1
|
Rodríguez Pozo FR, Ianev D, Martínez Rodríguez T, Arias JL, Linares F, Gutiérrez Ariza CM, Valentino C, Arrebola Vargas F, Hernández Benavides P, Paredes JM, Medina Pérez MDM, Rossi S, Sandri G, Aguzzi C. Development of Halloysite Nanohybrids-Based Films: Enhancing Mechanical and Hydrophilic Properties for Wound Healing. Pharmaceutics 2024; 16:1258. [PMID: 39458589 PMCID: PMC11509966 DOI: 10.3390/pharmaceutics16101258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Most of the therapeutic systems developed for managing chronic skin wounds lack adequate mechanical and hydration properties, primarily because they rely on a single component. This study addresses this issue by combining organic and inorganic materials to obtain hybrid films with enhanced mechanical behavior, adhesion, and fluid absorption properties. To that aim, chitosan/hydrolyzed collagen blends were mixed with halloysite/antimicrobial nanohybrids at 10% and 20% (w/w) using glycerin or glycerin/polyethylene glycol-1500 as plasticizers. The films were characterized through the use of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and electron microscopy. The mechanical properties were evaluated macroscopically using tensile tests, and at a nanoscale through atomic force microscopy (AFM) and nanoindentation. Thermodynamic studies were conducted to assess their hydrophilic or hydrophobic character. Additionally, in vitro cytocompatibility tests were performed on human keratinocytes. Results from FTIR, TGA, AFM and electron microscopy confirmed the hybrid nature of the films. Both tensile tests and nanomechanical measurements postulated that the nanohybrids improved the films' toughness and adhesion and optimized the nanoindentation properties. All nanohybrid-loaded films were hydrophilic and non-cytotoxic, showcasing their potential for skin wound applications given their enhanced performance at the macro- and nanoscale.
Collapse
Affiliation(s)
- Francisco Ramón Rodríguez Pozo
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Daiana Ianev
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Tomás Martínez Rodríguez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José L. Arias
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
- Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research, University of Granada, 18016 Granada, Spain
- Biosanitary Research Institute of Granada (ibs. Granada), Andalusian Health Service (SAS), University of Granada, 18012 Granada, Spain
| | - Fátima Linares
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Carlos Miguel Gutiérrez Ariza
- Unit of Force Atomic Microscopy, Scientific Instrumentation Center, University of Granada, 18003 Granada, Spain; (F.L.); (C.M.G.A.)
| | - Caterina Valentino
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Francisco Arrebola Vargas
- Department of Histology, Institute of Neurosciences, Centre for Biomedical Research (CIBM), University of Granada, 18071 Granada, Spain;
| | - Pablo Hernández Benavides
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - José Manuel Paredes
- Nanoscopy-UGR Laboratory, Department of Physical Chemistry, Unidad de Excelencia en Química Aplicada a Biomedicina y Medioambiente UEQ, University of Granada, Cartuja Campus, 18071 Granada, Spain;
| | - María del Mar Medina Pérez
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| | - Silvia Rossi
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Giuseppina Sandri
- Department of Drug Science, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy; (D.I.); (C.V.); (S.R.); (G.S.)
| | - Carola Aguzzi
- Department of Pharmacy and Pharmaceutical Technology, Campus Cartuja s/n, 18011 Granada, Spain; (F.R.R.P.); (P.H.B.); (M.d.M.M.P.); (C.A.)
| |
Collapse
|
2
|
Kotammagari TK, Saleh LY, Lönnberg T. Organometallic modification confers oligonucleotides new functionalities. Chem Commun (Camb) 2024; 60:3118-3128. [PMID: 38385213 DOI: 10.1039/d4cc00305e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
To improve their properties or to introduce entirely new functionalities, the intriguing scaffolds of nucleic acids have been decorated with various modifications, most recently also organometallic ones. While challenging to introduce, organometallic modifications offer the potential of expanding the field of application of metal-dependent functionalities to metal-deficient conditions, notably those of biological media. So far, organometallic moieties have been utilized as probes, labels and catalysts. This Feature Article summarizes recent efforts and predicts likely future developments in each of these lines of research.
Collapse
Affiliation(s)
- Tharun K Kotammagari
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Lange Yakubu Saleh
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| | - Tuomas Lönnberg
- Department of Chemistry, University of Turku, Henrikinkatu 2, 20500 Turku, Finland.
| |
Collapse
|
3
|
Martínez-Fernández L, Kohl FR, Zhang Y, Ghosh S, Saks AJ, Kohler B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J Am Chem Soc 2024; 146:1914-1925. [PMID: 38215466 DOI: 10.1021/jacs.3c08793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2024]
Abstract
The dynamics of excited electronic states in self-assembled structures formed between silver(I) ions and cytosine-containing DNA strands or monomeric cytosine derivatives were investigated by time-resolved infrared (TRIR) spectroscopy and quantum mechanical calculations. The steady-state and time-resolved spectra depend sensitively on the underlying structures, which change with pH and the nucleobase and silver ion concentrations. At pH ∼ 4 and low dC20 strand concentration, an intramolecularly folded i-motif is observed, in which protons, and not silver ions, mediate C-C base pairing. However, at the higher strand concentrations used in the TRIR measurements, dC20 strands associate pairwise to yield duplex structures containing C-Ag+-C base pairs with a high degree of propeller twisting. UV excitation of the silver ion-mediated duplex produces a long-lived excited state, which we assign to a triplet excimer state localized on a pair of stacked cytosines. The computational results indicate that the propeller-twisted motifs induced by metal-ion binding are responsible for the enhanced intersystem crossing that populates the triplet state and not a generic heavy atom effect. Although triplet excimer states have been discussed frequently as intermediates in the formation of cyclobutane pyrimidine dimers, we find neither computational nor experimental evidence for cytosine-cytosine photoproduct formation in the systems studied. These findings provide a rare demonstration of a long-lived triplet excited state that is formed in a significant yield in a DNA duplex, demonstrating that supramolecular structural changes induced by metal ion binding profoundly affect DNA photophysics.
Collapse
Affiliation(s)
- Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemical Science (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Supriya Ghosh
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Andrew J Saks
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 West 18th Avenue, Columbus, 43210 Ohio, United States
| |
Collapse
|
4
|
Lefringhausen N, Erbacher C, Elinkmann M, Karst U, Müller J. Contiguous Silver(I)-Mediated Base Pairs of Imidazophenanthroline and Canonical Nucleobases in DNA Duplexes: Formation of Classical Duplexes versus Homodimer Formation. Bioconjug Chem 2024; 35:99-106. [PMID: 38157473 DOI: 10.1021/acs.bioconjchem.3c00494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Metal-mediated base pairs represent a topical alternative to canonical hydrogen-bonded base pairs. In this context, the ligand 1H-imidazo[4,5-f][1,10]phenanthroline (P) was introduced as an artificial nucleobase in a glycol nucleic acid-based nucleoside analogue into a DNA oligonucleotide in a way that the oligonucleotide contains a central block of six contiguous P residues. The ability to engage in Ag+-mediated base pairing was evaluated with respect to the four canonical nucleosides in positions complementary to P. Highly stabilizing Ag+-mediated base pairs were formed with cytosine and guanine (i.e., P-Ag+-C and P-Ag+-G base pairs), whereas the analogous base pairs with thymine and adenine were much less stable and hence formed incompletely. Surprisingly, the intermediate formation of a homodimeric duplex of the P-containing oligonucleotide was observed in all cases, albeit to a different extent. The homodimer is composed of P-Ag+-P base pairs and 18 overhanging mismatched canonical nucleobases. It demonstrates the obstacles present when designing metal-mediated base pairs as metal complexation may take place irrespective of the surrounding natural base pairs. Homodimer formation was found to be particularly prominent when the designated metal-mediated base pairs are of low stability, suggesting that homodimers and regular duplexes are formed in a competing manner.
Collapse
Affiliation(s)
- Nils Lefringhausen
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
| | - Catharina Erbacher
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Matthias Elinkmann
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Uwe Karst
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 48, Münster 48149, Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
- Cells in Motion Interfaculty Centre (CiMIC) and Center for Soft Nanoscience (SoN), Universität Münster, Corrensstr. 28/30, Münster 48149, Germany
| |
Collapse
|
5
|
Saha E, Rahaman A, Bhadra S, Mitra J. Exploring amine-rich supramolecular silver(I) metallogels for autonomous self-healing and as catalysts for a three component coupling reaction. Dalton Trans 2023; 52:15530-15538. [PMID: 37701939 DOI: 10.1039/d3dt01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
A series of Ag(I) supramolecular organo-aqueous gels have been synthesized in the presence of an amine-rich triazole ligand as a gelator. Judicious choice of the triazole derivative and counter anion allows a desired spatial orientation of the pendant amine functionality to accentuate the gelation ability and autonomous self-healability via hydrogen bonding. In addition, the hydrogen bond donors, i.e. pendant -NH2 groups, offer a critical proximity of counter anions to the Lewis acidic Ag(I) and the reactants for promoting a three component coupling reaction of an aldehyde, a terminal alkyne and an amine, giving expedient access to propargyl amines, with remarkable functional group tolerance for both aromatic and aliphatic aldehydes, and aryl acetylenes. Experiments substantiate the pivotal role of counter anions and H-bonding interactions in the observed preference for propargylamines over the diacetylene by-product. Our catalyst is robust, bench-stable, and recyclable, and demonstrates a catalytic efficiency comparable to or better than those of reported systems. The catalyst was found equally effective for the gram-scale synthesis of propargylamines. Our approach lies at the intersection of metal-based, H-bond-mediated counter anion-tuned catalysis, evincing a potential for the development of purpose-built supramolecular gels for desired catalytic applications in the future.
Collapse
Affiliation(s)
- Ekata Saha
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Ajijur Rahaman
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Sukalyan Bhadra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Joyee Mitra
- Inorganic Materials & Catalysis (IMC) Division, CSIR-Central Salt & Marine Chemicals Research Institute, Gijubhai Badheka Marg, Bhavnagar-364002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
6
|
Gonzalez-Garcia MC, Garcia-Fernandez E, Hueso JL, Paulo PMR, Orte A. Optical Binding-Driven Micropatterning and Photosculpting with Silver Nanorods. SMALL METHODS 2023; 7:e2300076. [PMID: 37226694 DOI: 10.1002/smtd.202300076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/08/2023] [Indexed: 05/26/2023]
Abstract
Controlling the nano- and micropatterning of metal structures is an important requirement for various technological applications in photonics and biosensing. This work presents a method for controllably creating silver micropatterns by laser-induced photosculpting. Photosculpting is driven by plasmonic interactions between pulsed laser radiation and silver nanorods (AgNRs) in aqueous suspension; this process leads to optical binding forces transporting the AgNRs in the surroundings, while electronic thermalization results in photooxidation, melting, and ripening of the AgNRs into well-defined 3D structures. This work call these structures Airy castles due to their structural similarity with a diffraction-limited Airy disk. The photosculpted Airy castles contain emissive Ag nanoclusters, allowing for the visualization and examination of the aggregation process using luminescence microscopy. This work comprehensively examines the factors that define the photosculpting process, namely, the concentration and shape of the AgNRs, as well as the energy, power, and repetition rate of the laser. Finally, this work investigates the potential applications by measuring the metal-enhanced luminescence of a europium-based luminophore using Airy castles.
Collapse
Affiliation(s)
- M Carmen Gonzalez-Garcia
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Emilio Garcia-Fernandez
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, University of Granada, Campus Cartuja, 18071, Granada, Spain
| | - Jose L Hueso
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Campus Rio Ebro, 50018, Zaragoza, Spain
- Department of Chemical and Environmental Engineering, University of Zaragoza, Campus Rio Ebro, 50018, Zaragoza, Spain
- Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Pedro M R Paulo
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001, Lisboa, Portugal
| | - Angel Orte
- Nanoscopy-UGR Laboratory, Departamento de Fisicoquímica, University of Granada, Campus Cartuja, 18071, Granada, Spain
| |
Collapse
|
7
|
Lippert B, Sanz Miguel PJ. Beyond sole models for the first steps of Pt-DNA interactions: Fundamental properties of mono(nucleobase) adducts of PtII coordination compounds. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022; 61:e202204798. [DOI: 10.1002/anie.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
9
|
Atsugi T, Ono A, Tasaka M, Eguchi N, Fujiwara S, Kondo J. A Novel Ag
I
‐DNA Rod Comprising a One‐Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Takahiro Atsugi
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Akira Ono
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Miho Tasaka
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Natsumi Eguchi
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| | - Shoji Fujiwara
- Department of Materials & Life Chemistry Faculty of Engineering Kanagawa University 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama 221-8686 Kanagawa Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences Faculty of Science and Technology Sophia University 7-1 Kioi-cho, Chiyoda-ku 102-8554 Tokyo Japan
| |
Collapse
|
10
|
Todkari I, Gupta MK, Ganesh KN. Silver soldering of PNA:DNA duplexes: assembly of a triple duplex from bimodal PNAs with all-C on one face. Chem Commun (Camb) 2022; 58:4083-4086. [PMID: 35266467 DOI: 10.1039/d1cc07297h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA:bm-PNA duplexes endowed with all-C on either the t-amide or triazole face and mixed base sequence on the other face can be welded with silver ions through C:Ag+:C connects to give triple duplexes in one complex. The interplay of WC and Ag+-mediated duplexes leads to synergistic stability effects on both duplexes and the complex.
Collapse
Affiliation(s)
- Iranna Todkari
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India.
| | - Manoj Kumar Gupta
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| | - Krishna N Ganesh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr Homi Bhabha Road, Pune 411008, Maharashtra, India. .,Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road Road, Tirupati, 517507, Andhra Pradesh, India
| |
Collapse
|
11
|
Lippert B. “Metal-modified base pairs” vs. “metal-mediated pairs of bases”: not just a semantic issue! J Biol Inorg Chem 2022; 27:215-219. [PMID: 35091756 PMCID: PMC8907086 DOI: 10.1007/s00775-022-01926-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022]
Abstract
A “nucleobase pair” is not identical with a “pair of basic ligands”, as only in the first case, the existence of inter-base hydrogen bonds is implied. The cross-linking of two nucleobases or two basic ligands by a metal ion of suitable geometry produces either “metal-modified” or “metal-mediated” species, but in the author’s opinion, this difference is not always properly made. This commentary is an attempt to provide a clearer distinction between the two scenarios.
Collapse
Affiliation(s)
- Bernhard Lippert
- Fakultät Für Chemie Und Chemische Biologie (CCB), Technische Universität Dortmund, 44221, Dortmund, Germany.
| |
Collapse
|
12
|
Abstract
Metal-mediated base pairs enable a site-specific incorporation of transition metal ions into nucleic acid structures. The resulting nucleic acid-metal complex conjugates are of interest in the context of functionalized nucleic acids, as they bear metal-based functionality. It is desirable to devise nucleic acids with an externally triggered metal-binding affinity, as this may allow regulating this functionality. Toward this end, a caged deoxyribonucleoside analog HNPP was devised for the site-specific binding of copper(II) ions upon irradiation by light, based on the ligand 3-hydroxy-2-methylpyridin-4(1H)-one (H) and the photocleavable 2-(2-nitrophenyl)propoxy protecting group (NPP). The formation of both H-Cu(II)-H homo base pairs and H-Cu(II)-X hetero base pairs (involving a second artificial deoxyribonucleoside X, based on imidazole-4-carboxylate) was achieved upon irradiation of DNA duplexes bearing the respective HNPP:HNPP or HNPP:X mispairs in the presence of copper(II) ions. The H-Cu(II)-X pair shows an exceptional DNA duplex stabilization of up to 43 °C upon its formation, exceeding that of the H-Cu(II)-H pair. It therefore represents one of the most stabilizing Cu(II)-mediated base pairs reported so far. Our findings expand the scope of light-triggered metal-mediated base pair formation by introducing a copper(II)-binding ligand.
Collapse
Affiliation(s)
- Shuvankar Naskar
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstrasse 28/30, 48149 Münster, Germany
| |
Collapse
|
13
|
Dairaku T, Kawai R, Nozawa-Kumada K, Yoshida K, Ono T, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Chemical reduction of Ag + to Ag employing organic electron donors: evaluation of the effect of Ag +-mediated cytosine-cytosine base pairing on the aggregation of Ag nanoparticles. Dalton Trans 2021; 50:12208-12214. [PMID: 35226008 DOI: 10.1039/d1dt01927a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ag+-mediated base pairing is valuable for synthesising DNA-based silver nanoparticles (AgNPs) and nanoclusters (AgNCs). Recently, we reported the formation of a [Ag(cytidine)2]+ complex in dimethyl sulfoxide (DMSO), which facilitated the evaluation of the effect of cytosine-Ag+-cytosine (C-Ag+-C) base pairing on the degree of AgNP aggregation in solution. As an aprotic solvent, DMSO was expected to dissolve the [Ag(cytidine)2]+ complex, and powerful reducing agents, such as organic electron donors. In this study, the chemical reduction of a cytidine/Ag+ system using a powerful reducing agent tetrakis(dimethylamino)ethylene (TDAE) was investigated. 1H/13C/15N NMR spectroscopic evidence was obtained to identify the iminium dication (TDAE2+), which is an oxidised form of TDAE. The results were compared with those obtained using another organic electron donor, tetrathiafulvalene (TTF), which exhibits a relatively lower reduction activity than TDAE. AgNPs prepared via redox reaction between [Ag(cytidine)2]+ and organic electron donors (TDAE and TTF) were characterised using UV-Vis spectroscopy and nanoparticle tracking analysis. It was found that the formation of C-Ag+-C base pairing inhibited the aggregation of AgNPs in solution. In addition, in the presence of cytidine, the total concentration of the AgNP solution was affected by the reduction activity of the reducing agent.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
14
|
Weng GG, Huang XD, Hu R, Bao SS, Zou Q, Wen GH, Zhang YQ, Zheng LM. Homochiral Dysprosium Phosphonate Nanowires: Morphology Control and Magnetic Dynamics. Chem Asian J 2021; 16:2648-2658. [PMID: 34288530 DOI: 10.1002/asia.202100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Indexed: 02/03/2023]
Abstract
Controllable synthesis of uniformly distributed nanowires of coordination polymers with inherent physical functions is highly desirable but challenging. In particular, the combination of chirality and magnetism into nanowires has potential applications in multifunctional materials and spintronic devices. Herein, we report four pairs of enantiopure coordination polymers with formulae S-, R-Dy(cyampH)3 ⋅ CH3 COOH ⋅ 2H2 O (S-1, R-1), S-, R-Dy(cyampH)3 ⋅ 3H2 O (S-2, R-2), S-, R-Dy(cyampH)2 (C2 H5 COO) ⋅ 3H2 O (S-3, R-3) and S-, R-Dy(cyampH)3 ⋅ 0.5C2 H5 COOH ⋅ 2H2 O (S-4, R-4) [cyampH2 =S-, R-(1-cyclohexylethyl)aminomethylphosphonic acids], which were obtained depending on the pH of the reaction mixtures and the specific carboxylic acid used as pH regulator. Interestingly, compounds 3 were obtained as superlong nanowires, showing 1D neutral chain structure which contains both phosphonate and propionate anion ligands. While compounds 1, 2 and 4 appeared as block-like crystals, superhelices and nanorods, respectively, and exhibited similar neutral chain structures containing only phosphonate ligand. Slow magnetization relaxation characteristic of single-molecule magnet (SMM) behavior was observed for compounds S-1 and S-3. Theoretical calculations were performed to rationalize the magneto-structural relationships.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Hu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
15
|
Dairaku T, Kawai R, Kanaba T, Ono T, Yoshida K, Sato H, Nozawa-Kumada K, Kondo Y, Kondo J, Ono A, Tanaka Y, Kashiwagi Y. Effect of cytosine-Ag +-cytosine base pairing on the redox potential of the Ag +/Ag couple and the chemical reduction of Ag + to Ag by tetrathiafulvalene. Dalton Trans 2021; 50:7633-7639. [PMID: 33973617 DOI: 10.1039/d1dt00975c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The redox properties of metallo-base pairs remain to be elucidated. Herein, we report the detailed 1H/13C/109Ag NMR spectroscopic and cyclic voltammetric characterisation of the [Ag(cytidine)2]+ complex as isolated cytosine-Ag+-cytosine (C-Ag+-C) base pairs. We also performed comparative studies between cytidine/Ag+ and other nucleoside/Ag+ systems by using cyclic voltammetry measurements. In addition, to evaluate the effect of [Ag(cytidine)2]+ formation on the chemical reduction of Ag+ to Ag, we utilised the redox reaction between Ag+ and tetrathiafulvalene (TTF). We found that Ag+-mediated base pairing lowers the redox potential of the Ag+/Ag couple. In addition, C-Ag+-C base pairing makes it more difficult to reduce captured Ag+ ions than in other nucleoside/Ag+ systems. Remarkably, the cytidine/Ag+ system can be utilised to control the redox potential of the Ag+/Ag couple in DMSO. This feature of the cytidine/Ag+ system may be exploited for Ag nanoparticle synthesis by using the redox reaction between Ag+ and TTF.
Collapse
Affiliation(s)
- Takenori Dairaku
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Rika Kawai
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Teppei Kanaba
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Tetsuya Ono
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Kentaro Yoshida
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| | - Hajime Sato
- Application, Bruker Japan K.K., 3-9 Moriya-cho, Kanagawa-ku, Yokohama, Kanagawa 221-0022, Japan
| | - Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aza-Aoba, Aramaki, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Jiro Kondo
- Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo 102-8554, Japan
| | - Akira Ono
- Department of Material & Life Chemistry, Faculty of Engineering, Kangawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Yoshiyuki Tanaka
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Yamashiro-cho, Tokushima 770-8514, Japan.
| | - Yoshitomo Kashiwagi
- School of Pharmaceutical Sciences, Ohu University, 31-1 Misumido, Tomita-machi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
16
|
Yamaguchi I, Ooe R, Wang A. Polyfluorenes bearing N1-Alkylcytosine, Alkylphosphoryl, and Alkylammonium side chains: Synthesis, chemical properties, and sensing ability for metal ions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Kohl FR, Zhang Y, Charnay AP, Martínez-Fernández L, Kohler B. Ultrafast excited state dynamics of silver ion-mediated cytosine-cytosine base pairs in metallo-DNA. J Chem Phys 2021; 153:105104. [PMID: 32933288 DOI: 10.1063/5.0020463] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To better understand the nexus between structure and photophysics in metallo-DNA assemblies, the parallel-stranded duplex formed by the all-cytosine oligonucleotide, dC20, and silver nitrate was studied by circular dichroism (CD), femtosecond transient absorption spectroscopy, and time-dependent-density functional theory calculations. Silver(I) ions mediate Cytosine-Cytosine (CC) base pairs by coordinating to the N3 atoms of two cytosines. Although these silver(I) mediated CC base pairs resemble the proton-mediated CC base pairs found in i-motif DNA at first glance, a comparison of experimental and calculated CD spectra reveals that silver ion-mediated i-motif structures do not form. Instead, the parallel-stranded duplex formed between dC20 and silver ions is proposed to contain consecutive silver-mediated base pairs with high propeller twist-like ones seen in a recent crystal structure of an emissive, DNA-templated silver cluster. Femtosecond transient absorption measurements with broadband probing from the near UV to the near IR reveal an unusually long-lived (>10 ns) excited state in the dC20 silver ion complex that is not seen in dC20 in single-stranded or i-motif forms. This state is also absent in a concentrated solution of cytosine-silver ion complexes that are thought to assemble into planar ribbons or sheets that lack stacked silver(I) mediated CC base pairs. The large propeller twist angle present in metal-mediated base pairs may promote the formation of long-lived charged separated or triplet states in this metallo-DNA.
Collapse
Affiliation(s)
- Forrest R Kohl
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Yuyuan Zhang
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Aaron P Charnay
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| | - Lara Martínez-Fernández
- Departamento de Química, Facultad de Ciencias and Institute for Advanced Research in Chemistry (IADCHEM), Universidad Autónoma de Madrid, Campus de Excelencia UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Bern Kohler
- Department of Chemistry and Biochemistry, 100 W. 18th Ave., Columbus, Ohio 43210, USA
| |
Collapse
|
18
|
Escher D, Müller J. Silver(I)‐mediated hetero base pairs of 6‐pyrazolylpurine and its deaza derivatives. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Daniela Escher
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster Institut für Anorganische und Analytische Chemie Corrensstr. 30 48149 Münster Germany
| |
Collapse
|
19
|
Arranz-Mascarós P, Godino-Salido ML, López-Garzón R, García-Gallarín C, Chamorro-Mena I, López-Garzón FJ, Fernández-García E, Gutiérrez-Valero MD. Non-covalent Functionalization of Graphene to Tune Its Band Gap and Stabilize Metal Nanoparticles on Its Surface. ACS OMEGA 2020; 5:18849-18861. [PMID: 32775887 PMCID: PMC7408210 DOI: 10.1021/acsomega.0c02006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/07/2020] [Indexed: 05/10/2023]
Abstract
Controlling graphene conductivity is crucial for its potential applications. With this focus, this paper shows the effect of the non-covalent bonding of a pyrimidine derivative (HIS) on the electronic properties of graphene (G). Several G-HIS hybrids are prepared through mild treatments keeping unaltered the structures of both G and HIS. The attachment of HIS to G occurs by π-π stacking of the HIS-aromatic residue with the G surface. This partially blocks the p z electrons of G, giving rise to the splitting of both the valence and conduction bands. Moreover, the width of the splitting is directly related to the HIS content. This fact allows the fine-tuning of the band gap of G-HIS hybrids. Furthermore, HIS keeps its metal-complexing ability in the G-HIS hybrids. Taking advantage of this, a G-HIS-Cu(0) composite was prepared by H2 plasma reduction of a precursor of the G-HIS-Cu(II) type. G-HIS-Cu(0) contains Cu(0) clusters stabilized on the G surface due to interactions with the COO- functions of HIS. In an analogous hybrid, G-HIS-Au(0), the Au(0) NPs are also stabilized by COO- functions. This material, consisting of the coupling of Au(0) NPs and G-HIS, photocatalyzed water reduction under visible light radiation producing 12.5 μmol·g-1·h-1of hydrogen.
Collapse
Affiliation(s)
- Paloma Arranz-Mascarós
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | - Maria Luz Godino-Salido
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | - Rafael López-Garzón
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | - Celeste García-Gallarín
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | - Ignacio Chamorro-Mena
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | - F. Javier López-Garzón
- Department
of Inorganic Chemistry, Faculty of Sciences, Granada University, 18071 Granada, Spain
| | - Esperanza Fernández-García
- Department
of Inorganic and Organic Chemistry, Faculty of Experimental Sciences, Jaén University, 23071 Jaén, Spain
| | | |
Collapse
|
20
|
Frańska M, Konował E. Unexpected cytosine-AuCl 4- interaction under electrospray ionization mass spectrometry conditions-Formation of cytosine-Au(I) complexes. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2020; 26:225-229. [PMID: 31801025 DOI: 10.1177/1469066719893233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The interaction of cytosine with AuCl4-, under electrospray ionization mass spectrometric conditions, is discussed. On the basis of respective full scan mass spectra and product ion spectra, obtained in positive and negative ion mode, it has been deduced that cytosine is very prone to form Au(I)-containing complexes. The complexes may be formed in the gas phase by decomposition of Au(III)-containing complexes and also in the electrospray ionization source as a result of the occurrence of redox process. It has also been found that the interaction of cytosine with Au+ is stronger than that with Cu+ or Ag+, although taking into account the electrostatic attraction, it is not expected.
Collapse
Affiliation(s)
- Magdalena Frańska
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo, Poznań, Poland
| | - Emilia Konował
- Institute of Chemistry and Technical Electrochemistry, Poznań University of Technology, Berdychowo, Poznań, Poland
| |
Collapse
|
21
|
Liu X, Cheng ZH, Zhang SQ, Wu N, Yang T, Chen ML, Wang JH. Amplification Strategy of Silver Nanoclusters with a Satellite-Nanostructure for Substrate-Free Assay of Alkaline Phosphatase by ICP-MS. Anal Chem 2020; 92:3769-3774. [DOI: 10.1021/acs.analchem.9b05105] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xun Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Zi-Han Cheng
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Shang-Qing Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Na Wu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ting Yang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
22
|
Mistry L, Waddell PG, Wright NG, Horrocks BR, Houlton A. transoid and cisoid Conformations in Silver-Mediated Cytosine Base Pairs: Hydrogen Bonding Dictates Argentophilic Interactions in the Solid State. Inorg Chem 2019; 58:13346-13352. [DOI: 10.1021/acs.inorgchem.9b02228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Liam Mistry
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Paul G. Waddell
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Nick G. Wright
- School of Engineering, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Benjamin R. Horrocks
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| | - Andrew Houlton
- Chemical Nanoscience Laboratory, Chemistry, School of Natural & Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, U.K
| |
Collapse
|
23
|
|
24
|
Zhou X, Kondhare D, Leonard P, Seela F. Anomeric 5-Aza-7-deaza-2'-deoxyguanosines in Silver-Ion-Mediated Homo and Hybrid Base Pairs: Impact of Mismatch Structure, Helical Environment, and Nucleobase Substituents on DNA Stability. Chemistry 2019; 25:10408-10419. [PMID: 31062885 DOI: 10.1002/chem.201901276] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/30/2019] [Indexed: 12/13/2022]
Abstract
Nucleoside configuration (α-d vs. β-d), nucleobase substituents, and the helical DNA environment of silver-mediated 5-aza-7-deazaguanine-cytosine base pairs have a strong impact on DNA stability. This has been demonstrated by investigations on oligonucleotide duplexes with silver-mediated base pairs of α-d and β-d anomeric 5-aza-7-deaza-2'-deoxyguanosines and anomeric 2'-deoxycytidines incorporated in 12-mer duplexes. To this end, a new synthetic protocol has been developed to access the pure anomers of 5-aza-7-deaza-2'-deoxyguanosine by glycosylation of either the protected nucleobase or its salt followed by separation of the glycosylation products by crystallization and chromatography. Thermal stability measurements were performed on duplexes with α-d/α-d and β-d/β-d homo base pairs or α-d/β-d and β-d/α-d hybrid pairs within two sequence environments, positions 6 or 7, of oligonucleotide duplexes. The respective Tm stability increases observed after silver ion addition differ significantly. Homo base pairs with β-d/β-d or α-d/α-d nucleoside combinations are more stable than α-d/β-d hybrid base pairs. The positional switch of silver-ion-mediated base pairs has a significant impact on stability. Nucleobase substituents introduced at the 5-position of the dC site of silver-mediated base pairs affect base pair stability to a minor extent. Our investigation might lead to applications in the construction of bioinspired nanodevices, in DNA diagnostics, or metal-DNA hybrid materials.
Collapse
Affiliation(s)
- Xinglong Zhou
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Dasharath Kondhare
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical Biology, Center for Nanotechnology, Westfälische Wilhelms-Universität Münster, Heisenbergstrasse 11, 48149, Münster, Germany.,Laboratorium für Organische und Bioorganische Chemie, Institut für Chemie neuer Materialien, Universität Osnabrück, Barbarastrasse 7, 49069, Osnabrück, Germany
| |
Collapse
|
25
|
Mistry L, El-Zubir O, Dura G, Clegg W, Waddell PG, Pope T, Hofer WA, Wright NG, Horrocks BR, Houlton A. Addressing the properties of "Metallo-DNA" with a Ag(i)-mediated supramolecular duplex. Chem Sci 2019; 10:3186-3195. [PMID: 30996900 PMCID: PMC6429620 DOI: 10.1039/c8sc05103h] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 02/08/2019] [Indexed: 01/04/2023] Open
Abstract
The silver-nucleoside complex [Ag(i)-(N3-cytidine)2]+, 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA.
The silver-nucleoside complex [Ag(i)-(N3-cytidine)2], 1, self-assembles to form a supramolecular metal-mediated base-pair array highly analogous to those seen in metallo-DNA. A combination of complementary hydrogen-bonding, hydrophobic and argentophilic interactions drive the formation of a double-helix with a continuous silver core. Electrical measurements on 1 show that despite having Ag···Ag distances within <5% of the metallic radii, the material is electrically insulating. This is due to the electronic structure which features a filled valence band, an empty conduction band dominated by the ligand, and a band gap of 2.5 eV. Hence, as-prepared, such Ag(i)-DNA systems should not be considered molecular nanowires but, at best, proto-wires. The structural features seen in 1 are essentially retained in the corresponding organogel which exhibits thixotropic self-healing that can be attributed to the reversible nature of the intermolecular interactions. Photo-reduced samples of the gel exhibit luminescence confirming that these poly-cytidine sequences appropriately pre-configure silver ions for the formation of quantum-confined metal clusters in line with contemporary views on DNA-templated clusters. Microscopy data reveals the resulting metal cluster/particles are approximately spherical and crystalline with lattice spacing (111) similar to bulk Ag.
Collapse
Affiliation(s)
- Liam Mistry
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Osama El-Zubir
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Gema Dura
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - William Clegg
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Paul G Waddell
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Thomas Pope
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Werner A Hofer
- Chemistry , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Nick G Wright
- School of Engineering , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK
| | - Benjamin R Horrocks
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| | - Andrew Houlton
- Chemical Nanoscience Laboratory , School of Natural & Environmental Sciences , Newcastle University , Newcastle upon Tyne , NE1 7RU , UK .
| |
Collapse
|
26
|
Müller SL, Zhou X, Leonard P, Korzhenko O, Daniliuc C, Seela F. Functionalized Silver‐Ion‐Mediated α‐dC/β‐dC Hybrid Base Pairs with Exceptional Stability: α‐d‐5‐Iodo‐2′‐Deoxycytidine and Its Octadiynyl Derivative in Metal DNA. Chemistry 2019; 25:3077-3090. [DOI: 10.1002/chem.201805299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/04/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Sebastian Lars Müller
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Xinglong Zhou
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Peter Leonard
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Oxana Korzhenko
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
| | - Constantin Daniliuc
- Institut für Organische ChemieUniversität Münster Corrensstrasse 40 48149 Münster Germany
| | - Frank Seela
- Laboratory of Bioorganic Chemistry and Chemical BiologyCenter for Nanotechnology Heisenbergstrasse 11 48149 Münster Germany
- Laboratorium für Organische und Bioorganische Chemie, Institut für, Chemie neuer MaterialienUniversität Osnabrück Barbarastrasse 7 49069 Osnabrück Germany
| |
Collapse
|
27
|
Sandmann N, Bachmann J, Hepp A, Doltsinis NL, Müller J. Copper(ii)-mediated base pairing involving the artificial nucleobase 3H-imidazo[4,5-f]quinolin-5-ol. Dalton Trans 2019; 48:10505-10515. [DOI: 10.1039/c9dt02043h] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A highly stabilizing Cu(ii)-mediated base pair is introduced into DNA using a large artificial nucleobase.
Collapse
Affiliation(s)
- Nikolas Sandmann
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jim Bachmann
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Alexander Hepp
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Nikos L. Doltsinis
- Institut für Festkörpertheorie and Center for Multiscale Theory and Computation
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| | - Jens Müller
- Institut für Anorganische und Analytische Chemie
- Westfälische Wilhelms-Universität Münster
- 48149 Münster
- Germany
| |
Collapse
|