1
|
Zeng J, Lu C, Huang X, Li Y. The human eIF4E:4E-BP2 complex structure for studying hyperphosphorylation. Phys Chem Chem Phys 2024; 26:10660-10672. [PMID: 38511550 DOI: 10.1039/d3cp05736d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a β-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.
Collapse
Affiliation(s)
- Juan Zeng
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - CuiMin Lu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Xuan Huang
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, China.
| | - Yang Li
- Department of Urology, Huaihe Hospital of Henan University, Kaifeng 475000, Henan, China.
| |
Collapse
|
2
|
Lama D, Vosselman T, Sahin C, Liaño-Pons J, Cerrato CP, Nilsson L, Teilum K, Lane DP, Landreh M, Arsenian Henriksson M. A druggable conformational switch in the c-MYC transactivation domain. Nat Commun 2024; 15:1865. [PMID: 38424045 PMCID: PMC10904854 DOI: 10.1038/s41467-024-45826-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
The c-MYC oncogene is activated in over 70% of all human cancers. The intrinsic disorder of the c-MYC transcription factor facilitates molecular interactions that regulate numerous biological pathways, but severely limits efforts to target its function for cancer therapy. Here, we use a reductionist strategy to characterize the dynamic and structural heterogeneity of the c-MYC protein. Using probe-based Molecular Dynamics (MD) simulations and machine learning, we identify a conformational switch in the c-MYC amino-terminal transactivation domain (termed coreMYC) that cycles between a closed, inactive, and an open, active conformation. Using the polyphenol epigallocatechin gallate (EGCG) to modulate the conformational landscape of coreMYC, we show through biophysical and cellular assays that the induction of a closed conformation impedes its interactions with the transformation/transcription domain-associated protein (TRRAP) and the TATA-box binding protein (TBP) which are essential for the transcriptional and oncogenic activities of c-MYC. Together, these findings provide insights into structure-activity relationships of c-MYC, which open avenues towards the development of shape-shifting compounds to target c-MYC as well as other disordered transcription factors for cancer treatment.
Collapse
Affiliation(s)
- Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
| | - Thibault Vosselman
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Cagla Sahin
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - Judit Liaño-Pons
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Carmine P Cerrato
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Lennart Nilsson
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-14813, Huddinge, Sweden
| | - Kaare Teilum
- Department of Biology, Structural Biology and NMR Laboratory and the Linderstrøm-Lang Centre for Protein Science, University of Copenhagen, DK-2200, Copenhagen, Denmark
| | - David P Lane
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden
| | - Michael Landreh
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Department of Cell- and Molecular Biology, Uppsala University, SE-751 24, Uppsala, Sweden.
| | - Marie Arsenian Henriksson
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Biomedicum, SE-17165, Stockholm, Sweden.
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, SE-221 00, Lund, Sweden.
| |
Collapse
|
3
|
Paquette AR, Boddy CN. Double Stranded DNA Binding Stapled Peptides: An Emerging Tool for Transcriptional Regulation. Chembiochem 2023; 24:e202300594. [PMID: 37750576 DOI: 10.1002/cbic.202300594] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 09/27/2023]
Abstract
Stapled peptides have rapidly established themselves as a powerful technique to mimic α-helical interactions with a short peptide sequence. There are many examples of stapled peptides that successfully disrupt α-helix-mediated protein-protein interactions, with an example currently in clinical trials. DNA-protein interactions are also often mediated by α-helices and are involved in all transcriptional regulation processes. Unlike DNA-binding small molecules, which typically lack DNA sequence selectivity, DNA-binding proteins bind with high affinity and high selectivity. These are ideal candidates for the design DNA-binding stapled peptides. Despite the parallel to protein-protein interaction disrupting stapled peptides and the need for sequence specific DNA binders, there are very few DNA-binding stapled peptides. In this review we examine all the known DNA-binding stapled peptides. Their design concepts are compared to stapled peptides that disrupt protein-protein interactions and based on the few examples in the literature, DNA-binding stapled peptide trends are discussed.
Collapse
Affiliation(s)
- André R Paquette
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| | - Christopher N Boddy
- Department of Chemistry and Biomolecular Sciences, The University of Ottawa, Ottawa, ON, K1N 6N5, Canada
| |
Collapse
|
4
|
Case M, Navaratna T, Vinh J, Thurber G. Rapid Evaluation of Staple Placement in Stabilized α Helices Using Bacterial Surface Display. ACS Chem Biol 2023; 18:905-914. [PMID: 37039514 PMCID: PMC10773984 DOI: 10.1021/acschembio.3c00048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
There are a wealth of proteins involved in disease that cannot be targeted by current therapeutics because they are inside cells, inaccessible to most macromolecules, and lack small-molecule binding pockets. Stapled peptides, where two amino acids are covalently linked, form a class of macrocycles that have the potential to penetrate cell membranes and disrupt intracellular protein-protein interactions. However, their discovery relies on solid-phase synthesis, greatly limiting queries into their complex design space involving amino acid sequence, staple location, and staple chemistry. Here, we use stabilized peptide engineering by Escherichia coli display (SPEED), which utilizes noncanonical amino acids and click chemistry for stabilization, to rapidly screen staple location and linker structure to accelerate peptide design. After using SPEED to confirm hotspots in the mdm2-p53 interaction, we evaluated different staple locations and staple chemistry to identify several novel nanomolar and sub-nanomolar antagonists. Next, we evaluated SPEED in the B cell lymphoma 2 (Bcl-2) protein family, which is responsible for regulating apoptosis. We report that novel staple locations modified in the context of BIM, a high affinity but nonspecific naturally occurring peptide, improve its specificity against the highly homologous proteins in the Bcl-2 family. These compounds demonstrate the importance of screening linker location and chemistry in identifying high affinity and specific peptide antagonists. Therefore, SPEED can be used as a versatile platform to evaluate multiple design criteria for stabilized peptide engineering.
Collapse
|
5
|
Romagnoli A, Di Marino D. The Use of Peptides in the Treatment of Fragile X Syndrome: Challenges and Opportunities. Front Psychiatry 2021; 12:754485. [PMID: 34803767 PMCID: PMC8599826 DOI: 10.3389/fpsyt.2021.754485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/11/2021] [Indexed: 01/17/2023] Open
Abstract
Fragile X Syndrome (FXS) is the most frequent cause of inherited intellectual disabilities and autism spectrum disorders, characterized by cognitive deficits and autistic behaviors. The silencing of the Fmr1 gene and consequent lack of FMRP protein, is the major contribution to FXS pathophysiology. FMRP is an RNA binding protein involved in the maturation and plasticity of synapses and its absence culminates in a range of morphological, synaptic and behavioral phenotypes. Currently, there are no approved medications for the treatment of FXS, with the approaches under study being fairly specific and unsatisfying in human trials. Here we propose peptides/peptidomimetics as candidates in the pharmacotherapy of FXS; in the last years this class of molecules has catalyzed the attention of pharmaceutical research, being highly selective and well-tolerated. Thanks to their ability to target protein-protein interactions (PPIs), they are already being tested for a wide range of diseases, including cancer, diabetes, inflammation, Alzheimer's disease, but this approach has never been applied to FXS. As FXS is at the forefront of efforts to develop new drugs and approaches, we discuss opportunities, challenges and potential issues of peptides/peptidomimetics in FXS drug design and development.
Collapse
Affiliation(s)
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
6
|
Control of the eIF4E activity: structural insights and pharmacological implications. Cell Mol Life Sci 2021; 78:6869-6885. [PMID: 34541613 PMCID: PMC8558276 DOI: 10.1007/s00018-021-03938-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/28/2021] [Accepted: 09/08/2021] [Indexed: 12/17/2022]
Abstract
The central role of eukaryotic translation initiation factor 4E (eIF4E) in controlling mRNA translation has been clearly assessed in the last decades. eIF4E function is essential for numerous physiological processes, such as protein synthesis, cellular growth and differentiation; dysregulation of its activity has been linked to ageing, cancer onset and progression and neurodevelopmental disorders, such as autism spectrum disorder (ASD) and Fragile X Syndrome (FXS). The interaction between eIF4E and the eukaryotic initiation factor 4G (eIF4G) is crucial for the assembly of the translational machinery, the initial step of mRNA translation. A well-characterized group of proteins, named 4E-binding proteins (4E-BPs), inhibits the eIF4E–eIF4G interaction by competing for the same binding site on the eIF4E surface. 4E-BPs and eIF4G share a single canonical motif for the interaction with a conserved hydrophobic patch of eIF4E. However, a second non-canonical and not conserved binding motif was recently detected for eIF4G and several 4E-BPs. Here, we review the structural features of the interaction between eIF4E and its molecular partners eIF4G and 4E-BPs, focusing on the implications of the recent structural and biochemical evidence for the development of new therapeutic strategies. The design of novel eIF4E-targeting molecules that inhibit translation might provide new avenues for the treatment of several conditions.
Collapse
|
7
|
Romagnoli A, Maracci C, D’Agostino M, Teana AL, Marino DD. Targeting mTOR and eIF4E: a feasible scenario in ovarian cancer therapy. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:596-606. [PMID: 35582305 PMCID: PMC9094073 DOI: 10.20517/cdr.2021.20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 11/16/2022]
Abstract
Ovarian carcinoma is one of the most common causes for cancer death in women; lack of early diagnosis and acquired resistance to platinum-based chemotherapy account for its poor prognosis and high mortality rate. As with other cancer types, ovarian cancer is characterized by dysregulated signaling pathways and protein synthesis, which together contribute to rapid cellular growth and invasiveness. The mechanistic/mammalian target of rapamycin (mTOR) pathway represents the core of different signaling pathways regulating a number of essential steps in the cell, among which protein synthesis and the eukaryotic initiation factor 4E (eIF4E), the mRNA cap binding protein, is one of its downstream effectors. eIF4E is a limiting factor in translation initiation and its overexpression is a hallmark in many cancers. Because its action is regulated by a number of factors that compete for the same binding site, eIF4E is an ideal target for developing novel antineoplastic drugs. Several inhibitors targeting the mTOR signaling pathway have been designed thus far, however most of these molecules show poor stability and high toxicity in vivo. This minireview explores the possibility of targeting mTOR and eIF4E proteins, thus impacting on translation initiation in ovarian cancer, describing the most promising experimental strategies and specific inhibitors that have been shown to have an effect on other kinds of cancers.
Collapse
Affiliation(s)
- Alice Romagnoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| | - Cristina Maracci
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Mattia D’Agostino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Anna La Teana
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona 60131, Italy
| |
Collapse
|
8
|
Wang H, Dawber RS, Zhang P, Walko M, Wilson AJ, Wang X. Peptide-based inhibitors of protein-protein interactions: biophysical, structural and cellular consequences of introducing a constraint. Chem Sci 2021; 12:5977-5993. [PMID: 33995995 PMCID: PMC8098664 DOI: 10.1039/d1sc00165e] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/07/2021] [Indexed: 12/19/2022] Open
Abstract
Protein-protein interactions (PPIs) are implicated in the majority of cellular processes by enabling and regulating the function of individual proteins. Thus, PPIs represent high-value, but challenging targets for therapeutic intervention. The development of constrained peptides represents an emerging strategy to generate peptide-based PPI inhibitors, typically mediated by α-helices. The approach can confer significant benefits including enhanced affinity, stability and cellular penetration and is ingrained in the premise that pre-organization simultaneously pays the entropic cost of binding, prevents a peptide from adopting a protease compliant β-strand conformation and shields the hydrophilic amides from the hydrophobic membrane. This conceptual blueprint for the empirical design of peptide-based PPI inhibitors is an exciting and potentially lucrative way to effect successful PPI inhibitor drug-discovery. However, a plethora of more subtle effects may arise from the introduction of a constraint that include changes to binding dynamics, the mode of recognition and molecular properties. In this review, we summarise the influence of inserting constraints on biophysical, conformational, structural and cellular behaviour across a range of constraining chemistries and targets, to highlight the tremendous success that has been achieved with constrained peptides alongside emerging design opportunities and challenges.
Collapse
Affiliation(s)
- Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University Nanjing 210023 Jiangsu China
| | - Robert S Dawber
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Peiyu Zhang
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Martin Walko
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Andrew J Wilson
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
- Astbury Centre for Structural Molecular Biology, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences 5625 Renmin St. Changchun 130022 Jilin China
- Department of Applied Chemistry and Engineering, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
9
|
Lindsey‐Crosthwait A, Rodriguez‐Lema D, Walko M, Pask CM, Wilson AJ. Structural optimization of reversible dibromomaleimide peptide stapling. Pept Sci (Hoboken) 2021; 113:e24157. [PMID: 34938942 PMCID: PMC8650577 DOI: 10.1002/pep2.24157] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 01/05/2023]
Abstract
Methods to constrain peptides in a bioactive α-helical conformation for inhibition of protein-protein interactions represent an ongoing area of investigation in chemical biology. Recently, the first example of a reversible "stapling" methodology was described which exploits native cysteine or homocysteine residues spaced at the i and i + 4 positions in a peptide sequence together with the thiol selective reactivity of dibromomaleimides (a previous study). This manuscript reports on the optimization of the maleimide based constraint, focusing on the kinetics of macrocyclization and the extent to which helicity is promoted with different thiol containing amino acids. The study identified an optimal stapling combination of X 1 = L-Cys and X 5 = L-hCys in the context of the model peptide Ac-X1AAAX5-NH2, which should prove useful in implementing the dibromomaleimide stapling strategy in peptidomimetic ligand discovery programmes.
Collapse
Affiliation(s)
- Ayanna Lindsey‐Crosthwait
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | - Diana Rodriguez‐Lema
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | - Martin Walko
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| | | | - Andrew J. Wilson
- School of Chemistry, University of LeedsLeedsUK
- Astbury Centre for Structural Molecular Biology, University of LeedsLeedsUK
| |
Collapse
|
10
|
Gallagher EE, Menon A, Chmiel AF, Deprey K, Kritzer JA, Garner AL. A cell-penetrant lactam-stapled peptide for targeting eIF4E protein-protein interactions. Eur J Med Chem 2020; 205:112655. [PMID: 32739551 DOI: 10.1016/j.ejmech.2020.112655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/01/2020] [Accepted: 07/08/2020] [Indexed: 11/30/2022]
Abstract
Eukaryotic translation initiation factor 4E (eIF4E) has emerged as a promising cancer therapeutic target due to its role in the initiation of cap-dependent translation, a process that is accelerated during tumorigenesis. To regulate the initiation of cap-dependent translation, eIF4E participates in protein-protein interactions (PPI) with binding partners, 4E-BP1 and eIF4G, which act as an inhibitor and stimulator of translation, respectively. As both of these proteins interact with eIF4E by utilizing a short, α-helical stretch of amino acids, our laboratory has been working to develop helical mimetics of these proteins, in particular 4E-BP1, to inhibit eIF4E PPIs. Herein, we describe our continued efforts in this area and report the development and characterization of a cell-penetrant lactam stapled peptide for targeting cellular eIF4E.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA
| | - Kirsten Deprey
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, 62 Talbot Avenue, Medford, MA, 02155, USA
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, 1600 Huron Parkway, NCRC B520, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
11
|
Brown CJ, Verma CS, Lane DP, Lama D. Conformational ordering of intrinsically disordered peptides for targeting translation initiation. Biochim Biophys Acta Gen Subj 2020; 1865:129775. [PMID: 33122085 DOI: 10.1016/j.bbagen.2020.129775] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Intrinsically disordered regions (IDRs) in proteins can regulate their activity by facilitating protein-protein interactions (PPIs) as exemplified in the recruitment of the eukaryotic translation initiation factor 4E (eIF4E) protein by the protein eIF4G. Deregulation of this PPI module is central to a broad spectrum of cancer related malignancies and its targeted inhibition through bioactive peptides is a promising strategy for therapeutic intervention. METHODS We employed molecular dynamics simulations coupled with biophysical assays to rationally develop peptide derivatives from the intrinsically disordered eIF4G scaffold by incorporating non-natural amino acids that facilitates disorder-to-order transition. RESULTS The conformational heterogeneity of these peptides and the degree of structural reorganization required to adopt the optimum mode of interaction with eIF4E underscores their differential binding affinities. The presence of a pre-structured local helical element in the ensemble of structures was instrumental in the efficient docking of the peptides on to the protein surface. The formation of Y4: P38 hydrogen-bond interaction between the peptide and eIF4E is a rate limiting event in the efficient recognition of the protein since it occurs through the disordered region of the peptide. CONCLUSIONS These insights were exploited to further design features into the peptide to propagate bound-state conformations in solution which resulted in the generation of a potent eIF4E binder. GENERAL SIGNIFICANCE The study illustrates the molecular basis of eIF4E recognition by a disordered epitope from eIF4G and its modulation to generate peptides that can potentially attenuate translation initiation in oncology.
Collapse
Affiliation(s)
- Christopher J Brown
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore.
| | - Chandra S Verma
- Bioinformatics Institute, A*STAR (Agency for Science, Technology and Research), 30 Biopolis Street, #07-01 Matrix, 138671, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore; School of Biological Sciences, Nanyang Technological University, 50 Nanyang Drive, 637551, Singapore
| | - David P Lane
- p53 Laboratory, A*STAR (Agency for Science, Technology and Research), 8A Biomedical Grove, #06-04/05, Neuros/Immunos, 138648, Singapore; Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum Quarter 7B-C Solnavägen 9, 17165 Solna, Sweden
| | - Dilraj Lama
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum Quarter 7B-C Solnavägen 9, 17165 Solna, Sweden.
| |
Collapse
|
12
|
Kannan S, Aronica PGA, Ng S, Gek Lian DT, Frosi Y, Chee S, Shimin J, Yuen TY, Sadruddin A, Kaan HYK, Chandramohan A, Wong JH, Tan YS, Chang ZW, Ferrer-Gago FJ, Arumugam P, Han Y, Chen S, Rénia L, Brown CJ, Johannes CW, Henry B, Lane DP, Sawyer TK, Verma CS, Partridge AW. Macrocyclization of an all-d linear α-helical peptide imparts cellular permeability. Chem Sci 2020; 11:5577-5591. [PMID: 32874502 PMCID: PMC7441689 DOI: 10.1039/c9sc06383h] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/08/2020] [Indexed: 12/13/2022] Open
Abstract
Peptide-based molecules hold great potential as targeted inhibitors of intracellular protein-protein interactions (PPIs). Indeed, the vast diversity of chemical space conferred through their primary, secondary and tertiary structures allows these molecules to be applied to targets that are typically deemed intractable via small molecules. However, the development of peptide therapeutics has been hindered by their limited conformational stability, proteolytic sensitivity and cell permeability. Several contemporary peptide design strategies are aimed at addressing these issues. Strategic macrocyclization through optimally placed chemical braces such as olefinic hydrocarbon crosslinks, commonly referred to as staples, may improve peptide properties by (i) restricting conformational freedom to improve target affinities, (ii) improving proteolytic resistance, and (iii) enhancing cell permeability. As a second strategy, molecules constructed entirely from d-amino acids are hyper-resistant to proteolytic cleavage, but generally lack conformational stability and membrane permeability. Since neither approach is a complete solution, we have combined these strategies to identify the first examples of all-d α-helical stapled and stitched peptides. As a template, we used a recently reported all d-linear peptide that is a potent inhibitor of the p53-Mdm2 interaction, but is devoid of cellular activity. To design both stapled and stitched all-d-peptide analogues, we used computational modelling to predict optimal staple placement. The resultant novel macrocyclic all d-peptide was determined to exhibit increased α-helicity, improved target binding, complete proteolytic stability and, most notably, cellular activity.
Collapse
Affiliation(s)
- Srinivasaraghavan Kannan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Pietro G A Aronica
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Simon Ng
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Dawn Thean Gek Lian
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Yuri Frosi
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Sharon Chee
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Jiang Shimin
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Tsz Ying Yuen
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Ahmad Sadruddin
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Hung Yi Kristal Kaan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Arun Chandramohan
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - Jin Huei Wong
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yaw Sing Tan
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Zi Wei Chang
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Fernando J Ferrer-Gago
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Prakash Arumugam
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
| | - Yi Han
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Shiying Chen
- Merck & Co., Inc. , Kenilworth , New Jersey , USA
| | - Laurent Rénia
- Singapore Immunology Network (SIgN) , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #03-06, Immunos , Singapore 138648
| | - Christopher J Brown
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | - Charles W Johannes
- Institute of Chemical & Engineering Science , Agency for Science, Technology and Research (ASTAR) , 8 Biomedical Grove, #07, Neuros Building , Singapore 138665
| | - Brian Henry
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| | - David P Lane
- p53 Laboratory , Agency for Science, Technology and Research (ASTAR) , 8A Biomedical Grove, #06-04/05, Neuros/Immunos , Singapore 138648
| | | | - Chandra S Verma
- Bioinformatics Institute , Agency for Science, Technology and Research (ASTAR) , 30 Biopolis Street, #07-01 Matrix , Singapore 138671 , Singapore . ; ; ; Tel: +65 6478 8353 ; Tel: +65 6478 8273
- School of Biological Sciences , Nanyang Technological University , 60 Nanyang Drive , Singapore 637551
- Department of Biological Sciences , National University of Singapore , 14 Science Drive 4 , Singapore 117543
| | - Anthony W Partridge
- MSD International , Translation Medicine Research Centre , 8 Biomedical Grove, #04-01/05 Neuros Building , Singapore , 138665 , Singapore .
| |
Collapse
|
13
|
D’Annessa I, Di Leva FS, La Teana A, Novellino E, Limongelli V, Di Marino D. Bioinformatics and Biosimulations as Toolbox for Peptides and Peptidomimetics Design: Where Are We? Front Mol Biosci 2020; 7:66. [PMID: 32432124 PMCID: PMC7214840 DOI: 10.3389/fmolb.2020.00066] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 03/25/2020] [Indexed: 12/16/2022] Open
Abstract
Peptides and peptidomimetics are strongly re-emerging as amenable candidates in the development of therapeutic strategies against a plethora of pathologies. In particular, these molecules are extremely suitable to treat diseases in which a major role is played by protein-protein interactions (PPIs). Unlike small organic compounds, peptides display both a high degree of specificity avoiding secondary off-targets effects and a relatively low degree of toxicity. Further advantages are provided by the possibility to easily conjugate peptides to functionalized nanoparticles, so improving their delivery and cellular uptake. In many cases, such molecules need to assume a specific three-dimensional conformation that resembles the bioactive one of the endogenous ligand. To this end, chemical modifications are introduced in the polypeptide chain to constrain it in a well-defined conformation, and to improve the drug-like properties. In this context, a successful strategy for peptide/peptidomimetics design and optimization is to combine different computational approaches ranging from structural bioinformatics to atomistic simulations. Here, we review the computational tools for peptide design, highlighting their main features and differences, and discuss selected protocols, among the large number of methods available, used to assess and improve the stability of the functional folding of the peptides. Finally, we introduce the simulation techniques employed to predict the binding affinity of the designed peptides for their targets.
Collapse
Affiliation(s)
- Ilda D’Annessa
- Istituto di Chimica del Riconoscimento Molecolare, CNR, Milan, Italy
| | | | - Anna La Teana
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| | - Ettore Novellino
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Vittorio Limongelli
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
- Faculty of Biomedical Sciences, Institute of Computational Science, Università della Svizzera Italiana (USI), Lugano, Switzerland
| | - Daniele Di Marino
- Department of Life and Environmental Sciences, New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
14
|
Yuen TY, Brown CJ, Tan YS, Johannes CW. Synthesis of Chiral Alkenyl Cyclopropane Amino Acids for Incorporation into Stapled Peptides. J Org Chem 2019; 85:1556-1566. [DOI: 10.1021/acs.joc.9b02659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Tsz Ying Yuen
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 8 Biomedical Grove, #07-01, Neuros, Singapore 138665
| | - Christopher J. Brown
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research, 30 Biopolis Street, #07-01, Matrix, Singapore 138671
| | - Charles W. Johannes
- P53 Laboratory, Agency for Science, Technology and Research, 8A Biomedical Grove, #06-06, Immunos, Singapore 138648
| |
Collapse
|
15
|
Gallagher EE, Song JM, Menon A, Mishra LD, Chmiel AF, Garner AL. Consideration of Binding Kinetics in the Design of Stapled Peptide Mimics of the Disordered Proteins Eukaryotic Translation Initiation Factor 4E-Binding Protein 1 and Eukaryotic Translation Initiation Factor 4G. J Med Chem 2019; 62:4967-4978. [PMID: 31033289 PMCID: PMC6679956 DOI: 10.1021/acs.jmedchem.9b00068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein disorder plays a crucial role in signal transduction and is key for many cellular processes including transcription, translation, and cell cycle. Within the intrinsically disordered protein interactome, the α-helix is commonly used for binding, which is induced via a disorder-to-order transition. Because the targeting of protein-protein interactions (PPIs) remains an important challenge in medicinal chemistry, efforts have been made to mimic this secondary structure for rational inhibitor design through the use of stapled peptides. Cap-dependent mRNA translation is regulated by two disordered proteins, 4E-BP1 and eIF4G, that inhibit or stimulate the activity of the m7G cap-binding translation initiation factor, eIF4E, respectively. Both use an α-helical motif for eIF4E binding, warranting the investigation of stapled peptide mimics for manipulating eIF4E PPIs. Herein, we describe our efforts toward this goal, resulting in the synthesis of a cell-active stapled peptide for further development in manipulating aberrant cap-dependent translation in human diseases.
Collapse
Affiliation(s)
- Erin E Gallagher
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - James M Song
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| | - Arya Menon
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Lauren D Mishra
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Alyah F Chmiel
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
| | - Amanda L Garner
- Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 1600 Huron Parkway, NCRC B520 , Ann Arbor , Michigan 48109 , United States
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , United States
| |
Collapse
|