1
|
Tang W, Xing G, Xu X, Chen B. Emerging Hybrid Metal Halide Glasses for Sensing and Displays. SENSORS (BASEL, SWITZERLAND) 2024; 24:5258. [PMID: 39204954 PMCID: PMC11360173 DOI: 10.3390/s24165258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Glassy hybrid metal halides have emerged as promising materials in recent years due to their high structural adjustability and low melting points, offering unique merits that overcome the limitations of their crystalline and polycrystalline counterparts as well as other conventional amorphous semiconductors. This review article comprehensively explores the structural characteristics, electronic properties, and chemical coordination of hybrid metal halides, emphasizing their role in the glass transition from the crystalline phase to the amorphous phase. We examine the intrinsic disorder within the amorphous phase that facilitates light transmission and discuss recent advances in device architecture and interface engineering by optimizing the charge transport of glassy hybrid metal halides for high-quality applications. With full theoretical understanding and rational structural design, potential applications in displays, information storage, X-ray imaging, and sensing are highlighted, underscoring the transformative impact of glassy hybrid metal halides in the fields of materials science and information science.
Collapse
Affiliation(s)
- Wei Tang
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Guansheng Xing
- School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xiuwen Xu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Zhang Y, Abdi-Jalebi M, Larson BW, Zhang F. What Matters for the Charge Transport of 2D Perovskites? ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404517. [PMID: 38779825 DOI: 10.1002/adma.202404517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Compared to 3D perovskites, 2D perovskites exhibit excellent stability, structural diversity, and tunable bandgaps, making them highly promising for applications in solar cells, light-emitting diodes, and photodetectors. However, the trade-off for worse charge transport is a critical issue that needs to be addressed. This comprehensive review first discusses the structure of 3D and 2D metal halide perovskites, then summarizes the significant factors influencing charge transport in detail and provides a brief overview of the testing methods. Subsequently, various strategies to improve the charge transport are presented, including tuning A'-site organic spacer cations, A-site cations, B-site metal cations, and X-site halide ions. Finally, an outlook on the future development of improving the 2D perovskites' charge transport is discussed.
Collapse
Affiliation(s)
- Yixin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Mojtaba Abdi-Jalebi
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Bryon W Larson
- Chemistry and Nanoscience Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
3
|
Singh A, Xie Y, Adams C, Bobay BG, Mitzi DB. Controlling glass forming kinetics in 2D perovskites using organic cation isomers. Chem Sci 2024; 15:6432-6444. [PMID: 38699282 PMCID: PMC11062125 DOI: 10.1039/d3sc06461a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
The recent discovery of glass-forming metal halide perovskites (MHPs) provides opportunities to broaden the application domain beyond traditionally celebrated optoelectronic research fueled by associated crystalline counterparts. In this regard, it is crucial to diversify the compositional space of glass-forming MHPs and introduce varied crystallization kinetics via synthetic structural engineering. Here, we compare two MHPs with slightly varying structural attributes, utilizing isomer organic cations with the same elemental composition, and demonstrate how this change in functional group position impacts the kinetics of glass formation and subsequent crystallization by multiple orders of magnitude. (S)-(-)-1-(1-Naphthyl)ethylammonium lead bromide (S(1-1)NPB) exhibits a lower melting point (Tm) of 175 °C and the melt readily vitrifies under a critical cooling rate (CCR) of 0.3 °C s-1. In contrast, (S)-(-)-1-(2-naphthyl)ethylammonium lead bromide (S(1-2)NPB) displays a Tm ∼193 °C and requires a CCR of 2500 °C s-1, necessitating the use of ultrafast calorimetry for glass formation and study of the underlying kinetics. The distinct Tm and glass-formation kinetics of the isomer MHPs are further understood through a combination of calorimetric and single-crystal X-ray diffraction studies on their crystalline counterparts, highlighting the influence of altered organic-inorganic hydrogen bonding interactions and entropic changes around melting, providing insights into the factors driving their divergent behaviors.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University Durham North Carolina 27708 USA
- University Program in Materials Science and Engineering, Duke University Durham North Carolina 27708 USA
| | - Yi Xie
- Department of Mechanical Engineering and Materials Science, Duke University Durham North Carolina 27708 USA
- University Program in Materials Science and Engineering, Duke University Durham North Carolina 27708 USA
| | - Curtis Adams
- University Program in Materials Science and Engineering, Duke University Durham North Carolina 27708 USA
| | - Benjamin G Bobay
- Duke University NMR Center, Duke University Medical Center Durham North Carolina 27710 USA
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University Durham North Carolina 27708 USA
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
4
|
Wang W, Liu CD, Fan CC, Fu XB, Jing CQ, Jin ML, You YM, Zhang W. Rational Design of 2D Metal Halide Perovskites with Low Congruent Melting Temperature and Large Melt-Processable Window. J Am Chem Soc 2024; 146:9272-9284. [PMID: 38517743 DOI: 10.1021/jacs.4c00768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Metal halide perovskites (MHPs) have garnered significant attention due to their distinctive optical and electronic properties, coupled with excellent processability. However, the thermal characteristics of these materials are often overlooked, which can be harnessed to cater to diverse application scenarios. We showcase the efficacy of lowering the congruent melting temperature (Tm) of layered 2D MHPs by employing a strategy that involves the modification of flexible alkylammonium through N-methylation and I-substitution. Structural-property analysis reveals that the N-methylation and I-substitution play pivotal roles in reducing hydrogen bond interactions between the organic components and inorganic parts, lowering the rotational symmetry number of the cation and restricting the residual motion of the cations. Additional I···I interactions enhance intermolecular interactions and lead to improved molten stability, as evidenced by a higher viscosity. The 2D MHPs discussed in this study exhibit low Tm and wide melt-processable windows, e.g., (DMIPA)2PbI4 showcasing a low Tm of 98 °C and large melt-processable window of 145 °C. The efficacy of the strategy was further validated when applied to bromine-substituted 2D MHPs. Lowering the Tm and enhancing the molten stability of the MHPs hold great promise for various applications, including glass formation, preparation of high-quality films for photodetection, and fabrication of flexible devices.
Collapse
Affiliation(s)
- Wei Wang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Cheng-Dong Liu
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chang-Chun Fan
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiao-Bin Fu
- Department of Molten Salt Chemistry and Engineering, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chang-Qing Jing
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ming-Liang Jin
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Yu-Meng You
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Wen Zhang
- Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics and School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| |
Collapse
|
5
|
Lin Z, Wu YN, Xu SY, Chen BC, Huang PW, Qi XH, Lin YP, Du KZ. Dopant effect on the optical and thermal properties of the 2D organic-inorganic hybrid perovskite (HDA) 2PbBr 4. Dalton Trans 2024; 53:1691-1697. [PMID: 38167732 DOI: 10.1039/d3dt03841f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Lead-based two-dimensional organic-inorganic hybrid perovskites (2D HOIPs) are popular materials with various optical properties, which can be tuned through metal ion doping. Due to the size and valence misfit, metal ion dopants in 2D lead-based HOIPs are still limited. In this work, Mn2+, Sb3+ and Bi3+ are doped into 2D (HDA)2PbBr4 (HDA = protonated dopamine) successfully. As a result, the dopants in 2D (HDA)2PbBr4 can induce their characteristic optical spectra, which is studied at different temperatures and excitation powers. The temperature-dependent energy transfer in the Mn-doped sample has been clarified, in which abnormal phenomena including negative thermal quenching have been observed. In addition, the dopant ions can impact the phase transition temperatures of the samples, especially lowering their crystallization temperatures greatly. The mussel-inspired organic cation, feasible metal ion regulation, and superior stability provide (HDA)2PbBr4 potential for further applications.
Collapse
Affiliation(s)
- Zhi Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Ya-Nan Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Si-Yu Xu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Bi-Cui Chen
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Pei-Wen Huang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Xing-Hui Qi
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China.
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, 350007, China.
| |
Collapse
|
6
|
Arendse CJ, Burns R, Beckwitt D, Babaian D, Klue S, Stalla D, Karapetrova E, Miceli PF, Guha S. Insights into the Growth Orientation and Phase Stability of Chemical-Vapor-Deposited Two-Dimensional Hybrid Halide Perovskite Films. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59055-59065. [PMID: 38055639 DOI: 10.1021/acsami.3c14559] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Chemical vapor deposition (CVD) offers a large-area, scalable, and conformal growth of perovskite thin films without the use of solvents. Low-dimensional organic-inorganic halide perovskites, with alternating layers of organic spacer groups and inorganic perovskite layers, are promising for enhancing the stability of optoelectronic devices. Moreover, their multiple quantum-well structures provide a powerful platform for tuning excitonic physics. In this work, we show that the CVD process is conducive to the growth of 2D hybrid halide perovskite films. Using butylammonium (BA) and phenylethylammonium (PEA) cations, the growth parameters of BA2PbI4 and PEA2PbI4 and mixed halide perovskite films were first optimized. These films are characterized by well-defined grain boundaries and display characteristic absorption and emission features of the 2D quantum wells. X-ray diffraction (XRD) and a noninteger dimensionality model of the absorption spectrum provide insights into the orientation of the crystalline planes. Unlike BA2PbI4, temperature-dependent photoluminescence measurements from PEA2PbI4 show a single excitonic peak throughout the temperature range from 20 to 350 K, highlighting the lack of defect states. These results further corroborate the temperature-dependent synchrotron-based XRD results. Furthermore, the nonlinear optical properties of the CVD-grown perovskite films are investigated, and a high third harmonic generation efficiency is observed.
Collapse
Affiliation(s)
- Christopher J Arendse
- Department of Physics and Astronomy, University of the Western Cape, Bellville 7535, South Africa
| | - Randy Burns
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - David Beckwitt
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Dallar Babaian
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Stephen Klue
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - David Stalla
- Electron Microscopy Core Facility, University of Missouri, Columbia, Missouri 65211, United States
| | - Evguenia Karapetrova
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Paul F Miceli
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| | - Suchismita Guha
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
7
|
Li B, Jin J, Yin M, Han K, Zhang Y, Zhang X, Zhang A, Xia Z, Xu Y. In situ recrystallization of zero-dimensional hybrid metal halide glass-ceramics toward improved scintillation performance. Chem Sci 2023; 14:12238-12245. [PMID: 37969591 PMCID: PMC10631250 DOI: 10.1039/d3sc04332k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023] Open
Abstract
Zero-dimensional (0D) hybrid metal halide (HMH) glasses are emerging luminescent materials and have gained attention due to their transparent character and ease of processing. However, the weakening of photoluminescence quantum efficiency from crystal to glass phases poses limitations for photonics applications. Here we develop high-performance glass-ceramic (G-C) scintillators via in situ recrystallization from 0D HMH glass counterparts composed of distinct organic cations and inorganic anions. The G-C scintillators maintain excellent transparency and exhibit nearly 10-fold higher light yields and lower detection limits than those of glassy phases. The general in situ recrystallization within the glass component by a facile heat treatment is analyzed via combined experimental elaboration and structural/spectral characterization. Our results on the development of G-Cs can initiate more exploration on the phase transformation engineering in 0D HMHs, and therefore make them highly promising for large-area scintillation screen applications.
Collapse
Affiliation(s)
- Bohan Li
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Jiance Jin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 China
| | - Meijuan Yin
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Kai Han
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 China
| | - Yuchi Zhang
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Xinlei Zhang
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| | - Anran Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 China
| | - Zhiguo Xia
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology Guangzhou 510641 China
| | - Yan Xu
- Department of Chemistry, College of Sciences, Northeastern University Shenyang 110819 China
| |
Collapse
|
8
|
Crace EJ, Singh A, Haley S, Claes B, Mitzi DB. Meltable Hybrid Antimony and Bismuth Iodide One-Dimensional Perovskites. Inorg Chem 2023; 62:16161-16169. [PMID: 37729091 DOI: 10.1021/acs.inorgchem.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Hybrid lead-halide perovskites have been studied extensively for their promising optoelectronic properties and prospective applications, including photovoltaics, solid-state lighting, and radiation detection. Research into these materials has also been aided by the simple and low-temperature synthetic conditions involved in solution-state deposition/crystallization or melt-processing techniques. However, concern over lead toxicity has plagued the field since its infancy. One of the most promising routes to mitigating toxicity in hybrid perovskite materials is substituting isoelectronic Bi(III) for Pb(II). Various methods have been developed to allow pnictide-based systems to capture properties of the Pb(II) analogues, but the ability to melt extended hybrid pnictide-halide materials has not been investigated. In this work, we prepare a series of one-dimensional antimony- and bismuth-iodide hybrid materials employing tetramethylpiperazinium (TMPZ)-related cations. We observe, for the first time, the ability to melt extended hybrid pnictide-halide materials for both the Sb(III) and Bi(III) systems. Additionally, we find that Sb(III) analogues melt at lower temperatures and attribute this observation to structural changes induced by the increased stereochemical activity of the Sb(III) lone pair coupled with the reduction in effective dimensionality due to steric interactions with the organic cations. Finally, we demonstrate the ability to melt process phase pure thin films of (S-MeTMPZ)SbI5.
Collapse
Affiliation(s)
- Ethan J Crace
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Stella Haley
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Bethany Claes
- Department of Materials Science and Engineering, University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
9
|
Hleli F, Mercier N, Ben Haj Salah M, Allain M, Zouari N, Massuyeau F, Gautier R. Chemistry in the Molten State: Opportunities for Designing and Tuning the Emission Properties of Halide Perovskites. Inorg Chem 2023; 62:14252-14260. [PMID: 37606625 DOI: 10.1021/acs.inorgchem.3c01566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
A series of monolayered lead halide hybrid perovskites (HO2C(CH2)n-1NH3)2PbX4, named (Cn)2PbX4 (n = 4-6, X = Cl, Br), exhibiting a low congruent melting temperature (Tm) (Tm = 130 °C for (C4)2PbBr4), high stability in the molten state, and whitish type emission, are reported. From the synthesis in the molten state, rare solid solutions of mixed organic cations (Cn1-xCn'x)2PbX4 (n, n' = 4-6; X = Cl, Br; 0 ≤ x ≤1) as well as solid solutions of mixed halides (Cn)2Pb(X1-yX'y)4 (n = 4-6; X, X' = Cl, Br; 0 ≤ y ≤1) have been prepared and characterized (thermal behavior, powder X-ray diffraction (PXRD), photoluminescence properties). The impact of substitutions is significant on the thermal properties, lowering the Tm down to 100 °C for (C4)2Pb(Br0.25Cl0.75)4. The emission properties are slightly tuned in the case of mixed organic cation systems, whereas modifications are more dramatic in the case of mixed halide systems, leading to emission properties through the entire visible region. These results illustrate the great opportunities offered by the congruent melting properties of halide perovskites allowing syntheses in the molten state.
Collapse
Affiliation(s)
- Feten Hleli
- MOLTECH-Anjou, UMR-CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France
- Laboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR-CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France
| | - Maroua Ben Haj Salah
- MOLTECH-Anjou, UMR-CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France
| | - Magali Allain
- MOLTECH-Anjou, UMR-CNRS 6200, Université d'Angers, 2 Bd Lavoisier, 49045 Angers, France
| | - Nabil Zouari
- Laboratoire Physico-Chimie de l'Etat Solide, Département de Chimie, Faculté des Sciences de Sfax, Université de Sfax, B.P. 1171, 3000 Sfax, Tunisia
| | - Florian Massuyeau
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| | - Romain Gautier
- Nantes Université, CNRS, Institut des Matériaux de Nantes Jean Rouxel, IMN, F-44000 Nantes, France
| |
Collapse
|
10
|
Singh A, Kim Y, Henry R, Ade H, Mitzi DB. Study of Glass Formation and Crystallization Kinetics in a 2D Metal Halide Perovskite Using Ultrafast Calorimetry. J Am Chem Soc 2023; 145:18623-18633. [PMID: 37552801 DOI: 10.1021/jacs.3c06342] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
While crystalline 2D metal halide perovskites (MHPs) represent a well-celebrated semiconductor class, supporting applications in the fields of photovoltaics, emitters, and sensors, the recent discovery of glass formation in an MHP opens many new opportunities associated with reversible glass-crystalline switching, with each state offering distinct optoelectronic properties. However, the previously reported [S-(-)-1-(1-naphthyl)ethylammonium]2PbBr4 perovskite is a strong glass former with sluggish glass-crystal transformation time scales, pointing to a need for glassy MHPs with a broader range of compositions and crystallization kinetics. Herein we report glass formation for low-melting-temperature 1-MeHa2PbI4 (1-MeHa = 1-methyl-hexylammonium) using ultrafast calorimetry, thereby extending the range of MHP glass formation across a broader range of organic (fused ring to branched aliphatic) and halide (bromide to iodide) compositions. The importance of a slight loss of organic and hydrogen iodide components from the MHP in stabilizing the glassy state is elucidated. Furthermore, the underlying kinetics of glass-crystal transformation, including activation energies, crystal growth rate, Angell plot, and fragility index, is studied using a combination of kinetic, thermodynamic, and rheological modeling techniques. An inferred fast crystal growth rate of 0.21 m/s for 1-MeHa2PbI4 shows promise toward suitability in extended application spaces, for example, in metamaterials, nonvolatile memory, and optical and neuromorphic computing devices.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Yongshin Kim
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Reece Henry
- Organic and Carbon Electronics Laboratory (ORaCEL), Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Harald Ade
- Organic and Carbon Electronics Laboratory (ORaCEL), Department of Physics, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
11
|
Podapangi SK, Jafarzadeh F, Mattiello S, Korukonda TB, Singh A, Beverina L, Brown TM. Green solvents, materials, and lead-free semiconductors for sustainable fabrication of perovskite solar cells. RSC Adv 2023; 13:18165-18206. [PMID: 37333793 PMCID: PMC10269851 DOI: 10.1039/d3ra01692g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Perovskite materials research has received unprecedented recognition due to its applications in photovoltaics, LEDs, and other large area low-cost electronics. The exceptional improvement in the photovoltaic conversion efficiency of Perovskite solar cells (PSCs) achieved over the last decade has prompted efforts to develop and optimize device fabrication technologies for the industrial and commercial space. However, unstable operation in outdoor environments and toxicity of the employed materials and solvents have hindered this proposition. While their optoelectronic properties are extensively studied, the environmental impacts of the materials and manufacturing methods require further attention. This review summarizes and discusses green and environment-friendly methods for fabricating PSCs, particularly non-toxic solvents, and lead-free alternatives. Greener solvent choices are surveyed for all the solar cell films, (i.e. electron and hole transport, semiconductor, and electrode layers) and their impact on thin film quality, morphology and device performance is explored. We also discuss lead content in perovskites, its environmental impact and sequestration routes, and progress in replacing lead with greener alternatives. This review provides an analysis of sustainable green routes in perovskite solar cell fabrication, discussing the impact of each layer in the device stack, via life cycle analysis.
Collapse
Affiliation(s)
- Suresh K Podapangi
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Farshad Jafarzadeh
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| | - Sara Mattiello
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Tulja Bhavani Korukonda
- Department of Centre for Energy Studies, Indian Institute of Technology Delhi Hauz Khas New Delhi-110016 India
| | - Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University Durham NC 27708 USA
| | - Luca Beverina
- Department of Materials Science, State University of Milano-Bicocca Via Cozzi 55 I-20126 Milano Italy
| | - Thomas M Brown
- CHOSE (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome-Tor Vergata via del Politecnico 1 00133 Rome Italy
| |
Collapse
|
12
|
Son J, Ma S, Jung YK, Tan J, Jang G, Lee H, Lee CU, Lee J, Moon S, Jeong W, Walsh A, Moon J. Unraveling chirality transfer mechanism by structural isomer-derived hydrogen bonding interaction in 2D chiral perovskite. Nat Commun 2023; 14:3124. [PMID: 37253736 DOI: 10.1038/s41467-023-38927-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/19/2023] [Indexed: 06/01/2023] Open
Abstract
In principle, the induced chirality of hybrid perovskites results from symmetry-breaking within inorganic frameworks. However, the detailed mechanism behind the chirality transfer remains unknown due to the lack of systematic studies. Here, using the structural isomer with different functional group location, we deduce the effect of hydrogen-bonding interaction between two building blocks on the degree of chirality transfer in inorganic frameworks. The effect of asymmetric hydrogen-bonding interaction on chirality transfer was clearly demonstrated by thorough experimental analysis. Systematic studies of crystallography parameters confirm that the different asymmetric hydrogen-bonding interactions derived from different functional group location play a key role in chirality transfer phenomena and the resulting spin-related properties of chiral perovskites. The methodology to control the asymmetry of hydrogen-bonding interaction through the small structural difference of structure isomer cation can provide rational design paradigm for unprecedented spin-related properties of chiral perovskite.
Collapse
Affiliation(s)
- Jaehyun Son
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Young-Kwang Jung
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeiwan Tan
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Chan Uk Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junwoo Lee
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Subin Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Wooyong Jeong
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Aron Walsh
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Parambil PC, Perumal SSRR. On the instability of iodides of heavy main group atoms in their higher oxidation state. Phys Chem Chem Phys 2023; 25:6306-6315. [PMID: 36779269 DOI: 10.1039/d3cp00014a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The inert pair effect-the tendency of the s orbital of heavy atoms to stay unreactive, is a consequence of the relativistic contraction of the s orbitals. While the manifestations of this on the reactivity depend on the nature of the substituents, this aspect is often overlooked. Divalent Pb prefers inorganic substituents, whereas tetravalent Pb prefers organic substituents. Among the inorganic substituents, again there are specific preferences-tetravalent Pb prefers F and Cl more than Br and I. It is as though the relativistic contraction of the s orbital of Pb is more significant with Br and I substituents than with Cl, F, and alkyl substituents. Herein, we address this problem using the molecular orbital approach and support it with quasi-relativistic density functional computations. We explain why typical hypervalent systems, like 12-X-6, and 10-X-5 (X is a heavy atom, the number preceding X is the number of valence electrons surrounding X, and the number after X is the coordination number) with less electronegative substituents carrying a lone pair (such as iodine), and Lewis octet molecules like PbI4 are unstable, but their dianions (14-X-6, 12-X-5, PbI42-) are not. For heavy atoms, the relativistic contraction of the s orbital renders the antibonding combination of s with ligand orbitals (σ1*) very low-lying, making it a good acceptor of electrons. Thus, compounds where σ1* is empty are kinetically unstable when an electron donor with appropriate energy (such as the lone pair on iodine or bromine) is present in the vicinity. Donor-acceptor interaction between σ1* and the lone pair on I or Br (F and Cl lone pairs are energetically far away from σ1*) is responsible for the instability of such compounds. The kinetic stability of tetraalkyl lead compounds is due to the absence of lone pairs on the alkyl substituents. This work illustrates the key factor responsible for the instability of heavy element iodides by taking into consideration the covalent nature of the bonds, while the existing explanations assume a purely ionic bonding, which is an oversimplification.
Collapse
Affiliation(s)
| | - Sathya S R R Perumal
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
14
|
Wu YN, Zhu LL, Zhao Y, Xu SY, Huang PW, Chen BC, Huang ZY, Huang XY, Chen J, Du KZ. Mussel-Inspired Two-Dimensional Halide Perovskite Facilitated Dopamine Polymerization and Self-Adhesive Photoelectric Coating. Inorg Chem 2023; 62:1062-1068. [PMID: 36594447 DOI: 10.1021/acs.inorgchem.2c04076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Polydopamine (PDA) is a good adhesion agent for lots of gels inspired by the mussel, whereas hybrid organic-inorganic perovskites (HOIPs) usually exhibit extraordinary optoelectronic performance. Herein, mussel-inspired chemistry has been integrated with two-dimensional HOIPs first, leading to the preparation of new crystal (HDA)2PbBr4 (1) (DA = dopamine). The organic cation dopamine can be introduced into PDA resulting in a thin film of (HPDA)2PbBr4 (PDA-1). The dissolved inorganic components of layered perovskite in DMF solution together with H2O2 addition can facilitate DA polymerization greatly. More importantly, PDA-1 can inherit an excellent semiconductor property of HOIPs and robust adhesion of the PDA hydrogel resulting in a self-adhesive photoelectric coating on various interfaces.
Collapse
Affiliation(s)
- Ya-Nan Wu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Li-Li Zhu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Yi Zhao
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Si-Yu Xu
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Pei-Wen Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Bi-Cui Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Zi-Yang Huang
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Jin Chen
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ke-Zhao Du
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China.,Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
15
|
Salah MBH, Mercier N, Dabos‐Seignon S, Botta C. Solvent‐Free Preparation and Moderate Congruent Melting Temperature of Layered Lead Iodide Perovskites for Thin‐Film Formation. Angew Chem Int Ed Engl 2022; 61:e202206665. [DOI: 10.1002/anie.202206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Maroua Ben Haj Salah
- MOLTECH-ANJOU UMR-CNRS 6200 Université d'Angers 2 Bd Lavoisier 49045 Angers France
| | - Nicolas Mercier
- MOLTECH-ANJOU UMR-CNRS 6200 Université d'Angers 2 Bd Lavoisier 49045 Angers France
| | - Sylvie Dabos‐Seignon
- MOLTECH-ANJOU UMR-CNRS 6200 Université d'Angers 2 Bd Lavoisier 49045 Angers France
| | - Chiara Botta
- Istituto di Scienze e Tecnologie Chimiche “G. Natta” (SCITEC) CNR Via Corti 12 20133 Milano Italy
| |
Collapse
|
16
|
Xie Y, Song R, Singh A, Jana MK, Blum V, Mitzi DB. Kinetically Controlled Structural Transitions in Layered Halide-Based Perovskites: An Approach to Modulate Spin Splitting. J Am Chem Soc 2022; 144:15223-15235. [PMID: 35951556 DOI: 10.1021/jacs.2c05574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two-dimensional hybrid organic-inorganic perovskite (HOIP) semiconductors with pronounced spin splitting, mediated by strong spin-orbit coupling and inversion symmetry breaking, offer the potential for spin manipulation in future spintronic applications. However, HOIPs exhibiting significant conduction/valence band splitting are still relatively rare, given the generally observed preference for (near)centrosymmetric inorganic (especially lead-iodide-based) sublattices, and few approaches are available to control this symmetry breaking within a given HOIP. Here, we demonstrate, using (S-2-MeBA)2PbI4 (S-2-MeBA = (S)-(-)-2-methylbutylammonium) as an example, that a temperature-induced structural transition (at ∼180 K) serves to change the degree of chirality transfer to and inversion symmetry breaking within the inorganic layer, thereby enabling modulation of HOIP structural and electronic properties. The cooling rate is shown to dictate whether the structural transition occurs─i.e., slow cooling induces the transition while rapid quenching inhibits it. Ultrafast calorimetry indicates a minute-scale structural relaxation time at the transition temperature, while quenching to lower temperatures allows for effectively locking in the metastable room-temperature phase, thus enabling kinetic control over switching between distinct states with different degrees of structural distortions within the inorganic layers at these temperatures. Density functional theory further highlights that the low-temperature phase of (S-2-MeBA)2PbI4 shows more significant spin splitting relative to the room-temperature phase. Our work opens a new pathway to use kinetic control of crystal-to-crystal transitions and thermal cycling to modulate spin splitting in HOIPs for future spintronic applications, and further points to using such "sluggish" phase transitions for switching and control over other physical phenomena, particularly those relying on structural distortions and lattice symmetry.
Collapse
Affiliation(s)
- Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Ruyi Song
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Akash Singh
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,University Program in Materials Science and Engineering, Duke University, Durham, North Carolina 27708, United States
| | - Manoj K Jana
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States.,Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Mercier N, Salah MBH, Dabos-Seignon S, Botta C. Solvent‐Free Preparation and Moderate Congruent Melting Temperature of Layered Lead Iodide Perovskites for Thin‐Film Formation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nicolas Mercier
- University of Angers: Universite d'Angers UFR Sciences 2 Boulevard Lavoisier 49045 Angers FRANCE
| | | | | | | |
Collapse
|
18
|
McHugh LN, Thorne MF, Chester AM, Etter M, Užarević K, Bennett TD. Mechanochemically synthesised dicyanamide hybrid organic-inorganic perovskites, and their melt-quenched glasses. Chem Commun (Camb) 2022; 58:3949-3952. [PMID: 35244661 DOI: 10.1039/d2cc00278g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present efficient and scalable mechanochemical formation of hybrid organic-inorganic perovskites of the form [TPrA][M(dca)3] (M = Mn2+, Co2+) and the subsequent formation of their bulk melt-quenched glasses. In situ X-ray diffraction reveals direct, facile, and almost instantaneouos formation of both crystalline materials, while slow cooling limits recrystallisation in glasses. The glasses show good stability to acidic and basic aqueous solutions and display higher carbon dioxide uptakes than their crystalline precursors.
Collapse
Affiliation(s)
- Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire, CB3 0FS, UK.
| | - Michael F Thorne
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire, CB3 0FS, UK.
| | - Ashleigh M Chester
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire, CB3 0FS, UK.
| | - Martin Etter
- Deutsches Elektronen Synchrotron, FS-PETRA-D, P02.1, Notkestr. 85, 22607 Hamburg, Germany
| | | | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge, Cambridgeshire, CB3 0FS, UK.
| |
Collapse
|
19
|
Shaw BK, Castillo-Blas C, Thorne MF, Ríos Gómez ML, Forrest T, Lopez MD, Chater PA, McHugh LN, Keen DA, Bennett TD. Principles of melting in hybrid organic-inorganic perovskite and polymorphic ABX 3 structures. Chem Sci 2022; 13:2033-2042. [PMID: 35308849 PMCID: PMC8849004 DOI: 10.1039/d1sc07080k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/18/2022] [Indexed: 11/21/2022] Open
Abstract
Four novel dicyanamide-containing hybrid organic-inorganic ABX3 structures are reported, and the thermal behaviour of a series of nine perovskite and non-perovskite [AB(N(CN)2)3] (A = (C3H7)4N, (C4H9)4N, (C5H11)4N; B = Co, Fe, Mn) is analyzed. Structure-property relationships are investigated by varying both A-site organic and B-site transition metal cations. In particular, increasing the size of the A-site cation from (C3H7)4N → (C4H9)4N → (C5H11)4N was observed to result in a decrease in T m through an increase in ΔS f. Consistent trends in T m with metal replacement are observed with each A-site cation, with Co < Fe < Mn. The majority of the melts formed were found to recrystallise partially upon cooling, though glasses could be formed through a small degree of organic linker decomposition. Total scattering methods are used to provide a greater understanding of the melting mechanism.
Collapse
Affiliation(s)
- Bikash Kumar Shaw
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - Celia Castillo-Blas
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
- Departamento de Química Inorgánica, Universidad Autónoma de Madrid 28049 Madrid Spain
| | - Michael F Thorne
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | | | - Tom Forrest
- Diamond Light Source Ltd, Diamond House, Harwell Campus Didcot Oxfordshire OX11 0DE UK
| | - Maria Diaz Lopez
- Diamond Light Source Ltd, Diamond House, Harwell Campus Didcot Oxfordshire OX11 0DE UK
| | - Philip A Chater
- Diamond Light Source Ltd, Diamond House, Harwell Campus Didcot Oxfordshire OX11 0DE UK
| | - Lauren N McHugh
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus Didcot Oxfordshire OX11 0QX UK
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, University of Cambridge CB3 0FS UK
| |
Collapse
|
20
|
Ohmi T, Miura T, Shigematsu K, Koegel AA, Newell BS, Neilson JR, Ikoma T, Azuma M, Yamamoto T. Temperature-induced structural transition in an organic–inorganic hybrid layered perovskite (MA) 2PbI 2−xBr x(SCN) 2. CrystEngComm 2022. [DOI: 10.1039/d2ce00733a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A temperature-induced structural phase transition is reported in layered hybrid perovskite (MA)2PbI2−xBrx(SCN)2 (0 ≤ x ≤ 1.2). The observed transition temperature decreases with Br substitution, suggesting a weakening of bonding interaction between the molecular ions.
Collapse
Affiliation(s)
- Takuya Ohmi
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| | - Tomoaki Miura
- Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | - Kei Shigematsu
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Alexandra A. Koegel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Brian S. Newell
- Molecular and Materials Analysis Center, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - James R. Neilson
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523-1872, USA
| | - Tadaaki Ikoma
- Department of Chemistry, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata, 950-2181, Japan
| | - Masaki Azuma
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
- Kanagawa Institute of Industrial Science and Technology, 705-1 Shimoimaizumi, Ebina 243-0435, Japan
| | - Takafumi Yamamoto
- Laboratory for Materials and Structures, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8503, Japan
| |
Collapse
|
21
|
Lyu R, Moore CE, Liu T, Yu Y, Wu Y. Predictive Design Model for Low-Dimensional Organic-Inorganic Halide Perovskites Assisted by Machine Learning. J Am Chem Soc 2021; 143:12766-12776. [PMID: 34357756 DOI: 10.1021/jacs.1c05441] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Low-dimensional organic-inorganic halide perovskites have attracted interest for their properties in exciton dynamics, broad-band emission, magnetic spin selectivity. However, there is no quantitative model for predicting the structure-directing effect of organic cations on the dimensionality of these low-dimensional perovskites. Here, we report a machine learning (ML)-assisted approach to predict the dimensionality of lead iodide-based perovskites. A literature review reveals 86 reported amines that are classified into "2D"-forming and "non-2D"-forming based on the dimensionality of their perovskites. Machining learning models were trained and tested based on the classification and descriptor features of these ammonium cations. Four structural features, including steric effect index, eccentricity, largest ring size, and hydrogen-bond donor, have been identified as the key controlling factors. On the basis of these features, a quantified equation is created to calculate the probability of forming 2D perovskite for a selected amine. To further illustrate its predicting capability, the built model is applied to several untested amines, and the predicted dimensionality is verified by growing single crystals of perovskites from these amines. This work represents a step toward predicting the crystal structures of low dimensional hybrid halide perovskites using ML as a tool.
Collapse
Affiliation(s)
- Ruiyang Lyu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Curtis E Moore
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Tianyu Liu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yongze Yu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Yiying Wu
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
22
|
Ghimire S, Klinke C. Two-dimensional halide perovskites: synthesis, optoelectronic properties, stability, and applications. NANOSCALE 2021; 13:12394-12422. [PMID: 34240087 DOI: 10.1039/d1nr02769g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Halide perovskites are promising materials for light-emitting and light-harvesting applications. In this context, two-dimensional perovskites such as nanoplatelets or Ruddlesden-Popper and Dion-Jacobson layered structures are important because of their structural flexibility, electronic confinement, and better stability. This review article brings forth an extensive overview of the recent developments of two-dimensional halide perovskites both in the colloidal and non-colloidal forms. We outline the strategy to synthesize and control the shape and discuss different crystalline phases and optoelectronic properties. We review the applications of two-dimensional perovskites in solar cells, light-emitting diodes, lasers, photodetectors, and photocatalysis. Besides, we also emphasize the moisture, thermal, and photostability of these materials in comparison to their three-dimensional analogs.
Collapse
Affiliation(s)
- Sushant Ghimire
- Institute of Physics, University of Rostock, 18059 Rostock, Germany.
| | | |
Collapse
|
23
|
McNulty JA, Lightfoot P. Structural chemistry of layered lead halide perovskites containing single octahedral layers. IUCRJ 2021; 8:485-513. [PMID: 34258000 PMCID: PMC8256700 DOI: 10.1107/s2052252521005418] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/24/2021] [Indexed: 06/01/2023]
Abstract
We present a comprehensive review of the structural chemistry of hybrid lead halides of stoichiometry APbX 4, A 2PbX4 or A A'PbX 4, where A and A' are organic ammonium cations and X = Cl, Br or I. These compounds may be considered as layered perovskites, containing isolated, infinite layers of corner-sharing PbX 4 octahedra separated by the organic species. First, over 250 crystal structures were extracted from the CCDC and classified in terms of unit-cell metrics and crystal symmetry. Symmetry mode analysis was then used to identify the nature of key structural distortions of the [PbX 4]∞ layers. Two generic types of distortion are prevalent in this family: tilting of the octahedral units and shifts of the inorganic layers relative to each other. Although the octahedral tilting modes are well known in the crystallography of purely inorganic perovskites, the additional layer-shift modes are shown to enormously enrich the structural options available in layered hybrid perovskites. Some examples and trends are discussed in more detail in order to show how the nature of the interlayer organic species can influence the overall structural architecture; although the main aim of the paper is to encourage workers in the field to make use of the systematic crystallographic methods used here to further understand and rationalize their own compounds, and perhaps to be able to design-in particular structural features in future work.
Collapse
Affiliation(s)
- Jason A. McNulty
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| | - Philip Lightfoot
- School of Chemistry, University of St Andrews, St Andrews KY16 9ST, United Kingdom
| |
Collapse
|
24
|
Singh A, Jana MK, Mitzi DB. Reversible Crystal-Glass Transition in a Metal Halide Perovskite. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005868. [PMID: 33283383 DOI: 10.1002/adma.202005868] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/08/2020] [Indexed: 06/12/2023]
Abstract
Crystalline metal halide perovskites (MHPs) have provided unprecedented advances in interdisciplinary fields of materials, electronics, and photonics. While crystallinity offers numerous advantages, the ability to access a glassy state with distinct properties provides unique opportunities to extend the associated structure-property relationship, as well as broaden the application space for MHPs. Amorphous analogs for MHPs have so far been restricted to high pressures, limiting detailed studies and applications. Here, a 2D MHP is structurally tailored using bulky chiral organic cations to exhibit an unusual confluence of exceptionally low melting temperature (175 °C) and inhibited crystallization. The chiral MHP can thus be melt-quenched into a stable glassy state, otherwise inhibited in the analogous racemic MHP. Facile and reversible switching between glassy and crystalline states is demonstrated for the chiral MHP, each with distinct optoelectronic character, opening new opportunities for applications including, for example nonvolatile memory, optical communication, and neuromorphic computing.
Collapse
Affiliation(s)
- Akash Singh
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - Manoj K Jana
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
| | - David B Mitzi
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
25
|
Urban JM, Chehade G, Dyksik M, Menahem M, Surrente A, Trippé-Allard G, Maude DK, Garrot D, Yaffe O, Deleporte E, Plochocka P, Baranowski M. Revealing Excitonic Phonon Coupling in (PEA) 2(MA) n-1Pb nI 3n+1 2D Layered Perovskites. J Phys Chem Lett 2020; 11:5830-5835. [PMID: 32597181 DOI: 10.1021/acs.jpclett.0c01714] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The family of 2D Ruddlesden-Popper perovskites is currently attracting great interest of the scientific community as highly promising materials for energy harvesting and light emission applications. Despite the fact that these materials are known for decades, only recently has it become apparent that their optical properties are driven by the exciton-phonon coupling, which is controlled by the organic spacers. However, the detailed mechanism of this coupling, which gives rise to complex absorption and emission spectra, is the subject of ongoing controversy. In this work we show that the particularly rich, absorption spectra of (PEA)2(CH3NH3)n-1PbnI3n+1 (where PEA stands for phenylethylammonium and n = 1, 2, 3), are related to a vibronic progression of excitonic transition. In contrast to other two-dimensional perovskites, we observe a coupling to a high-energy (40 meV) phonon mode probably related to the torsional motion of the NH3+ head of the organic spacer.
Collapse
Affiliation(s)
- Joanna M Urban
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
- ENS Paris-Saclay, CNRS, CentraleSupelec, LuMIn, Université Paris-Saclay, 91405 Orsay, France
| | - Gabriel Chehade
- ENS Paris-Saclay, CNRS, CentraleSupelec, LuMIn, Université Paris-Saclay, 91405 Orsay, France
| | - Mateusz Dyksik
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Matan Menahem
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Alessandro Surrente
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
| | - Gaëlle Trippé-Allard
- ENS Paris-Saclay, CNRS, CentraleSupelec, LuMIn, Université Paris-Saclay, 91405 Orsay, France
| | - Duncan K Maude
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
| | - Damien Garrot
- Groupe d'Etude de la Matière Condensée, Université de Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, 45 Avenue des Etats-Unis, 78035 Versailles, France
| | - Omer Yaffe
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovoth 76100, Israel
| | - Emmanuelle Deleporte
- ENS Paris-Saclay, CNRS, CentraleSupelec, LuMIn, Université Paris-Saclay, 91405 Orsay, France
| | - Paulina Plochocka
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Michal Baranowski
- UPR 3228, CNRS-UGA-UPS-INSA, Laboratoire National des Champs Magnétiques Intenses, 31400 Toulouse, France
- Department of Experimental Physics, Faculty of Fundamental Problems of Technology, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| |
Collapse
|
26
|
Fazayeli M, Khatamian M, Cruciani G. Anomalous inclusion of chloride ions in ethylenediammonium lead iodide turns 1D non-perovskite into a 2D perovskite structure. CrystEngComm 2020. [DOI: 10.1039/d0ce00184h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A 2D ethylenediammonium lead iodide perovskite structure can form just by adding some chloride ions into the solution.
Collapse
Affiliation(s)
- Monireh Fazayeli
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Maasoumeh Khatamian
- Department of Inorganic Chemistry
- Faculty of Chemistry
- University of Tabriz
- Tabriz
- Iran
| | - Giuseppe Cruciani
- Department of Physics and Earth Sciences
- University of Ferrara
- Ferrara
- Italy
| |
Collapse
|
27
|
Alanazi AQ, Kubicki DJ, Prochowicz D, Alharbi EA, Bouduban MEF, Jahanbakhshi F, Mladenović M, Milić JV, Giordano F, Ren D, Alyamani AY, Albrithen H, Albadri A, Alotaibi MH, Moser JE, Zakeeruddin SM, Rothlisberger U, Emsley L, Grätzel M. Atomic-Level Microstructure of Efficient Formamidinium-Based Perovskite Solar Cells Stabilized by 5-Ammonium Valeric Acid Iodide Revealed by Multinuclear and Two-Dimensional Solid-State NMR. J Am Chem Soc 2019; 141:17659-17669. [PMID: 31593456 DOI: 10.1021/jacs.9b07381] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical doping of inorganic-organic hybrid perovskites is an effective way of improving the performance and operational stability of perovskite solar cells (PSCs). Here we use 5-ammonium valeric acid iodide (AVAI) to chemically stabilize the structure of α-FAPbI3. Using solid-state MAS NMR, we demonstrate the atomic-level interaction between the molecular modulator and the perovskite lattice and propose a structural model of the stabilized three-dimensional structure, further aided by density functional theory (DFT) calculations. We find that one-step deposition of the perovskite in the presence of AVAI produces highly crystalline films with large, micrometer-sized grains and enhanced charge-carrier lifetimes, as probed by transient absorption spectroscopy. As a result, we achieve greatly enhanced solar cell performance for the optimized AVA-based devices with a maximum power conversion efficiency (PCE) of 18.94%. The devices retain 90% of the initial efficiency after 300 h under continuous white light illumination and maximum-power point-tracking measurement.
Collapse
Affiliation(s)
- Anwar Q Alanazi
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Dominik J Kubicki
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Daniel Prochowicz
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland.,Institute of Physical Chemistry , Polish Academy of Sciences , Kasprzaka 44/52 , 01-224 Warsaw , Poland
| | - Essa A Alharbi
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Marine E F Bouduban
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne CH-1015 Lausanne , Switzerland
| | - Farzaneh Jahanbakhshi
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Marko Mladenović
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade , University of Belgrade , Pregrevica 118 , 11080 Belgrade , Serbia
| | - Jovana V Milić
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Fabrizio Giordano
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Dan Ren
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ahmed Y Alyamani
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Hamad Albrithen
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia.,Physics and Astronomy Department-Research Chair for Tribology, Surface and Interface Sciences, College of Science, and King Abdullah Institute for Nanotechnology-Aramco Laboratory for Applied Sensing Research , King Saud University , P.O. Box 2455, Riyadh 11451 , Saudi Arabia
| | - Abdulrahman Albadri
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Mohammad Hayal Alotaibi
- National Center for Nanotechnology , King Abdulaziz City for Science and Technology , P.O. Box 6086, Riyadh 11442 , Saudi Arabia
| | - Jacques-E Moser
- Photochemical Dynamics Group, Institute of Chemical Sciences and Engineering, Centre for Ultrafast Science , École Polytechnique Fédérale de Lausanne CH-1015 Lausanne , Switzerland
| | - Shaik M Zakeeruddin
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Ursula Rothlisberger
- Laboratory of Computational Chemistry and Biochemistry (LCBC) , École Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| | - Michael Grätzel
- Laboratory of Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences , Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne , Switzerland
| |
Collapse
|
28
|
Walter P, Kaifer E, Herrmann H, Wadepohl H, Hübner O, Himmel H. Redox‐Active Guanidines with One or Two Guanidino Groups and Their Integration in Low‐Dimensional Perovskite Structures. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Petra Walter
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Elisabeth Kaifer
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hendrik Herrmann
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hubert Wadepohl
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Olaf Hübner
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| | - Hans‐Jörg Himmel
- Anorganisch‐Chemisches Institut Ruprecht‐Karls‐Universität Heidelberg Im Neuenheimer Feld 270 69120 Heidelberg Germany
| |
Collapse
|
29
|
Rosales BA, Wei L, Vela J. Synthesis and mixing of complex halide perovskites by solvent-free solid-state methods. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.054] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|