1
|
Gong Y, Zhang H, Lu M, Sun J, Jia Y, Yang Y, Liu X, Yin B, Zhou Y, Ling Y. Tuning the Fe-Gd nanoparticles co-functionalized mesoporous carbon from sphere to nanobowl for advanced bioapplications. J Colloid Interface Sci 2025; 679:412-421. [PMID: 39461130 DOI: 10.1016/j.jcis.2024.10.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Studies on the function-integrated nanocomposites with well-tuned morphologies have received considerable interest. Here, we reported the preparation of mesoporous carbon nanobowl integrated with stoichiometric γ-Fe2O3 and GdPO4 nanoparticles (Fe-Gd/MCN-B) for morphological advantage exploration. Followed by (i) emulsion-induced interface anisotropic assembly of polydopamine, (ii) solvent evaporation-induced sorption of Wells-Dawson-like heterometallic cluster of {Fe6Gd6P6} and (iii) temperature-programmed carbonization, Fe-Gd/MCN-B with the size around 200 nm was isolated. Our in-vitro studies revealed that Fe-Gd/MCN-B showed a 63.0 % amplified photoacoustic (PA) signal intensity as compared with its nanospherical analogue of Fe-Gd/MCN-S owing to the enhanced light harvesting and photothermal conversion on the interface of its nanobowl morphology. Furthermore, the combined magnetic resonance (MR) imagining, drug delivery and photothermal treatment efficacy in Fe-Gd/MCN-B were also validated in-vitro. These results demonstrated that the delicate design of the morphology of function-integrated nanocomposites is an available way for enhanced imaging performance.
Collapse
Affiliation(s)
- Yimin Gong
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Hui Zhang
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Jiayu Sun
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E14NS, United Kingdom
| | - Yu Jia
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Yannan Yang
- Institute of Optoelectronics, Fudan University, Shanghai 200433, China; South Australian immunoGENomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaofeng Liu
- Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai 200433, China.
| |
Collapse
|
2
|
Yuan W, Shu L, Xu J, Hua C, Huang J. Constructing Strategy for Realizing White-Light-Emitting of Organic Aggregates Based on Self-Assembling Conjugated Polymer Nanobowls. ACS Macro Lett 2024:51-56. [PMID: 39707990 DOI: 10.1021/acsmacrolett.4c00714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2024]
Abstract
The construction of single-component, white-light-emitting, conjugated polymers always utilizes fluorescence resonance energy transfer (FRET) for efficient emission. However, the main challenges in developing such materials primarily come from the effects of aggregation states during solution processing and the precise structural control required for the synthesis of compounds. Both aspects can affect the FRET between different lumophores in white-light-emitting materials. A novel supermolecular assembly strategy using new conjugated polymers (CPs) to fabricate single-component white-light-emitting CPs nanobowls (CPNBs) was developed to overcome the two difficulties. Specifically, through molecular structure engineering, side chains have been modified with a uracil group capable of hydrogen bonding, which stabilized the nanobowl structure during the supramolecular assembly process. Furthermore, by blending two kinds of CPs emitting different colors during the supramolecular assembly, single-component, white-light-emitting CPNBs have been achieved. The supramolecular strategy has resulted in stable and high-brightness, white-light emission, whether in aqueous solutions of different concentrations or in solid-state, polymer-based, composite materials. It also offers a more straightforward and environmentally friendly synthesis process for white-light-emitting organic materials.
Collapse
Affiliation(s)
- Weijie Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Lan Shu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Jing Xu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Chenhao Hua
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| | - Jin Huang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 211816 Nanjing, China
| |
Collapse
|
3
|
Jiang J, Sun M, Gu Q, Liu S, Sun H, Fan Z, Zhu Y, Du J. Biodegradable Nanobowls with Controlled Dents. ACS Macro Lett 2024:35-42. [PMID: 39698747 DOI: 10.1021/acsmacrolett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Nanobowls show promising potential in biomedical applications, such as bioimaging, cargo delivery, and disease theranostics, due to their unique concave structure and interior cavities. However, the lack of biodegradable nanobowls with manipulable size (especially the dent size) still exists as an obstacle for their in-depth exploration and application in biomedical fields. Herein, polypeptide-based nanobowls are successfully obtained by the self-assembly of a graft polypeptide [named TPE-P(GAAzo21-stat-GA29)] via a solvent-switch method. Through the synergistic effect between the hydrogen bonding and π-π stacking interactions, the size of nanobowls and the corresponding dents can be facilely controlled by altering either the initial polypeptide concentration or the cosolvents in self-assembly. Furthermore, such polypeptide-based nanobowls are demonstrated to be biocompatible and biodegradable in vitro, which may promote the development of biomedical nanobowls in the future.
Collapse
Affiliation(s)
- Jinhui Jiang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Min Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qianxi Gu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Shangning Liu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, 750021 Yinchuan, China
| | - Zhen Fan
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
4
|
Li X, Liang X, Yang C, Yan Q. Nonlinear amplification of nano bowl surface concavity on the critical response threshold to biosignals. Nat Commun 2024; 15:8699. [PMID: 39379367 PMCID: PMC11461742 DOI: 10.1038/s41467-024-53053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
Polymer nanoparticles that can sharply sense and detect biological signals in cells are promising candidates for biomedical and theranostic nanomaterials. However, the response ability of current polymer assemblies poorly matches the requirement of trace concentration level (10-6 ~ 10-9 mol/L) of cellular biosignals due to their linear signal input-to-function output mode, which impedes their practical applications in vivo. Here we report a kind of nanobowl system with pH-tunable invaginated morphology that can nonlinearly amplify the response abilities toward biosignals by modulating the surface concavity. Compared to conventional spherical nanoparticles, nonspherical nanobowls with a specific concave structure reduce the critical response threshold of polymers by up to 5 orders of magnitude, from millimole to nanomole level, covering most of biosignal concentration windows. Moreover, we find that this nonlinear signal gain effect is originated from the collective impact of a single signal on transitioning the polymer chain aggregation state of individual assemblies, rather than just altering a certain unit or chain. This nonlinear signal-to-response mechanism is potential to solve the tricky problems of probing and sensing endogenous signals with trace physiological concentration.
Collapse
Affiliation(s)
- Xuefeng Li
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No.220, Handan Road, Shanghai, China
| | - Xin Liang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No.220, Handan Road, Shanghai, China
| | - Cuiqin Yang
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No.220, Handan Road, Shanghai, China
- Department of Macromolecular Science, Fudan University, No.2005, Songhu Road, Shanghai, China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, No.220, Handan Road, Shanghai, China.
- Department of Macromolecular Science, Fudan University, No.2005, Songhu Road, Shanghai, China.
| |
Collapse
|
5
|
Li Y, Cui Z, Shi L, Bao Q, Shu R, Zhu W, Zhang W, Ji Y, Shen Y, Cheng J, Wang J. Asymmetric Nanobowl Confinement-Engineered "Plasmonic Storms" for Machine Learning-Assisted Ultrasensitive Immunochromatographic Assay of Pathogens. Anal Chem 2024. [PMID: 39252431 DOI: 10.1021/acs.analchem.4c03417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Efficient field enhancement effects through plasmonic chemistry for ultrasensitive biosensing still face a great challenge. Herein, nanoconfinement engineering accumulation and synergistic effects are used to develop a "plasmonic storms" strategy with a high field enhancement effect, and gold nanoparticles (AuNPs) are used as active sites for a proof of concept because of their distinctive localized surface plasmon resonance and neighborly coupled electromagnetic field. Briefly, a large number of AuNPs are selectively and accurately stacked in the confined nanocavity of the bowl-like nanostructure through an in situ-synthesized strategy, which provides a space for strong coupling of electromagnetic fields between these adjacent AuNPs, forming "plasmonic storms" with an enhanced field that is 3 orders of magnitude higher than that of free AuNPs. The proposed nanoconfinement-engineered "plasmonic storms" are demonstrated by surface-enhanced Raman scattering (SERS) and photothermal experiments and theoretically visualized by finite element simulation. Finally, the proposed "plasmonic storms" are used for enhanced colorimetric/SERS/photothermal immunochromatographic assay to detect Salmonella typhimurium with the help of a machine learning algorithm, achieving a low limit of detection of 142 CFU mL-1, highlighting the potential of nanoconfinement in biosensing.
Collapse
Affiliation(s)
- Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Zhaowen Cui
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Longhua Shi
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Qinyuan Bao
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rui Shu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxin Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wentao Zhang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yanwei Ji
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yizhong Shen
- School of Food & Biological Engineering, Anhui Province Key Laboratory of Agricultural Products Modern Processing, Hefei University of Technology, Hefei 230009, China
| | - Jie Cheng
- Institute of Quality Standards and Testing Technologies for Agro-Products, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing 100081, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Qi S, He X. Biomimetic Capsid-Like Nanoshells Self-Assembled from Homopolypeptides. Chemistry 2024; 30:e202401990. [PMID: 38923670 DOI: 10.1002/chem.202401990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
The preparation of capsid-like nanoshells and the elucidation of their formation pathways are crucial for the application potential of capsid-like nanomaterials. In this study, we have prepared biomimetic capsid-like nanoshells (CLNs) through the solution self-assembly of poly (β-phenethyl-L-aspartate) homopolypeptide (PPLA). The formation of CLNs is governed by an aggregation-fusion mechanism. Initially, PPLA molecules self-assemble into small spherical assemblies as subunits and the initial nuclei are formed through fusing some subunits. Subsequently, additional subunits rapidly fuse onto these nuclei, leading to the growth of full or partial CLNs during the growth phase. Moreover, the suitable condition benefiting CLNs formation is clarified by a morphological phase diagram based on the initial PPLA concentration against water content. Molecular-level measurements suggest that the molecular flexibility of PPLA is a key factor in the arrangement and fusion of subunits for the formation of CLNs. These findings offer new perspectives for a deeper understanding of the formation pathways of capsid-like nanoshells derived from synthetic polymers.
Collapse
Affiliation(s)
- Shuo Qi
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| | - Xiaohua He
- School of Chemistry and Molecular Engineering, East China Normal University, No.500 Dongchuan Road, Shanghai, 200241, China
| |
Collapse
|
7
|
Gao J, Ren Y, Lu Y, Ma Q, Sun Y, Jia L. Fabrication of Hierarchical Assemblies through Temperature-Triggered Liquid Crystallization Driven Self-Assembly. SMALL METHODS 2024; 8:e2301525. [PMID: 38185748 DOI: 10.1002/smtd.202301525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/08/2023] [Indexed: 01/09/2024]
Abstract
Functional hierarchy is prevalent in biological systems owing to natural evolution. Efforts to replicate these structures in artificial materials have gained traction in materials science. Although artificial hierarchical structures are fabricated at different scales based on site-specific interactions using ABC-type block copolymers (BCPs), the fabrication of such hierarchical structures using AB-type BCPs via a simple and efficient method remains challenging. Herein, a class of amphiphilic BCPs (PDenm-b-PACholn) is reported comprising dendronized oligoethylene glycol (Den) and cholesterol (AChol) as hydrophilic and hydrophobic moieties, respectively. By employing the collapse of PDenm blocks at a specific temperature, the fabrication of bundled fibers and multilayer vesicles is achieved with an obvious hierarchy. Different from common reversible aggregation-disaggregation processes of thermal-responsive polymers, the ordering of the core-forming block with liquid crystalline (LC) properties provides robustly physical cross-linking, coupled with epitaxial growth and the lateral fusion of LC blocks, guiding the formation of stable hierarchical micellar structures. It is highlighted that the combination of temperature-sensitive properties and LC ordering alignment offers a novel approach for constructing hierarchical structures using AB-type BCPs via an efficient one-step assembly method.
Collapse
Affiliation(s)
- Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Qingyang Ma
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yixin Sun
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
8
|
Zhang X, Liu B, Xu F, Ning L, Zhou Q, Zhang Q, Mai Y, Gong Q, Huang Y. pH-Modulated 1D Hierarchical Self-Assembly of a Brush-Like Poly-Para-Phenylene Homopolymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400220. [PMID: 38366315 DOI: 10.1002/smll.202400220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/02/2024] [Indexed: 02/18/2024]
Abstract
The controllable self-assembly of conjugated homopolymers, especially homopolymers without other segments (a prerequisite for phase separation), which can afford chances to achieve tunable optical/electronic properties, remains a great challenge due to their poor solubility and has remained rarely documented. Herein, a conjugated homopolymer (DPPP-COOH) is synthesized, which has a unique brush-like structure with a conjugated dendritic poly-para-phenylene (DPPP) backbone and alkyl-carboxyl side chains at both edges of the backbone. The introduction of carboxyl makes the brush-like homopolymer exhibit pH-modulated 1D hierarchical self-assembly behavior in dilute solution, and allows for flexible morphological regulation of the assemblies, forming some uncommon superstructures including ultralong nanowires (at pH 7), superhelices (at pH 10) and "single-wall" nanotubes (at pH 13), respectively. Furthermore, the good aqueous dispersibility and 1D feature endow the superstructures formed in a high-concentration neutral solution with high broad-spectrum antibacterial performance superior to that of many conventional 1D materials.
Collapse
Affiliation(s)
- Xiaomin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bohao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Lijian Ning
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry & Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong, SAR, 999077, P. R. China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qiuyu Gong
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yinjuan Huang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
9
|
Fan Y, Sun H. Manipulation of Bowl-Shaped Nanoparticles Self-Assembled from a Bipyridine Pendant Containing Homopolymer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:5828-5836. [PMID: 38456904 DOI: 10.1021/acs.langmuir.3c03712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The morphological control and transformation of soft nanomaterials are critical for their physical and chemical properties, which can be achieved by dynamically regulating the hydrophilicity of amphiphilic polymers during self-assembly. Herein, an amphiphilic homopolymer poly(N-(2,2'-bipyridine)-4-acrylamide) (PBPyAA) with bipyridine pendants is synthesized, and the effect of various parameters including initial concentration, temperature, pH, and metal ion coordination on the self-assembly behavior and morphology of the assemblies is investigated. Upon changing the initial concentration of PBPyAA, bowl-shaped nanoparticles (BNPs) with precisely controlled diameter, opening size, and thickness are obtained. With the decrease of pH of the solution, the negatively charged surface of BNPs transforms to a positively charged state. Furthermore, the addition of divalent metal ions (Co2+, Mn2+, and Zn2+) induces the transformation of BNPs to vesicles and giant vesicles. The effect of the above factors on the morphology of the assemblies is essential to change the hydrophilicity of PBPyAA dynamically, leading to variation of the local viscosity during self-assembly. Overall, manipulation of the structural parameters of BNPs and transformation of BNPs to vesicles are achieved, providing fresh insights for the precise control of the morphologies of soft nanomaterials.
Collapse
Affiliation(s)
- Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
10
|
Xia Z, Yang Y, Song YF, Shi S. Self-Assembly of Polyoxometalate-Based Nanoparticle Surfactants in Solutions. ACS Macro Lett 2024:99-104. [PMID: 38190249 DOI: 10.1021/acsmacrolett.3c00503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Nanoparticle surfactants (NPSs) are an emergent class of amphiphiles attractive for their controllable assembly at the liquid-liquid interface. In this work, intriguing self-assembly behavior and stimuli-responsiveness of NPSs in homogeneous solutions are presented. With β-cyclodextrin-grafted polyoxometalates (POMs) and ferrocene (or azobenzene)-terminated polystyrene in water/tetrahydrofuran, POM-based NPSs are formed via host-guest interactions and self-organize to vesicles driven by solvent-phobic effects. The tunable supramolecular interactions allow these assemblies to be responsive to redox or light stimulus, respectively, affording an on-demand assembly/disassembly capacity that shows promise in delivery and release applications.
Collapse
Affiliation(s)
- Zhiqin Xia
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yang Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Quzhou Institute for Innovation in Resource Chemical Engineering, Quzhou 324000, Zhejiang Province, China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Shaowei Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
11
|
Gao Y, Gao C, Fan Y, Sun H, Du J. Physically and Chemically Compartmentalized Polymersomes for Programmed Delivery and Biological Applications. Biomacromolecules 2023; 24:5511-5538. [PMID: 37933444 DOI: 10.1021/acs.biomac.3c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Multicompartment polymersomes (MCPs) refer to polymersomes that not only contain one single compartment, either in the membrane or in the internal cavity, but also mimic the compartmentalized structure of living cells, attracting much attention in programmed delivery and biological applications. The investigation of MCPs may promote the application of soft nanomaterials in biomedicine. This Review seeks to highlight the recent advances of the design principles, synthetic strategies, and biomedical applications of MCPs. The compartmentalization types including chemical, physical, and hybrid compartmentalization are discussed. Subsequently, the design and controlled synthesis of MCPs by the self-assembly of amphiphilic polymers, double emulsification, coprecipitation, microfluidics and particle assembly, etc. are summarized. Furthermore, the diverse applications of MCPs in programmed delivery of various cargoes and biological applications including cancer therapy, antimicrobials, and regulation of blood glucose levels are highlighted. Finally, future perspectives of MCPs from the aspects of controlled synthesis and applications are proposed.
Collapse
Affiliation(s)
- Yaning Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Chenchen Gao
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yirong Fan
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200072, China
| |
Collapse
|
12
|
Sun H, Gao Y, Fan Y, Du J, Jiang J, Gao C. Polymeric Bowl-Shaped Nanoparticles: Hollow Structures with a Large Opening on the Surface. Macromol Rapid Commun 2023; 44:e2300196. [PMID: 37246639 DOI: 10.1002/marc.202300196] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/14/2023] [Indexed: 05/30/2023]
Abstract
Polymeric bowl-shaped nanoparticles (BNPs) are anisotropic hollow structures with large openings on the surface, which have shown advantages such as high specific area and efficient encapsulation, delivery and release of large-sized cargoes on demand compared to solid nanoparticles or closed hollow structures. Several strategies have been developed to prepare BNPs based on either template or template-free methods. For instance, despite the widely used self-assembly strategy, alternative methods including emulsion polymerization, swelling and freeze-drying of polymeric spheres, and template-assisted approaches have also been developed. It is attractive but still challenging to fabricate BNPs due to their unique structural features. However, there is still no comprehensive summary of BNPs up to now, which significantly hinders the further development of this field. In this review, the recent progress of BNPs will be highlighted from the perspectives of design strategies, preparation methods, formation mechanisms, and emerging applications. Moreover, the future perspectives of BNPs will also be proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yaning Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yirong Fan
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Jinhui Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| | - Chenchen Gao
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
13
|
Templating synthesis of oxime/amidoxime functionalized hollow nanospheres by air bubbles generated from “Ouzo-Like” effect for fast and massive uranium uptake. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Sun H, Leng Y, Zhou X, Li X, Wang T. Regulation of the nanostructures self-assembled from an amphiphilic azobenzene homopolymer: influence of initial concentration and solvent solubility parameter. SOFT MATTER 2023; 19:743-748. [PMID: 36621933 DOI: 10.1039/d2sm01059c] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The control over the morphology and nanostructure of soft nanomaterials self-assembled from amphiphilic polymers is of high interest, but is still challenging. Herein, we manipulate the morphology of bowl-shaped nanoparticles by changing initial polymer concentrations, and prepare nanotubes and nanowires, both twisted and not, by using solvents with different solubility parameters. An amphiphilic azobenzene homopolymer (poly(4-(phenyldiazenyl)phenyl methacrylamide), PAzoMAA) is designed and synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, which can self-assemble into bowl-shaped nanoparticles promoted by the synergy of hydrogen bonding and π-π interaction. More significantly, the opening size of the bowl-shaped nanoparticles can be controlled by changing initial polymer concentrations. Nanotubes and nanowires, both twisted and not, are also obtained using a solvothermal method in alcohols. The relationship between the structure of the nanomaterials and the solubility parameters of the alcohols is investigated, revealing the molecular arrangement patterns of PAzoMAA in different nanostructures. Overall, we propose a facile strategy to manipulate the microstructure of bowl-shaped nanoparticles and one-dimensional nanomaterials by adjusting initial polymer concentration and solvent solubility parameters. Our study may bring new avenues for controlling the nanostructures of soft nanomaterials.
Collapse
Affiliation(s)
- Hui Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Ying Leng
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiaoyan Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Xiao Li
- School of Chemistry and Chemical Engineering, State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Tian Wang
- Department of Chemistry, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
15
|
Li W, Zhang H, Zhai Z, Huang X, Shang S, Song Z. Fast and Reversible Photoresponsive Self-Assembly Behavior of Rosin-Based Amphiphilic Polymers. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12885-12896. [PMID: 36175382 DOI: 10.1021/acs.jafc.2c04389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing stimulus-responsive amphiphilic polymers with a fast photoresponsive self-assembly behavior remains a challenge. Two series of rosin-terminated and azobenzene-terminated amphiphilic polymers (PAMn and PMAn) with fast and reversible photoresponsive properties were prepared using rosin-based azobenzene groups and polyethylene glycol, respectively. Under 5-10 s of UV irradiation, the polymers showed trans-to-cis isomerization and reached a photosteady state. For the PAMn polymer, the absorbance of the absorption peak at 325 nm recovered to more than 95% of the initial value under visible light for 5-10 s, whereas that of the PMAn polymer recovered completely. Notably, the PAMn and PMAn polymers initially self-assembled to vesicles or spherical micelles, and various morphological changes were achieved by manipulating UV irradiation time, with the initial morphology again recovered under dark conditions or visible-light irradiation. Remarkably, vesicles of the PAM34 and PMA34 polymers presented an intermediate open-vesicle state before being completely deformed under UV irradiation because of the existence of a π-π interaction. Finally, the ability of PAM34 and PMA34 polymer vesicles to perform the controlled release and reversible loading of a fluorescent probe was evaluated.
Collapse
Affiliation(s)
- Wanbing Li
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing210037, P. R. China
| | - Haibo Zhang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhaolan Zhai
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Xujuan Huang
- School of Chemical and Chemistry, Yancheng Institute of Technology, Yancheng, Jiangsu Province210042, P. R. China
| | - Shibin Shang
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| | - Zhanqian Song
- CAF; National Engineering Lab. for Biomass Chemical Utilization; Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration; Key Lab. of Biomass Energy and Material, Institute of Chemical Industry of Forest Products, Nanjing, Jiangsu Province210042, P. R. China
| |
Collapse
|
16
|
The shackling photoisomerization effect on self-assembly of azobenzene-containing side-chain homopolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Pal D, Garrison JB, Miao Z, Diodati LE, Veige AS, Sumerlin BS. Nanobowls from Amphiphilic Core–Shell Cyclic Bottlebrush Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Digvijayee Pal
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - John B. Garrison
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Zhihui Miao
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Lily E. Diodati
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Adam S. Veige
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
- Center for Catalysis, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
18
|
Shi XJ, Liu Z, Xie YC, Xu M, He XH. Homopolypeptide Vesicles Triggered by Side-Chain Hydration. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2784-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Fan X, Yue T, Liu A, Xie X, Fang W, Wei Y, Zheng H, Zheng H, Zhou M, Piao J, Li F. Lignin-assisted construction of sub-10 nm supramolecular self-assembly for photothermal immunotherapy and potentiating anti-PD-1 therapy against primary and distant breast tumors. Asian J Pharm Sci 2022; 17:713-727. [DOI: 10.1016/j.ajps.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/28/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022] Open
|
20
|
Sun H, Chen S, Li X, Leng Y, Zhou X, Du J. Lateral growth of cylinders. Nat Commun 2022; 13:2170. [PMID: 35449206 PMCID: PMC9023456 DOI: 10.1038/s41467-022-29863-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/04/2022] [Indexed: 12/12/2022] Open
Abstract
The precise control of the shape, size and microstructure of nanomaterials is of high interest in chemistry and material sciences. However, living lateral growth of cylinders is still very challenging. Herein, we propose a crystallization-driven fusion-induced particle assembly (CD-FIPA) strategy to prepare cylinders with growing diameters by the controlled fusion of spherical micelles self-assembled from an amphiphilic homopolymer. The spherical micelles are heated upon glass transition temperature (Tg) to break the metastable state to induce the aggregation and fusion of the amorphous micelles to form crystalline cylinders. With the addition of extra spherical micelles, these micelles can attach onto and fuse with the cylinders, showing the living character of the lateral growth of cylinders. Computer simulations and mathematical calculations are preformed to reveal the total energy changes of the nanostructures during the self-assembly and CD-FIPA process. Overall, we demonstrated a CD-FIPA concept for preparing cylinders with growing diameters.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China.
| | - Shuai Chen
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China.,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, 750021, Yinchuan, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, 200434, Shanghai, China. .,Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, 201804, Shanghai, China.
| |
Collapse
|
21
|
Sun H, Zhou X, Leng Y, Li X, Du J. Transformation of Amorphous Nanobowls to Crystalline Ellipsoids Induced by Trans-Cis Isomerization of Azobenzene. Macromol Rapid Commun 2022; 43:e2200131. [PMID: 35322512 DOI: 10.1002/marc.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 03/03/2022] [Indexed: 11/08/2022]
Abstract
The stimuli-responsive transition of nanostructures from amorphous to crystalline state is of high interest in polymer science, but is still challenging. Herein, we demonstrate the transformation of amorphous nanobowls to crystalline ellipsoids triggered by UV induced trans-cis isomerization, using an azobenzene-containing amphiphilic homopolymer (PAzoAA) as building block. The amide bond and azobenzene pendants are introduced to the side chain of PAzoAA to afford hydrogen bonding and π-π interaction, which promotes the formation of nanobowls rather than spherical nanostructures. Upon exposed to UV irradiation, trans-cis isomerization of azobenzene pendants occurs, leading to the increase of hydrophilicity and destruction of π-π interaction, further resulting in the disassembly of the nanobowls. Then the PAzoAA re-assembles to form crystalline ellipsoids instead of amorphous nanostructures when recovered at 70°C without UV light. We further confirm that the high incubation temperature after UV irradiation is critical for the cis-trans transformation and the high mobility of the polymer chains to facilitate the regular rearrangement of azobenzene pendants. Overall, we propose a facile method to achieve the transformation of amorphous nanobowls to crystalline ellipsoids, which may bring new insight into preparation of crystalline nanoparticles using amorphous precursors. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiaoyan Zhou
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Ying Leng
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xiao Li
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai, 201804, China
| |
Collapse
|
22
|
Santiago-Sampedro GI, Aguilar-Granda A, Torres-Huerta A, Flores-Álamo M, Maldonado-Domínguez M, Rodríguez-Molina B, Iglesias-Arteaga MA. Self-Assembly of an Amphiphilic Bile Acid Dimer: A Combined Experimental and Theoretical Study of Its Medium-Responsive Fluorescence. J Org Chem 2022; 87:2255-2266. [PMID: 35166535 DOI: 10.1021/acs.joc.1c01334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This work describes the synthesis and aggregation behavior of a dimeric bile acid derivative in which two steroid cores are bridged by a p-di(phenylethynyl)phenylene fluorophore. The studied compound contains three key characteristics: (a) restricted conformational equilibrium in solution, (b) efficient fluorescence conferred by the bridge, and (c) medium responsiveness encoded in the steroid fragments. The incorporation of the three components afforded a compound that generates nano- and micrometric spherical particles with aggregation-responsive fluorescence emission. The observed self-assembly process of the featured molecule was induced by the gradual addition of water to the tetrahydrofuran (THF) solution. This aggregation led to significant changes in fluorescence that went from two bands at λem values of 370 and 390 nm in pure THF to a new spectrum with two maxima at λem values of 395 and 418 nm at high water contents, without a decrease in emission. The observed changes can be ascribed to weakly coupled aggregation, a hypothesis supported by multiscale molecular modeling, which sheds light on the mechanism of the self-assembly of this unconventional amphiphile.
Collapse
Affiliation(s)
- Gerardo I Santiago-Sampedro
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Andrés Aguilar-Granda
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Aaron Torres-Huerta
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Marcos Flores-Álamo
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Mauricio Maldonado-Domínguez
- J. Heyrovský Institute of Physical Chemistry, Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Braulio Rodríguez-Molina
- Instituto de Química, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| | - Martín A Iglesias-Arteaga
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 Ciudad de México, Mexico
| |
Collapse
|
23
|
Wu T, Sun H, Jiang J, Lin S, Fan L, Hong K, Sun Q, Hu Y, Zhu Y, Du J. Homopolymer nanobowls with controlled size and denting degree. Polym Chem 2022. [DOI: 10.1039/d1py01613j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Homopolymer nanobowls hold promising potential applications in many fields because of their designability, large specific surface area and high packing density. However, it is still challenging to prepare nanobowls with...
Collapse
|
24
|
Li S, Liu P, Wang Z, Lian L, Zhao Y. Multi-tunable aggregation behaviors of thermo/pH-responsive toothbrush-like and jellyfish-like copolymers. Polym Chem 2022. [DOI: 10.1039/d1py01667a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rational design of comb-like and linear conjugates comprising PNIPAM and PDMAEMA segments allows the construction of a multi-tunable hierarchical self-assembly platform and insight into the topology effect.
Collapse
Affiliation(s)
- Siyu Li
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Lu Lian
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
25
|
Fan L, Jiang J, Sun Q, Hong K, Cornel EJ, Zhu Y, Du J. Fluorescent homopolypeptide toroids. Polym Chem 2022. [DOI: 10.1039/d1py01691a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Toroids are important ring-like nanostructures in living systems; intrinsically luminogenic toroids are promising in bioimaging but it is challenging to synthesize such nanoparticles. Herein, we report a fluorescent toroid that...
Collapse
|
26
|
Zheng M, Yuan J. Polymeric nanostructures based on azobenzene and their biomedical applications: synthesis, self-assembly and stimuli-responsiveness. Org Biomol Chem 2021; 20:749-767. [PMID: 34908082 DOI: 10.1039/d1ob01823j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Amphiphilic polymers can self-assemble to form nanoparticles with different structures under suitable conditions. Polymer nanoparticles functionalized with aromatic azo groups are endowed with photo-responsive properties. In recent years, a variety of photoresponsive polymers and nanoparticles have been developed based on azobenzene, using different molecular design strategies and synthetic routes. This article reviews the progress of this rapidly developing research field, focusing on the structure, synthesis, assembly and response of photo-responsive polymer assemblies. According to the molecular structure, photo-responsive polymers can be divided into linear polymers containing azobenzene in a side chain, linear polymers containing azobenzene in the main chain, linear polymers containing azobenzene in an end group, branched polymers containing azobenzene and supramolecular polymers containing azobenzene. These systems have broad biomedical application prospects in the field of drug delivery and imaging applications.
Collapse
Affiliation(s)
- Mingxin Zheng
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Jinying Yuan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
27
|
Cai X, Ji L, Tang H, Wang R, Feng F. One pot synthesis and self-assembly of methylene blue-backboned polymers. Chem Commun (Camb) 2021; 57:12313-12316. [PMID: 34734930 DOI: 10.1039/d1cc04769h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Studies of methylene blue-backboned polymers (MBPs) are hindered by the limited availability of polymerization methods. Herein, we developed an oxidative polymerization method to produce MBPs. The polymerization is performed in aqueous medium, and is organic solvent-free, heavy metal-free, time-efficient (on a timescale of minutes), and does not need pre-formed methylene blue chromophores. The effects of the alkyl chains of the MBPs on the photophysical properties and self-assembly behavior (e.g., vesicles and nanorings) are significant, which highlights the possibility of controlling the MBP properties via rationally tailoring the functionality of the MBP monomers prior to polymerization. Importantly, the self-assembly structures can be predicted using the dissipative particle dynamics (DPD) simulation method.
Collapse
Affiliation(s)
- Xuetong Cai
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Luyang Ji
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Hao Tang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Rong Wang
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| | - Fude Feng
- Department of Polymer Science & Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China.
| |
Collapse
|
28
|
Feng W, Huang Z, Kang X, Zhao D, Li H, Li G, Xu J, Wang X. Self-Assembled Nanosized Vehicles from Amino Acid-Based Amphiphilic Polymers with Pendent Carboxyl Groups for Efficient Drug Delivery. Biomacromolecules 2021; 22:4871-4882. [PMID: 34636237 DOI: 10.1021/acs.biomac.1c01164] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developing safe and efficient delivery vehicles for chemotherapeutic drugs has been a long-standing demanding. Amino acid-based polymers are promising candidates to address this challenge due to their excellent biocompatibility and biodegradation. Herein, a series of well-defined amphiphilic block copolymers were prepared by PET-RAFT polymerization of N-acryloyl amino acid monomers. By altering monomer types and the block ratio of the copolymers, the copolymers self-assembled into nanostructures with various morphologies, including spheres, rod-like, fibers, and lamellae via hydrophobic and hydrogen bonding interactions. Significantly, the nanoparticles (NPs) assembled from amphiphilic block copolymers poly(N-acryloyl-valine)-b-poly(N-acryloyl-aspartic acid) (PV-b-PD) displayed an appealing cargo loading efficiency (21.8-32.6%) for a broad range of drugs (paclitaxel, doxorubicin (DOX), cisplatin, etc.) due to strong interactions. The DOX-loaded PV-b-PD NPs exhibited rapid cellular uptake (within 1 min) and a great therapeutic performance. These drug delivery systems provide new insights for regulating the controlled morphologies and improving the efficiency of drug delivery.
Collapse
Affiliation(s)
- Wenli Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zixuan Huang
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xiaoxu Kang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Dongdong Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Haofei Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jiangtao Xu
- Cluster for Advanced Macromolecular Design and Australian Centre for NanoMedicine, School of Chemical Engineering, UNSW Sydney, Sydney 2052, Australia
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
29
|
Chibh S, Katoch V, Singh M, Prakash B, Panda JJ. Miniatured Fluidics-Mediated Modular Self-Assembly of Anticancer Drug-Amino Acid Composite Microbowls for Combined Chemo-Photodynamic Therapy in Glioma. ACS Biomater Sci Eng 2021; 7:5654-5665. [PMID: 34724373 DOI: 10.1021/acsbiomaterials.1c01023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A particulate carrier with the ability to load a combination of therapeutic molecules acting via diverse modes to initiate cancer cell ablation would help heighten anticancer therapeutic outcomes and mitigate harmful side effects due to high doses of mono drug therapy. Moving a step closer, herein, we have developed doxorubicin-curcumin-amino acid-based composite microbowls (CMBs) following miniaturized fluid flow-based self-assembly. The CMBs were further exploited as dual chemo-photodynamic therapeutic agents in C6 glioma cells cultured in both two-dimensional (2D) monolayer and as three-dimensional (3D) spheroids. These CMBs showed synergistic and visible (blue)-light-sensitive cell-killing effects in both C6 cells and 3D spheroids. Furthermore, these bowl-shaped structures also demonstrated good stability and excellent in vitro cytocompatibility in C6 glioma cells. Our results indicated that CMBs with asymmetric cavities could potentially be used as a combinatorial drug carrier enabling simultaneous chemo- and phototherapy for effective cancer treatment. The use of blue light, from the visible part of the electromagnetic system, to generate the phototherapeutic effect further advocates for the ease and widespread applicability of the systems.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Manish Singh
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Sector-81, Knowledge City, Sahibzada Ajit Singh Nagar 140306, Punjab, India
| |
Collapse
|
30
|
Sun H, Wang Y, Song J. Polymer Vesicles for Antimicrobial Applications. Polymers (Basel) 2021; 13:2903. [PMID: 34502943 PMCID: PMC8434374 DOI: 10.3390/polym13172903] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/24/2021] [Accepted: 08/26/2021] [Indexed: 02/07/2023] Open
Abstract
Polymer vesicles, hollow nanostructures with hydrophilic cavity and hydrophobic membrane, have shown significant potentials in biomedical applications including drug delivery, gene therapy, cancer theranostics, and so forth, due to their unique cell membrane-like structure. Incorporation with antibacterial active components like antimicrobial peptides, etc., polymer vesicles exhibited enhanced antimicrobial activity, extended circulation time, and reduced cell toxicity. Furthermore, antibacterial, and anticancer can be achieved simultaneously, opening a new avenue of the antimicrobial applications of polymer vesicles. This review seeks to highlight the state-of-the-art of antimicrobial polymer vesicles, including the design strategies and potential applications in the field of antibacterial. The structural features of polymer vesicles, preparation methods, and the combination principles with antimicrobial active components, as well as the advantages of antimicrobial polymer vesicles, will be discussed. Then, the diverse applications of antimicrobial polymer vesicles such as wide spectrum antibacterial, anti-biofilm, wound healing, and tissue engineering associated with their structure features are presented. Finally, future perspectives of polymer vesicles in the field of antibacterial is also proposed.
Collapse
Affiliation(s)
- Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yin Wang
- School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China;
| | - Jiahui Song
- Center of Scientific Technology, Ningxia Medical University, Yinchuan 750004, China;
| |
Collapse
|
31
|
Zhang J, Li S, Wang Z, Liu P, Zhao Y. Multitunable Thermoresponsive and Aggregation Behaviors of Linear and Cyclic Polyacrylamide Copolymers Comprising Heterofunctional Y Junctions. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00794] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jian Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Siyu Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Zhigang Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Peng Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Youliang Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
32
|
Zhang X, Huang Q, Wang F, Sun H, Xiao J, Cornel EJ, Zhu Y, Du J. Giant Polymer Vesicles with a Latticelike Membrane. ACS Macro Lett 2021; 10:1015-1022. [PMID: 35549122 DOI: 10.1021/acsmacrolett.1c00254] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Hierarchical self-assembly offers great possibilities to mimic biological systems with finely arranged complex structures. Herein, we demonstrate the preparation and formation mechanism of an unusual giant polymer vesicle with a latticelike membrane (GVLM). This GVLM is formed by fusion-induced particle assembly (FIPA) of small vesicles that are self-assembled from poly(ethylene oxide)-block-poly[(2-(tetrahydrofuranyloxy)ethyl methacrylate)-stat-(6-(3,3-diphenylnaphthopyranyloxy)hexyl methacrylate)] [PEO43-b-P(TMA22-stat-NMA4)]. Flexible TMA units with high chain mobility and relatively rigid NMA units with intrinsic π-π stacking form the hydrophobic block. These units act as "antifusion" and "profusion" components, respectively. The latticelike membrane of the final GVLM consists of hundreds of small polymer vesicles that are interconnected via multiple interactions. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) studies show that the diameter of the GVLMs is 800-1000 nm. Overall, we provide a new insight into the judicious preparation of hierarchical nanostructures via chemical synthesis and FIPA.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Qiutong Huang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Fangyingkai Wang
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jiangang Xiao
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Erik Jan Cornel
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yunqing Zhu
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
33
|
Öztürk S, Moon GH, Spieß A, Budiyanto E, Roitsch S, Tüysüz H, Janiak C. A Highly-Efficient Oxygen Evolution Electrocatalyst Derived from a Metal-Organic Framework and Ketjenblack Carbon Material. Chempluschem 2021; 86:1106-1115. [PMID: 34251761 DOI: 10.1002/cplu.202100278] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 06/28/2021] [Indexed: 11/06/2022]
Abstract
The composite of the metal-organic framework (MOF) Ni(Fe)-MOF-74 and the highly conductive carbon material ketjenblack (KB) could be easily obtained from the in-situ MOF synthesis in a one-step solvothermal reaction. The composite material features a remarkable electrochemical oxygen evolution reaction (OER) performance where the overpotential at 10 mA/cm2 and the current density at 1.7 VRHE are recorded as 0.274 VRHE and 650 mA/cm2 , respectively, in 1 mol/L KOH. In particular, the activation of nickel-iron clusters from the MOF under an applied anodic bias steadily boosts the OER performance. Although Ni(Fe)-MOF-74 goes through some structural modification during the electrochemical measurements, the stabilized and optimized composite material shows excellent OER performance. This simple strategy to design highly-efficient electrocatalysts, utilizing readily available precursors and carbon materials, will leverage the use of diverse metal-organic complexes into electrode fabrication with a high energy conversion efficiency.
Collapse
Affiliation(s)
- Seçil Öztürk
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-, Heine-Universität Düsseldorf Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Gun-Hee Moon
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis and Sustainable Energy, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
- Extreme Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Alex Spieß
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-, Heine-Universität Düsseldorf Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Eko Budiyanto
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis and Sustainable Energy, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Stefan Roitsch
- Department für Chemie, Universität zu Köln, Greinstr. 4-6, D-50939, Köln, Germany
| | - Harun Tüysüz
- Max-Planck-Institut für Kohlenforschung, Heterogeneous Catalysis and Sustainable Energy, Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Heinrich-, Heine-Universität Düsseldorf Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
34
|
Lin S, Sun H, Cornel EJ, Jiang JH, Zhu YQ, Fan Z, Du JZ. Denting Nanospheres with a Short Peptide. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2599-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
Chibh S, Katoch V, Kour A, Khanam F, Yadav AS, Singh M, Kundu GC, Prakash B, Panda JJ. Continuous flow fabrication of Fmoc-cysteine based nanobowl infused core-shell like microstructures for pH switchable on-demand anti-cancer drug delivery. Biomater Sci 2021; 9:942-959. [PMID: 33559658 DOI: 10.1039/d0bm01386b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Asymmetric nanostructures such as nanobowls (NBs) can exhibit superior drug delivery performances owing to their concave structure and interior asymmetric cavities. Here, we present a facile one-step method for the fabrication of NB like structures from a mere single amino acid mimetic, N-(9-fluorenylmethoxycarbonyl)-S-triphenylmethyl-l-cysteine following continuous-flow microfluidics enabled supramolecular self-assembly. Following fabrication, NBs were further infused into a vesicular shell consisting of the amino acid N-(tert-butoxycarbonyl)-S-triphenylmethyl-l-cysteine, carrying dual acid labile groups, the triphenylmethyl and the tert-butyloxycarbonyl groups. The NB infused core-shell like microstructures formed after the shell coating will now be addressed as NB-shells. Presence of pH-responsive shells bestowed the core-shell NB like structures with the ability to actively tune their surface pore opening and closing in response to environmental pH switch. To illustrate the potential use of the NB-shells in the field of anticancer drug delivery, the particles were loaded with doxorubicin (Dox) with an encapsulation efficiency of 42% and Dox loaded NB-shells exhibited enhanced efficacy in C6 glioma cells. Additionally, when tested in an animal model of glioblastoma, the nanoformulations demonstrated significantly higher retardation of tumour growth as compared to free Dox. Thus, this work strives to provide a new research area in the development of well turned-out and neatly fabricated pH switchable on/off anti-cancer drug delivery systems with significant translational potential.
Collapse
Affiliation(s)
- Sonika Chibh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Vibhav Katoch
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Avneet Kour
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Farheen Khanam
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Amit Singh Yadav
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Manish Singh
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Gopal C Kundu
- NCCS Complex, University of Pune Campus, University Road, Ganeshkhind, Pune, Maharashtra 411007, India and School of Biotechnology and Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Institute of Eminence, Bhubaneswar, 751024, India
| | - Bhanu Prakash
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| | - Jiban Jyoti Panda
- Institute of Nano Science and Technology, Phase-10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
36
|
Qiu J, Xu J, Xia Y. Nanobottles for Controlled Release and Drug Delivery. Adv Healthc Mater 2021; 10:e2000587. [PMID: 32543127 PMCID: PMC7738374 DOI: 10.1002/adhm.202000587] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/06/2020] [Indexed: 12/22/2022]
Abstract
Nanobottles refer to colloidal particles with a hollow interior and a single opening in the wall. These unique features make them ideal carriers for the loading, encapsulation, release, and delivery of various types of theranostic agents in an array of biomedical applications. The hollow interior gives them a high loading capacity while the opening enables quick loading and controlled release of the payload(s). More significantly, on-demand release can be readily achieved by adding a stimuli-responsive material as the inner matrix or cork stopper. This progress report begins with an introduction to the general structures and properties of nanobottles, followed by a brief discussion on the methods developed for their fabrication. The use of nanobottles for loading different types of payloads is then showcased, including small-molecule drugs, biomacromolecules, imaging contrast agents, and functional nanoparticles. The strategies explored for controlling the release by varying the size of the opening and/or integrating with a stimuli-responsive material are also highlighted. This paper concludes with some perspectives on future directions for this class of nanomaterials in terms of fabrication, functionalization, and application.
Collapse
Affiliation(s)
- Jichuan Qiu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Jianchang Xu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30332, USA
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
37
|
Huang J, Su L, Hang Y, Shi B, Wang X, Xu H. Water-Soluble Fluorescent Nanobowls Constructed by Multiple Supramolecular Assembly. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Jin Huang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Linlin Su
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Yixiao Hang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Binbin Shi
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Xiaodong Wang
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| | - Hui Xu
- Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, Jiangsu Province, China
| |
Collapse
|
38
|
Sun H, Du J. Intramolecular Cyclization-Induced Crystallization-Driven Self-Assembly of an Amorphous Poly(amic acid). Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hui Sun
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
39
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
40
|
Chen ZJ, Yang SC, Liu XL, Gao Y, Dong X, Lai X, Zhu MH, Feng HY, Zhu XD, Lu Q, Zhao M, Chen HZ, Lovell JF, Fang C. Nanobowl-Supported Liposomes Improve Drug Loading and Delivery. NANO LETTERS 2020; 20:4177-4187. [PMID: 32431154 DOI: 10.1021/acs.nanolett.0c00495] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Liposomal drug delivery for cancer therapy can be limited due to drug leakage in circulation. Here, we develop a new method to enhance the stability of actively loaded liposomal doxorubicin (DOX) through embedding a stiff nanobowl in the liposomal water cavity. Nanobowl-supported liposomal DOX (DOX@NbLipo) resists the influence of plasma protein and blood flow shear force to prevent drug leakage. This approach yields improved drug delivery to tumor sites and enhanced antitumor efficacy. Compared to alternative methods of modifying liposome surface and composition for stability, this approach designs a physical support for an all-aqueous nanoliposomal cavity. Nanobowl stabilization of liposomes is a simple and effective method to improve carrier stability and drug delivery.
Collapse
Affiliation(s)
- Zhong-Jian Chen
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Si-Cong Yang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xue-Liang Liu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuhao Gao
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao Dong
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xing Lai
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mao-Hua Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai-Yi Feng
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xin-Di Zhu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qin Lu
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Mei Zhao
- Department of Pharmacy, Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201318, China
| | - Hong-Zhuan Chen
- Institute of Interdisciplinary Integrative Biomedical Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York 14260, United States
| | - Chao Fang
- Hongqiao International Institute of Medicine, Tongren Hospital and State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
41
|
Tao S, Chu Y, Wang Z, Xu X, Tan Q. Morphological transition of amphiphilic block copolymer/PEGylated phospholipid complexes induced by the dynamic subtle balance interactions in the self-assembled aggregates. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRecently, there has been an increasing interest in the control of morphological transition of block copolymer aggregates. Here, we report how to control the morphological transition of methoxy polyethylene glycol–poly(d,l-lactic acid) (PDLLA–MPEG) by adding 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DSPE–PEG). In the aggregates formed by dialyzing DSPE–PEG/PDLLA–MPEG mixed solutions against water, the two hydrophobic fatty acid tails of DSPE–PEG will preferentially anchor to the hydrophobic segment end of PDLLA–MPEG by interdigitating between these two tails and PDLLA segments. Consequently, DSPE–PEG and PDLLA–MPEG will form “ABA” temporary supra-amphiphiles in which A represents a poly(ethylene glycol) (PEG) chain segment and B is a mixed hydrophobic segment composed of PDLLA and DSPE segments; the repulsive force derived from the PEG segments of DSPE–PEG can affect the stability of “ABA” temporary supra-amphiphiles. Our results show that the dynamic subtle balance between the number of “ABA” temporary supra-amphiphiles formed and the strength of repulsive force between the PEG segments of DSPE–PEG drives the morphological structure of DSPE–PEG/PDLLA–MPEG aggregates to change from micelles to vesicles, then to semi-vesicles and finally to mixed micelles, with increasing DSPE–PEG additions.
Collapse
Affiliation(s)
- Susu Tao
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Yanyan Chu
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Zihao Wang
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Xiaoyan Xu
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Qinggang Tan
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| |
Collapse
|
42
|
Tan Z, Lan W, Hou Z, Wang K, Li Y, Xu J, Luo X, Zhang L, Zhu J. Flow-Induced Micellar Morphological Transformation in Microfluidic Chips under Nonequilibrium State: From Aggregates to Spherical Micelles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5377-5384. [PMID: 32345020 DOI: 10.1021/acs.langmuir.0c00836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembly of block copolymers (BCPs) in microfluidic chips is a versatile yet effective route to produce micellar aggregates with various controllable sizes and morphologies. In this study, the morphological transformation of the BCP of polystyrene-b-poly(4-vinylpyridine) (PS-b-P4VP) assemblies from irregular aggregates to multicompartment micelles and ultimately to ordered spherical micelles is demonstrated in microfluidic chips. Our experimental and computational simulation results indicate that the transverse diffusion of solvents plays an important role in the morphological transformation of PS-b-P4VP assemblies in the confined flow condition. We find that the mixing time (tmix) between a BCP/tetrahydrofuran (THF) solution and water affects the morphological transformation. Micellar morphologies are intended to transform from aggregates to ordered spherical structures under a relatively long mixing time (tmix). In addition, it is observed that the size of the micelles decreases with the increase of the flow velocity ratio by tuning the hydrodynamic conditions of the flows. Moreover, by adjusting the initial polymer solution concentration, temperature, and weight fraction of the introduced homopolystyrene (hPS), which can affect the viscosity of the BCP solution, the flow diffusion in the microfluidic chip and the resulted micellar structures can also be readily adjusted. The current study provides a new flow-driven method to adjust the micellar ordered structural transformation under the nonequilibrium state.
Collapse
Affiliation(s)
- Zhengping Tan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Wei Lan
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Zaiyan Hou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Ke Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Yuce Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jiangping Xu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Xiaobing Luo
- School of Energy and Power Engineering, HUST, Wuhan 430074, China
| | - Lianbin Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| | - Jintao Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage of Ministry of Education, and State Key Laboratory of Materials Processing and Mold Technology, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China
| |
Collapse
|
43
|
|
44
|
Affiliation(s)
- Jiangang Xiao
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Orthopedics, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
45
|
Li D, Chen X, Zeng M, Ji J, Wang Y, Yang Z, Yuan J. Synthesis of AB n -type colloidal molecules by polymerization-induced particle-assembly (PIPA). Chem Sci 2020; 11:2855-2860. [PMID: 34084344 PMCID: PMC8157509 DOI: 10.1039/d0sc00219d] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Conventional synthesis of colloidal molecules (CMs) mainly depends on particle-based self-assembly of patchy building blocks. However, direct access to CMs by the self-assembly of isotropic colloidal subunits remains challenging. Here, we report the mass production of AB n -type CMs by polymerization-induced particle-assembly (PIPA), using a linear ABC triblock terpolymer system. Starting from diblock copolymer spheres, the association of spheres takes place in situ during the polymerization of the third block. The third blocks aggregate into attractive domains, which connect spheres into CMs. The stability of CMs is ensured, as long as the conversions are limited to ca. 50%, and the pH is low. The valence of AB n -type CMs (n = 2-6) is determined by the volume ratio of the polymer blocks. By tuning the volume ratio, 78.5% linear AB2-type CMs are yielded. We demonstrate that polymerization-induced particle-assembly is successful for the scalable fabrication of AB n -type CMs (50 g L-1), and can be easily extended to vastly different triblock terpolymers, for a wide range of applications.
Collapse
Affiliation(s)
- Dan Li
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Xi Chen
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Min Zeng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Jinzhao Ji
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Yun Wang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| | - Zhenzhong Yang
- Department of Chemical Engineering, Tsinghua University Beijing 100084 China
| | - Jinying Yuan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University Beijing 100084 China
| |
Collapse
|
46
|
Zhu X, Zhang J, Miao C, Li S, Zhao Y. Synthesis, thermoresponsivity and multi-tunable hierarchical self-assembly of multi-responsive (AB)mC miktobrush-coil terpolymers. Polym Chem 2020. [DOI: 10.1039/d0py00245c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Stimuli-responsive miktobrush-coil terpolymers can exhibit unique physical properties and hierarchical self-assembly behaviors dependent on composition, concentration and external stimuli.
Collapse
Affiliation(s)
- Xiaomin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Cheng Miao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Siyu Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Youliang Zhao
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
47
|
Li X, Han J, Qin J, Sun M, Wu J, Lei L, Li J, Fang L, Yang YW. Mesoporous silica nanobeans dual-functionalized with AIEgens and leaning pillar[6]arene-based supramolecular switches for imaging and stimuli-responsive drug release. Chem Commun (Camb) 2019; 55:14099-14102. [PMID: 31641718 DOI: 10.1039/c9cc07115f] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A bean-shaped and dual-functionalized organic-inorganic hybrid supramolecular system with a GSH-dependent turn-on fluorescence enhancement property and stimuli-responsive drug delivery function endowed with leaning towerarene-based switches has been constructed for simultaneous tumor inhibition and imaging.
Collapse
Affiliation(s)
- Xiangshuai Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China. and College of Plant Science, Jilin University, 5333 Xi'an Street, Changchun 130062, China
| | - Junyou Han
- College of Plant Science, Jilin University, 5333 Xi'an Street, Changchun 130062, China
| | - Jianchun Qin
- College of Plant Science, Jilin University, 5333 Xi'an Street, Changchun 130062, China
| | - Ming Sun
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Street, Changchun 130062, China
| | - Jiarui Wu
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, 5333 Xi'an Street, Changchun 130062, China
| | - Jing Li
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Lei Fang
- Department of Chemistry, Texas A&M University 3255 TAMU, College Station, TX 77843-3255, USA.
| | - Ying-Wei Yang
- College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
48
|
Yang B, Du J. On the origin and regulation of ultrasound responsiveness of block copolymer nanoparticles. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9612-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
49
|
Mei S, Kochovski Z, Roa R, Gu S, Xu X, Yu H, Dzubiella J, Ballauff M, Lu Y. Enhanced Catalytic Activity of Gold@Polydopamine Nanoreactors with Multi-compartment Structure Under NIR Irradiation. NANO-MICRO LETTERS 2019; 11:83. [PMID: 34138056 PMCID: PMC7770829 DOI: 10.1007/s40820-019-0314-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 06/12/2023]
Abstract
Photothermal conversion (PTC) nanostructures have great potential for applications in many fields, and therefore, they have attracted tremendous attention. However, the construction of a PTC nanoreactor with multi-compartment structure to achieve the combination of unique chemical properties and structural feature is still challenging due to the synthetic difficulties. Herein, we designed and synthesized a catalytically active, PTC gold (Au)@polydopamine (PDA) nanoreactor driven by infrared irradiation using assembled PS-b-P2VP nanosphere as soft template. The particles exhibit multi-compartment structure which is revealed by 3D electron tomography characterization technique. They feature permeable shells with tunable shell thickness. Full kinetics for the reduction reaction of 4-nitrophenol has been investigated using these particles as nanoreactors and compared with other reported systems. Notably, a remarkable acceleration of the catalytic reaction upon near-infrared irradiation is demonstrated, which reveals for the first time the importance of the synergistic effect of photothermal conversion and complex inner structure to the kinetics of the catalytic reduction. The ease of synthesis and fresh insights into catalysis will promote a new platform for novel nanoreactor studies.
Collapse
Affiliation(s)
- Shilin Mei
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Rafael Roa
- Department of Applied Physics I, University of Málaga, 29071, Málaga, Spain
| | - Sasa Gu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210000, People's Republic of China
| | - Xiaohui Xu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Hongtao Yu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Joachim Dzubiella
- Institute of Physics, University of Freiburg, 79104, Freiburg, Germany
- Simulation of Energy Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
| | - Matthias Ballauff
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15, 12489, Berlin, Germany
| | - Yan Lu
- Soft Matter and Functional Materials, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner Platz 1, 14109, Berlin, Germany.
- Institute of Chemistry, University of Potsdam, 14476, Potsdam, Germany.
| |
Collapse
|
50
|
|