guangzhou 510530, China
| | - Wenjun Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Changsheng Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China. and University of Chinese Academy of Sciences, Beijing 100049, China and Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China and Sanya Institute of Oceanology, SCSIO, Yazhou Scientific Bay, Sanya 572000, China
| |
Collapse
|
15
|
Kuhnert E, Navarro-Muñoz J, Becker K, Stadler M, Collemare J, Cox R. Secondary metabolite biosynthetic diversity in the fungal family Hypoxylaceae and Xylaria hypoxylon. Stud Mycol 2021; 99:100118. [PMID: 34527085 PMCID: PMC8403587 DOI: 10.1016/j.simyco.2021.100118] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
To date little is known about the genetic background that drives the production and diversification of secondary metabolites in the Hypoxylaceae. With the recent availability of high-quality genome sequences for 13 representative species and one relative (Xylaria hypoxylon) we attempted to survey the diversity of biosynthetic pathways in these organisms to investigate their true potential as secondary metabolite producers. Manual search strategies based on the accumulated knowledge on biosynthesis in fungi enabled us to identify 783 biosynthetic pathways across 14 studied species, the majority of which were arranged in biosynthetic gene clusters (BGC). The similarity of BGCs was analysed with the BiG-SCAPE engine which organised the BGCs into 375 gene cluster families (GCF). Only ten GCFs were conserved across all of these fungi indicating that speciation is accompanied by changes in secondary metabolism. From the known compounds produced by the family members some can be directly correlated with identified BGCs which is highlighted herein by the azaphilone, dihydroxynaphthalene, tropolone, cytochalasan, terrequinone, terphenyl and brasilane pathways giving insights into the evolution and diversification of those compound classes. Vice versa, products of various BGCs can be predicted through homology analysis with known pathways from other fungi as shown for the identified ergot alkaloid, trigazaphilone, curvupallide, viridicatumtoxin and swainsonine BGCs. However, the majority of BGCs had no obvious links to known products from the Hypoxylaceae or other well-studied biosynthetic pathways from fungi. These findings highlight that the number of known compounds strongly underrepresents the biosynthetic potential in these fungi and that a tremendous number of unidentified secondary metabolites is still hidden. Moreover, with increasing numbers of genomes for further Hypoxylaceae species becoming available, the likelihood of revealing new biosynthetic pathways that encode new, potentially useful compounds will significantly improve. Reaching a better understanding of the biology of these producers, and further development of genetic methods for their manipulation, will be crucial to access their treasures.
Collapse
Affiliation(s)
- E. Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| | - J.C. Navarro-Muñoz
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - K. Becker
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - M. Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - J. Collemare
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands
| | - R.J. Cox
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167, Hannover, Germany
| |
Collapse
|
16
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6-Hydroxymellein Requires a Collaborating Polyketide Synthase-like Enzyme. Angew Chem Int Ed Engl 2021; 60:11423-11429. [PMID: 33661567 PMCID: PMC8251887 DOI: 10.1002/anie.202100969] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The polyketide synthase (PKS)-like protein TerB, consisting of inactive dehydratase, inactive C-methyltransferase, and functional ketoreductase domains collaborates with the iterative non reducing PKS TerA to produce 6-hydroxymellein, a key pathway intermediate during the biosynthesis of various fungal natural products. The catalytically inactive dehydratase domain of TerB appears to mediate productive interactions with TerA, demonstrating a new mode of trans-interaction between iterative PKS components.
Collapse
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: The Molecular Biology InstituteUCLALos AngelesCA90095-1570USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZLeibniz Universität HannoverSchneiderberg 3830167HannoverGermany
- Current address: Department of Chemistry & BioDiscovery InstituteUniversity of North Texas1155 Union Circle 305220DentonTX76203USA
| |
Collapse
|
17
|
Kahlert L, Villanueva M, Cox RJ, Skellam EJ. Biosynthesis of 6‐Hydroxymellein Requires a Collaborating Polyketide Synthase‐like Enzyme. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lukas Kahlert
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Miranda Villanueva
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: The Molecular Biology Institute UCLA Los Angeles CA 90095-1570 USA
| | - Russell J. Cox
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
| | - Elizabeth J. Skellam
- Institute for Organic Chemistry and BMWZ Leibniz Universität Hannover Schneiderberg 38 30167 Hannover Germany
- Current address: Department of Chemistry & BioDiscovery Institute University of North Texas 1155 Union Circle 305220 Denton TX 76203 USA
| |
Collapse
|
18
|
Zhou W, Posri P, Mahmud T. Natural Occurrence of Hybrid Polyketides from Two Distinct Biosynthetic Pathways in Streptomyces pactum. ACS Chem Biol 2021; 16:270-276. [PMID: 33601889 DOI: 10.1021/acschembio.0c00982] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nature has always been seemingly limitless in its ability to create new chemical entities. It provides vastly diverse natural compounds through a biomanufacturing process that involves myriads of biosynthetic machineries. Here we report a case of unusual formations of hybrid natural products that are derived from two distinct polyketide biosynthetic pathways, the NFAT-133 and conglobatin pathways, in Streptomyces pactum ATCC 27456. Their chemical structures were determined by NMR spectroscopy, mass spectrometry, and chemical synthesis. Genome sequence analysis and gene inactivation experiments uncovered the biosynthetic gene cluster of conglobatin in S. pactum. Biochemical studies of the recombinant thioesterase (TE) domain of the conglobatin polyketide synthase (PKS) as well as its S74A mutant revealed that the formation of these hybrid compounds requires an active TE domain. We propose that NFAT-133 can interfere with conglobatin biosynthesis by reacting with the TE-domain-bound intermediates in the conglobatin PKS assembly line to form hybrid NFAT-133/conglobatin products.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Priyapan Posri
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331-3507, United States
| |
Collapse
|
19
|
Zhang AH, Jiang N, Wang XQ, Tan RX. Galewone, an Anti-Fibrotic Polyketide from Daldinia eschscholzii with an Undescribed Carbon Skeleton. Sci Rep 2019; 9:14316. [PMID: 31586120 PMCID: PMC6778108 DOI: 10.1038/s41598-019-50868-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 09/20/2019] [Indexed: 02/07/2023] Open
Abstract
A novel polyphenolic natural product, galewone, with undescribed carbon skeleton, was isolated as a racemate from the culture of Daldinia eschscholzii IFB-TL01, a fungus obtained from the mantis (Tenodera aridifolia) gut. The galewone structure was elucidated by a combination of MS and NMR spectra, and substantiated by X-ray crystallographic diffraction. The absolute stereochemistry of each galewone enantiomers was determined by the CD spectrum. In compliance of the structural similarities, galewone might be the shunt products of the dalesconol biosynthetic pathway. Both (−)- and ( + )-galewones were evaluated to be anti-fibrotic against activated hepatic stellate cell line, CFSC-8B, with the IC50 values being 3.73 ± 0.21 and 10.10 ± 0.41 μM, respectively. Thus, galewone may serve as a starting molecule for the discovery of new anti-fibrotic drug.
Collapse
Affiliation(s)
- Ai Hua Zhang
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, 210098, China.
| | - Nan Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing, 210029, China
| | - Xing Qi Wang
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210046, China
| | - Ren Xiang Tan
- Institute of Functional Biomolecules, State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, 210046, China.
| |
Collapse
|
20
|
Dalestones A and B, two anti-inflammatory cyclopentenones from Daldinia eschscholzii with an edited strong promoter for the global regulator LaeA-like gene. Chin J Nat Med 2019; 17:387-393. [PMID: 31171274 DOI: 10.1016/s1875-5364(19)30045-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Indexed: 11/22/2022]
Abstract
Replacement of the native promoter of theglobal regulator LaeA-like gene of Daldinia eschscholzii by a strong gpdA promoter led to the generation of two novel cyclopentenone metabolites, named dalestones A and B, whose structures were assigned by a combination of spectroscopic analysis, modified Mosher's reaction, and electronic circular dichroism (ECD). Dalestones A and B inhibit the gene expression of TNF-α and IL-6 in LPS-induced RAW264.7 macrophages.
Collapse
|
21
|
Lauterbach L, Wang T, Stadler M, Dickschat JS. Volatiles from the ascomycete Daldinia cf. childiae (Hypoxylaceae), originating from China. MEDCHEMCOMM 2019; 10:726-734. [PMID: 31191863 PMCID: PMC6533885 DOI: 10.1039/c9md00083f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 03/22/2019] [Indexed: 01/14/2023]
Abstract
The volatiles from an isolate of the fungus Daldinia cf. childiae, obtained from a specimen collected in China, were collected by use of a closed-loop stripping apparatus and analysed by GC-MS. A total number of 33 compounds from different classes were rigorously identified by comparison of mass spectra to library spectra and of retention indices to tabulated data from the literature. For unknown compounds structural suggestions were delineated from the mass spectra and verified by chemical synthesis of reference materials. Through this approach two 2-alkylated furan derivatives were identified, demonstrating that the genus Daldinia continues to be an interesting source for the discovery of novel secondary metabolites. Feeding experiments with sodium (1,2-13C2)acetate were performed to investigate the biosynthesis of the polyketide 5-hydroxy-2-methyl-4-chromanone that are in favour of a non-enzymatic cyclisation step.
Collapse
Affiliation(s)
- Lukas Lauterbach
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Tao Wang
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| | - Marc Stadler
- Abteilung Mikrobielle Wirkstoffe , Helmholtz-Zentrum für Infektionsforschung , Inhoffenstraße 7 , 38124 Braunschweig , Germany
| | - Jeroen S Dickschat
- Kekulé-Institut für Organische Chemie , Universität Bonn , Gerhard-Domagk-Straße 1 , 53121 Bonn , Germany .
| |
Collapse
|