1
|
Roy R, Chawla S, Sharma V, Pal AK, Silori Y, Datta A, De AK, Koner AL. Ultrafast symmetry-breaking charge separation in Perylenemonoimide-embedded multichromophores: impact of regioisomerism. Chem Sci 2024; 15:6363-6377. [PMID: 38699268 PMCID: PMC11062123 DOI: 10.1039/d3sc05325c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/20/2024] [Indexed: 05/05/2024] Open
Abstract
Symmetry-breaking charge separation (SB-CS) has recently evolved as an emerging concept offering its potential to the latest generation of organic photovoltaics. However there are several concerns that need to be addressed to reach the state-of-the-art in SB-CS chemistry, for instance, the desirable molecular geometry, interchromophoric distance and extent of electronic coupling. To shed light on those features, it is reported herein, that ortho-functionalized perylene monoimide (PMI) constituted regioisomeric dimer and trimer derivatives with varied molecular twisting and electronic conjugation have been synthesized. In steady-state photophysical studies, all the dimers and trimer derivatives exhibit a larger bathochromic shift in the emission spectra and a significant reduction of fluorescence quantum yield in polar DMF. Among the series of multichromophores, ortho- and self-coupled dimers display the strikingly different optical feature of SB-CS with a very fast charge separation rate (τCS = 80.2 ps) upon photoexcitation in DMF, which is unveiled by femtosecond transient absorption (fs-TA) studies. The SB-CS for two dimers is well-supported by the formation of PMI˙+ and PMI˙- bands in the fs-TA spectra. Further analysis of fs-TA data revealed that, among the other multichromophores the trimer also exhibits a clear charge separation, whereas SB-CS signatures are less prominent, but can not be completely disregarded, for the meta- and para-dimers. Additionally, the charge separation dynamics of those above-mentioned PMI derivatives are devoid of a kinetically favorable excimer or triplet formation. The evidence of a profound charge transfer phenomenon in the ortho-dimer is characterized by density functional theory (DFT) calculations on excited state electronic structures. The excitonic communications in the excited state electronic arrangements unravel the key role of dihedral twisting in SB-CS. The thermodynamic feasibility of CS (ΔGCS) and activation barrier (ΔG≠) of the derivatives in DMF are established from the Rehm-Weller equation and Marcus's theory, respectively. This work is an in-depth study of the effect of mutual orientation of PMIs and regioisomerism in determining sustainable guidelines for using SB-CS.
Collapse
Affiliation(s)
- Rupam Roy
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Sakshi Chawla
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Vikas Sharma
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| | - Arun K Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Yogita Silori
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
- Department of Physics, University of Michigan Ann Arbor Michigan 48109 USA
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A and 2B Raja S. C. Mullick Road, Jadavpur Kolkata West Bengal 700032 India
| | - Arijit K De
- Condensed Phase Dynamics Group, Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali Knowledge City, Sector 81, SAS Nagar Punjab 140 306 India
| | - Apurba Lal Koner
- Bionanotechnology Lab, Department of Chemistry, Indian Institute of Science Education and Research Bhopal Bhopal Bypass Road, Bhauri Bhopal Madhya Pradesh 462066 India
| |
Collapse
|
2
|
Kalra P, Surana K, Bhattacharya B, Singh G, Durga G. Synergistic behaviour of Silatrane functionalized Perylene Diimide dye and Carbon Quantum Dots for enhancing photovoltaic performance. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
|
3
|
Ultralow Fe doping induced high photocatalytic activity toward ciprofloxacin degradation and CO2 reduction. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Moura HM, Peterlik H, Unterlass MM. Green hydrothermal synthesis yields perylenebisimide-SiO 2 hybrid materials with solution-like fluorescence and photoredox activity. JOURNAL OF MATERIALS CHEMISTRY. A 2022; 10:12817-12831. [PMID: 35812305 PMCID: PMC9211763 DOI: 10.1039/d1ta03214c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
In organic-inorganic hybrid materials' (HMs) synthesis, it is intrinsically challenging to, at the same time, achieve (i) the concomitant synthesis of the components, (ii) nanoscopic interpenetration of the components, and (iii) covalent linking of the components. We here report the one-pot hydrothermal synthesis (HTS) of inorganic-organic HMs consisting of perylene bisimide (PBI) dyes and silica, using nothing but water as the medium and directly from the corresponding bisanhydrides, n-alkyl amines, and alkoxysilane precursors. First, in the absence of a functionalized alkoxysilane for linking, a mixture of the products, PBI and SiO2, is obtained. This evinces that the two products can be synthesized in parallel in the same vessel. Except for minor micromorphological changes, the concomitant synthesis does not affect each component's physicochemical properties. The PBI/SiO2 mixtures do not show synergistic properties. Second, through adding the linker aminopropyltriethoxysilane (APTS), covalently-linked class II hybrids are obtained. These PBI@SiO2 class II hybrids show synergistic materials properties: increased thermal stability is obtained in combination with nanoscopic homogeneity. The PBI moieties are dissolved in the solid SiO2 matrix, while being covalently linked to the matrix. This leads to solution-like fluorescence with vibronic fine-structure of the dyes. Moreover, through tuning the SiO2 amount, the band gaps of the class II hybrid materials can be systematically shifted. We exploit these optoelectronic properties by using the PBI@SiO2 hybrids as heterogeneous and reusable photoredox catalysts for the reduction of aryl halides. Finally, we present a detailed small-angle X-ray scattering and powder X-ray diffraction study of PBI@SiO2 synthesized at various reaction times, revealing the existence of an ordered PBI-oligomeric silesquioxane-type intermediate, which subsequently further condenses to the final nanoscopically homogeneous PBI@SiO2 material. These ordered intermediates point at HTS' propensity to favor crystallinity (to date known for organic and inorganic compounds, respectively) to also apply to hybrid structures, and shed additional light on the long-standing question of structure formation in the early stages of sol-gel processes: they corroborate Brown's hypothesis (1965) that trifunctional hydroxysilanes form surprisingly well controlled oligomers in the early stages of polycondensation.
Collapse
Affiliation(s)
- Hipassia M Moura
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Wien Austria
| | - Herwig Peterlik
- Universität Wien, Faculty of Physics Boltzmanngasse 5 1090 Wien Austria
| | - Miriam M Unterlass
- Universität Konstanz, Department of Chemistry, Solid State Chemistry Universitätsstrasse 10 D-78464 Konstanz Germany
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences Lazarettgasse 14, AKH BT 25.3 1090 Wien Austria
| |
Collapse
|
5
|
Ma Z, Yang B, Yang J. Surface coating preparation of spherical magnetic materials. RSC Adv 2022; 12:9836-9844. [PMID: 35424917 PMCID: PMC8965670 DOI: 10.1039/d2ra00806h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Magnetic materials are being increasingly used in anti-counterfeiting coatings, but the dark colors of magnetic materials greatly limit their applications. This necessitates the development of light-colored magnetic materials. In this study, the heterogeneous precipitation method was used to deposit a layer of titanium dioxide (TiO2) on the surface of magnetic spherical metal particles, followed by the deposition of a layer of Ag by the reduction method, in order to achieve a light color. In the experiment, the particles were initially coated with a few tens of nanometers of TiO2 with a strong shading effect, followed by a further coating of Ag of the same thickness with a similar shading performance. Not only did this achieve a lighter color, but there was no reduction in the magnetic properties of the material after the application of the coating. Scanning electron microscopy (SEM), scanning electron microscopy and energy-dispersive spectroscopy (SEM-EDS), X-ray diffractometry (XRD), and other methods were used to study the changes in morphology and composition before and after the magnetic material was coated. A magnetic tester was used to study the changes in magnetic strength before and after the magnetic material was coated. Magnetic materials are being increasingly used in anti-counterfeiting coatings, but the dark colors of magnetic materials greatly limit their applications.![]()
Collapse
Affiliation(s)
- Zixu Ma
- College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Beibei Yang
- College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China
| | - Junjiao Yang
- College of Chemistry, Beijing University of Chemical Technology Beijing 100029 China .,Analysis and Test Center, Beijing University of Chemical Technology Beijing 100029 China
| |
Collapse
|
6
|
Mavridi-Printezi A, Menichetti A, Guernelli M, Montalti M. Extending photocatalysis to the visible and NIR: the molecular strategy. NANOSCALE 2021; 13:9147-9159. [PMID: 33978040 DOI: 10.1039/d1nr01401c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photocatalysis exploits light to perform important processes as solar fuel production by water splitting, and CO2 reduction or water and air decontamination. Therefore, photocatalysis contributes to the satisfaction of the increasing needs for clean energy, environmental remediation and, most recently, sanification. Most of the efficient semiconductor nanoparticles (NP), developed as photocatalysts, work in the ultraviolet (UV) spectral region and they are not able to exploit either visible (Vis) or near infrared (NIR) radiation. This limitation makes them unable to fully exploit the broad band solar radiaton or to be applied in indoor conditions. Recently, different approaches have been developed to extend the spectral activity of semiconductor NP, like for example band-gap engineering, integration with upconversion NP and plasmonic enhancement involving also hot-electron injection. Nevertheless, the use of organic molecules and metal complexes, for enhancing the photoactivity in the Vis and NIR, was one of the first strategies proposed for sensitization and it is still one of the most efficient. In this minireview we highlight and critically discuss the most recent and relevant achievements in the field of photocatalysis obtained by exploiting dye sensitization either via dynamic or static quenching.
Collapse
Affiliation(s)
| | - Arianna Menichetti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Moreno Guernelli
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| | - Marco Montalti
- Department of Chemistry "Giacomo Ciamician", Via Selmi 2, 40126, Bologna, Italy.
| |
Collapse
|
7
|
Lettieri S, Pavone M, Fioravanti A, Santamaria Amato L, Maddalena P. Charge Carrier Processes and Optical Properties in TiO 2 and TiO 2-Based Heterojunction Photocatalysts: A Review. MATERIALS 2021; 14:ma14071645. [PMID: 33801646 PMCID: PMC8036967 DOI: 10.3390/ma14071645] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Photocatalysis based technologies have a key role in addressing important challenges of the ecological transition, such as environment remediation and conversion of renewable energies. Photocatalysts can in fact be used in hydrogen (H2) production (e.g., via water splitting or photo-reforming of organic substrates), CO2 reduction, pollution mitigation and water or air remediation via oxidation (photodegradation) of pollutants. Titanium dioxide (TiO2) is a “benchmark” photocatalyst, thanks to many favorable characteristics. We here review the basic knowledge on the charge carrier processes that define the optical and photophysical properties of intrinsic TiO2. We describe the main characteristics and advantages of TiO2 as photocatalyst, followed by a summary of historical facts about its application. Next, the dynamics of photogenerated electrons and holes is reviewed, including energy levels and trapping states, charge separation and charge recombination. A section on optical absorption and optical properties follows, including a discussion on TiO2 photoluminescence and on the effect of molecular oxygen (O2) on radiative recombination. We next summarize the elementary photocatalytic processes in aqueous solution, including the photogeneration of reactive oxygen species (ROS) and the hydrogen evolution reaction. We pinpoint the TiO2 limitations and possible ways to overcome them by discussing some of the “hottest” research trends toward solar hydrogen production, which are classified in two categories: (1) approaches based on the use of engineered TiO2 without any cocatalysts. Discussed topics are highly-reduced “black TiO2”, grey and colored TiO2, surface-engineered anatase nanocrystals; (2) strategies based on heterojunction photocatalysts, where TiO2 is electronically coupled with a different material acting as cocatalyst or as sensitizer. Examples discussed include TiO2 composites or heterostructures with metals (e.g., Pt-TiO2, Au-TiO2), with other metal oxides (e.g., Cu2O, NiO, etc.), direct Z-scheme heterojunctions with g-C3N4 (graphitic carbon nitride) and dye-sensitized TiO2.
Collapse
Affiliation(s)
- Stefano Lettieri
- Institute of Applied Sciences and Intelligent Systems “E. Caianiello”, Consiglio Nazionale delle Ricerche (CNR-ISASI), Complesso Universitario di Monte S. Angelo, Via Cupa Cintia 21, 80126 Napoli, Italy
- Correspondence: ; Tel.: +39-081676809
| | - Michele Pavone
- Department of Chemical Sciences, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Cintia 21, 80126 Napoli, Italy;
| | - Ambra Fioravanti
- Institute of Science and Technology for Sustainable Energy and Mobility, Consiglio Nazionale delle Ricerche (CNR-STEMS), Via Canal Bianco 28, 44124 Ferrara, Italy;
| | | | - Pasqualino Maddalena
- Department of Physics “E. Pancini”, University of Naples “Federico II”, Complesso Universitario di Monte S. Angelo, Via Cupa Cintia 21, 80126 Napoli, Italy;
| |
Collapse
|
8
|
Costabel D, Skabeev A, Nabiyan A, Luo Y, Max JB, Rajagopal A, Kowalczyk D, Dietzek B, Wächtler M, Görls H, Ziegenbalg D, Zagranyarski Y, Streb C, Schacher FH, Peneva K. 1,7,9,10-Tetrasubstituted PMIs Accessible through Decarboxylative Bromination: Synthesis, Characterization, Photophysical Studies, and Hydrogen Evolution Catalysis. Chemistry 2021; 27:4081-4088. [PMID: 33241590 PMCID: PMC7986912 DOI: 10.1002/chem.202004326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/04/2020] [Indexed: 01/01/2023]
Abstract
In this work, we present a new synthetic strategy for fourfold-substituted perylene monoimides via tetrabrominated perylene monoanhydrides. X-ray diffraction analysis unveiled the intramolecular stacking orientation between the substituents and semicircular packing behavior. We observed the remarkable influence of the substituent on the longevity and nature of the excited state upon visible light excitation. In the presence of poly(dehydroalanine)-graft-poly(ethylene glycol) graft copolymers as solubilizing template, the chromophores are capable of sensitizing [Mo3 S13 ]2- clusters in aqueous solution for stable visible light driven hydrogen evolution over three days.
Collapse
Affiliation(s)
- Daniel Costabel
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Artem Skabeev
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Yusen Luo
- Institute of Physical ChemistryAbbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Johannes B. Max
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
| | - Ashwene Rajagopal
- Institute of Inorganic Chemistry 1Ulm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Daniel Kowalczyk
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Benjamin Dietzek
- Institute of Physical ChemistryAbbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department of Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
- Center for Energy and Environmental Chemistry Jena andJena Center of Soft MatterFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Maria Wächtler
- Institute of Physical ChemistryAbbe Center of PhotonicsFriedrich Schiller University JenaHelmholtzweg 407743JenaGermany
- Department of Functional InterfacesLeibniz Institute of Photonic Technology JenaAlbert-Einstein-Straße 907745JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldt Straße 807743JenaGermany
| | - Dirk Ziegenbalg
- Institute of Chemical EngineeringUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Yulian Zagranyarski
- Faculty of Chemistry and PharmacySofia University “St. Kliment Ohridski”1 James Bourchier Blvd.1164SofiaBulgaria
| | - Carsten Streb
- Institute of Inorganic Chemistry 1Ulm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Felix H. Schacher
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
- Center for Energy and Environmental Chemistry Jena andJena Center of Soft MatterFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| | - Kalina Peneva
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaLessingstraße 807743JenaGermany
- Center for Energy and Environmental Chemistry Jena andJena Center of Soft MatterFriedrich Schiller University JenaPhilosophenweg 7a07743JenaGermany
| |
Collapse
|
9
|
Koehler P, Lawson T, Neises J, Willkomm J, Martindale BCM, Hutton GAM, Antón-García D, Lage A, Gentleman AS, Frosz MH, Russell PSJ, Reisner E, Euser TG. Optofluidic Photonic Crystal Fiber Microreactors for In Situ Studies of Carbon Nanodot-Driven Photoreduction. Anal Chem 2021; 93:895-901. [PMID: 33315379 DOI: 10.1021/acs.analchem.0c03546] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Performing quantitative in situ spectroscopic analysis on minuscule sample volumes is a common difficulty in photochemistry. To address this challenge, we use a hollow-core photonic crystal fiber (HC-PCF) that guides light at the center of a microscale liquid channel and acts as an optofluidic microreactor with a reaction volume of less than 35 nL. The system was used to demonstrate in situ optical detection of photoreduction processes that are key components of many photocatalytic reaction schemes. The photoreduction of viologens (XV2+) to the radical XV•+ in a homogeneous mixture with carbon nanodot (CND) light absorbers is studied for a range of different carbon dots and viologens. Time-resolved absorption spectra, measured over several UV irradiation cycles, are interpreted with a quantitative kinetic model to determine photoreduction and photobleaching rate constants. The powerful combination of time-resolved, low-volume absorption spectroscopy and kinetic modeling highlights the potential of optofluidic microreactors as a highly sensitive, quantitative, and rapid screening platform for novel photocatalysts and flow chemistry in general.
Collapse
Affiliation(s)
- Philipp Koehler
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Takashi Lawson
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom.,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Julian Neises
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Janina Willkomm
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Benjamin C M Martindale
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georgina A M Hutton
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Daniel Antón-García
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Ava Lage
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Alexander S Gentleman
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Michael H Frosz
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Philip St J Russell
- Max Planck Institute for the Science of Light, Staudtstr. 2, 91058 Erlangen, Germany
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Tijmen G Euser
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Huang JF, Lei Y, Luo T, Liu JM. Photocatalytic H 2 Production from Water by Metal-free Dye-sensitized TiO 2 Semiconductors: The Role and Development Process of Organic Sensitizers. CHEMSUSCHEM 2020; 13:5863-5895. [PMID: 32897637 DOI: 10.1002/cssc.202001646] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Indexed: 06/11/2023]
Abstract
The utilization of solar energy to produce hydrogen from water is showing increased importance and desirability in the field of artificial photosynthesis to produce clean and sustainable fuels. In a typical three-component dye-sensitized semiconductor system for photocatalysis, the dye sensitizer plays an essential role of energy antenna for harvesting visible light and promoting the reduction reaction to generate hydrogen. In recent decades, a lot of attention has focused on metal-free organic sensitizers, which have the advantages of low cost, high molar extinction coefficient, good modifiability and, most importantly, ability to avoid the use of noble metal ions. This Review enumerates the design strategies, specific properties and photocatalytic performances of metal-free sensitizers in the past 30 years and concludes their evolution process. The advantages of different types of metal-free sensitizers are highlighted and the instructively enlightening experiences are systematic summarized.
Collapse
Affiliation(s)
- Jian-Feng Huang
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Yang Lei
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Teng Luo
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| | - Jun-Min Liu
- School of Materials Science and Engineering, Sun Yat-sen University, 510275, Guangzhou, P.R. China
| |
Collapse
|
11
|
Abstract
From the understanding of biological processes and metalloenzymes to the development of inorganic catalysts, electro- and photocatalytic systems for fuel generation have evolved considerably during the last decades. Recently, organic and hybrid organic systems have emerged to challenge the classical inorganic structures through their enormous chemical diversity and modularity that led earlier to their success in organic (opto)electronics. This Minireview describes recent advances in the design of synthetic organic architectures and promising strategies toward (solar) fuel synthesis, highlighting progress on materials from organic ligands and chromophores to conjugated polymers and covalent organic frameworks.
Collapse
Affiliation(s)
- Julien Warnan
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Department ChemieTechnische Universität MünchenLichtenbergstraße 485747GarchingGermany
| | - Erwin Reisner
- Department of ChemistryUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| |
Collapse
|
12
|
Antón-García D, Warnan J, Reisner E. A diketopyrrolopyrrole dye-based dyad on a porous TiO 2 photoanode for solar-driven water oxidation. Chem Sci 2020; 11:12769-12776. [PMID: 34094472 PMCID: PMC8163027 DOI: 10.1039/d0sc04509h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 09/10/2020] [Indexed: 11/29/2022] Open
Abstract
Dye-sensitised photoanodes modified with a water oxidation catalyst allow for solar-driven O2 evolution in photoelectrochemical cells. However, organic chromophores are generally considered unsuitable to drive the thermodynamically demanding water oxidation reaction, mainly due to their lack of stability upon photoexcitation. Here, the synthesis of a dyad photocatalyst (DPP-Ru) consisting of a diketopyrrolopyrrole chromophore (DPPdye) and ruthenium-based water oxidation catalyst (RuWOC) is described. The DPP-Ru dyad features a cyanoacrylic acid anchoring group for immobilisation on metal oxides, strong absorption in the visible region of the electromagnetic spectrum, and photoinduced hole transfer from the dye to the catalyst unit. Immobilisation of the dyad on a mesoporous TiO2 scaffold was optimised, including the use of a TiCl4 pretreatment method as well as employing chenodeoxycholic acid as a co-adsorbent, and the assembled dyad-sensitised photoanode achieved O2 evolution using visible light (100 mW cm-2, AM 1.5G, λ > 420 nm). An initial photocurrent of 140 μA cm-2 was generated in aqueous electrolyte solution (pH 5.6) under an applied potential of +0.2 V vs. NHE. The production of O2 has been confirmed by controlled potential electrolysis with a faradaic efficiency of 44%. This study demonstrates that metal-free dyes are suitable light absorbers in dyadic systems for the assembly of water oxidising photoanodes.
Collapse
Affiliation(s)
- Daniel Antón-García
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Julien Warnan
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Erwin Reisner
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
13
|
Affiliation(s)
- Julien Warnan
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
- Department Chemie Technische Universität München Lichtenbergstraße 4 85747 Garching Germany
| | - Erwin Reisner
- Department of Chemistry University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
14
|
Xu Y, Zheng J, Lindner JO, Wen X, Jiang N, Hu Z, Liu L, Huang F, Würthner F, Xie Z. Consecutive Charging of a Perylene Bisimide Dye by Multistep Low-Energy Solar-Light-Induced Electron Transfer Towards H 2 Evolution. Angew Chem Int Ed Engl 2020; 59:10363-10367. [PMID: 32208545 PMCID: PMC7317913 DOI: 10.1002/anie.202001231] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Indexed: 12/01/2022]
Abstract
A photocatalytic system containing a perylene bisimide (PBI) dye as a photosensitizer anchored to titanium dioxide (TiO2 ) nanoparticles through carboxyl groups was constructed. Under solar-light irradiation in the presence of sacrificial triethanolamine (TEOA) in neutral and basic conditions (pH 8.5), a reaction cascade is initiated in which the PBI molecule first absorbs green light, giving the formation of a stable radical anion (PBI.- ), which in a second step absorbs near-infrared light, forming a stable PBI dianion (PBI2- ). Finally, the dianion absorbs red light and injects an electron into the TiO2 nanoparticle that is coated with platinum co-catalyst for hydrogen evolution. The hydrogen evolution rates (HERs) are as high as 1216 and 1022 μmol h-1 g-1 with simulated sunlight irradiation in neutral and basic conditions, respectively.
Collapse
Affiliation(s)
- Yucheng Xu
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Jiaxin Zheng
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Joachim O. Lindner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Xinbo Wen
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Nianqiang Jiang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Linlin Liu
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems ChemistryUniversität WürzburgAm Hubland97074WürzburgGermany
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
15
|
Tang X, Yang Y, Kang Y, Wu H, Xu JF, Wang Z. Efficient Fenton Degradation of Perylene Diimide Dye Promoted by a Catalytic Amount of Cucurbit[8]uril. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5954-5959. [PMID: 32397717 DOI: 10.1021/acs.langmuir.0c00806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we propose a new method for promoting the degradation of a perylene diimide (PDI) dye, through a Fenton reaction with cucurbit[8]uril (CB[8]) as a supramolecular catalyst. The CB[8] can encapsulate the hydrophobic moiety of the PDI dye and inhibit its aggregation in aqueous solutions, thus increasing the collision frequency between the PDI and oxidants to accelerate the reaction. As a result, the encapsulated PDI molecule is preferentially degraded, followed by freeing the cavity of CB[8] and enabling it to encapsulate another PDI molecule to realize a catalytic cycle. Hence, a catalytic amount of CB[8] is sufficient to accelerate the the Fenton degradation. It is anticipated that this work will extend the realm of supramolecular catalysis systems and enrich the field of degradation of polycyclic aromatic dyes.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuchong Yang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuetong Kang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Han Wu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jiang-Fei Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhiqiang Wang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Xu Y, Zheng J, Lindner JO, Wen X, Jiang N, Hu Z, Liu L, Huang F, Würthner F, Xie Z. Consecutive Charging of a Perylene Bisimide Dye by Multistep Low‐Energy Solar‐Light‐Induced Electron Transfer Towards H
2
Evolution. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001231] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Yucheng Xu
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Jiaxin Zheng
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Joachim O. Lindner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Xinbo Wen
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Nianqiang Jiang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Zhicheng Hu
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Linlin Liu
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Zengqi Xie
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
17
|
Decavoli C, Boldrini CL, Manfredi N, Abbotto A. Molecular Organic Sensitizers for Photoelectrochemical Water Splitting. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Cristina Decavoli
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Chiara Liliana Boldrini
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Norberto Manfredi
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| | - Alessandro Abbotto
- Department of Materials Science and INSTM Unit University of Milano‐Bicocca Via R. Cozzi 55 20125 Milano Italy
| |
Collapse
|
18
|
Creissen CE, Warnan J, Antón-García D, Farré Y, Odobel F, Reisner E. Inverse Opal CuCrO 2 Photocathodes for H 2 Production Using Organic Dyes and a Molecular Ni Catalyst. ACS Catal 2019; 9:9530-9538. [PMID: 32064143 PMCID: PMC7011728 DOI: 10.1021/acscatal.9b02984] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/04/2019] [Indexed: 01/08/2023]
Abstract
Dye-sensitized photoelectrochemical (DSPEC) cells are an emerging approach to producing solar fuels. The recent development of delafossite CuCrO2 as a p-type semiconductor has enabled H2 generation through the coassembly of catalyst and dye components. Here, we present a CuCrO2 electrode based on a high-surface-area inverse opal (IO) architecture with benchmark performance in DSPEC H2 generation. Coimmobilization of a phosphonated diketopyrrolopyrrole (DPP-P) or perylene monoimide (PMI-P) dye with a phosphonated molecular Ni catalyst (NiP) demonstrates the ability of IO-CuCrO2 to photogenerate H2. A positive photocurrent onset potential of approximately +0.8 V vs RHE was achieved with these photocathodes. The DPP-P-based photoelectrodes delivered photocurrents of -18 μA cm-2 and generated 160 ± 24 nmol of H2 cm-2, whereas the PMI-P-based photocathodes displayed higher photocurrents of -25 μA cm-2 and produced 215 ± 10 nmol of H2 cm-2 at 0.0 V vs RHE over the course of 2 h under visible light illumination (100 mW cm-2, AM 1.5G, λ > 420 nm, 25 °C). The high performance of the PMI-constructed system is attributed to the well-suited molecular structure and photophysical properties for p-type sensitization. These precious-metal-free photocathodes highlight the benefits of using bespoke IO-CuCrO2 electrodes as well as the important role of the molecular dye structure in DSPEC fuel synthesis.
Collapse
Affiliation(s)
- Charles E. Creissen
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Julien Warnan
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Daniel Antón-García
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Yoann Farré
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Fabrice Odobel
- Université
LUNAM, Université de Nantes, CNRS, Chimie et Interdisciplinarité: Synthèse, Analyse,
Modélisation (CEISAM), UMR 6230, 2 rue de la Houssinière, 44322 Nantes cedex 3, France
| | - Erwin Reisner
- Christian Doppler
Laboratory for Sustainable SynGas Chemistry, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
19
|
Wang Q, Domen K. Particulate Photocatalysts for Light-Driven Water Splitting: Mechanisms, Challenges, and Design Strategies. Chem Rev 2019; 120:919-985. [PMID: 31393702 DOI: 10.1021/acs.chemrev.9b00201] [Citation(s) in RCA: 821] [Impact Index Per Article: 136.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Solar-driven water splitting provides a leading approach to store the abundant yet intermittent solar energy and produce hydrogen as a clean and sustainable energy carrier. A straightforward route to light-driven water splitting is to apply self-supported particulate photocatalysts, which is expected to allow solar hydrogen to be competitive with fossil-fuel-derived hydrogen on a levelized cost basis. More importantly, the powder-based systems can lend themselves to making functional panels on a large scale while retaining the intrinsic activity of the photocatalyst. However, all attempts to generate hydrogen via powder-based solar water-splitting systems to date have unfortunately fallen short of the efficiency values required for practical applications. Photocatalysis on photocatalyst particles involves three sequential steps: (i) absorption of photons with higher energies than the bandgap of the photocatalysts, leading to the excitation of electron-hole pairs in the particles, (ii) charge separation and migration of these photoexcited carriers, and (iii) surface chemical reactions based on these carriers. In this review, we focus on the challenges of each step and summarize material design strategies to overcome the obstacles and limitations. This review illustrates that it is possible to employ the fundamental principles underlying photosynthesis and the tools of chemical and materials science to design and prepare photocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan
| | - Kazunari Domen
- Department of Chemical System Engineering, School of Engineering , The University of Tokyo , 7-3-1 Hongo , Bunkyo-ku , Tokyo 113-8656 , Japan.,Center for Energy & Environmental Science , Shinshu University , 4-17-1 Wakasato , Nagano-shi , Nagano 380-8553 , Japan
| |
Collapse
|
20
|
El-Bashir SM, AlSalhi MS, Al-Faifi F, Alenazi WK. Spectral Properties of PMMA Films Doped by Perylene Dyestuffs for Photoselective Greenhouse Cladding Applications. Polymers (Basel) 2019; 11:polym11030494. [PMID: 30960478 PMCID: PMC6473518 DOI: 10.3390/polym11030494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 11/16/2022] Open
Abstract
Luminescent polymethylmethacrylate (PMMA) films were prepared by the solvent-casting technique from polymer solution doped with different concentrations of red perylene dyestuffs (KREMER 94720 and KREMER 94739). The effect of the dye concentration on the structure and spectroscopic properties was studied using X-ray diffraction (XRD), transmission electron microscope (TEM) optical absorption, and fluorescence spectroscopy. The optimum dye concentration of photoselective PMMA films was determined by the fluorescence spectroscopy measurements and showed the best emission properties for the doping concentration 10−3 wt % of the investigated dyes. The accelerated photostability tests showed promising stability of the prepared films towards terrestrial solar ultraviolet radiation (UVA). The results endorsed a promising application of the investigated films in photoselective greenhouse cladding applications as the optimized film fluoresces at the action spectra of special chlorophyll a.
Collapse
Affiliation(s)
- S M El-Bashir
- Department of Physics & Astronomy, Science College, King Saud University, Riyadh 11461, Saudi Arabia.
- Department of Physics, Faculty of Science, Benha University, Benha 13513, Egypt.
| | - M S AlSalhi
- Department of Physics & Astronomy, Science College, King Saud University, Riyadh 11461, Saudi Arabia.
| | - F Al-Faifi
- Department of Physics & Astronomy, Science College, King Saud University, Riyadh 11461, Saudi Arabia.
| | - W K Alenazi
- Department of Physics & Astronomy, Science College, King Saud University, Riyadh 11461, Saudi Arabia.
| |
Collapse
|
21
|
Jiang X, Yan Z, Zhang J, Gao J, Huang W, Shi Q, Zhang H. Mesoporous hollow black TiO2 with controlled lattice disorder degrees for highly efficient visible-light-driven photocatalysis. RSC Adv 2019; 9:36907-36914. [PMID: 35539040 PMCID: PMC9075178 DOI: 10.1039/c9ra08148h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023] Open
Abstract
Black TiO2 has received tremendous attention because of its lattice disorder-induced reduction in the TiO2 bandgap, which yields excellent light absorption and photocatalytic ability. In this report, a highly efficient visible-light-driven black TiO2 photocatalyst was synthesized with a mesoporous hollow shell structure. It provided a higher specific surface area, more reaction sites and enhanced visible light absorption capability, which significantly promoted the photocatalytic reaction. Subsequently, the mesoporous hollow black TiO2 with different lattice disorder-engineering degrees were designed. The structure disorder in the black TiO2 obviously increased with reduction temperature, leading to improved visible light absorption. However, their visible-light-driven photocatalytic efficiency increased first and then decreased. The highest value can be observed for the sample reduced at 350 °C, which was 2-, 1.4- and 5-fold that of the samples reduced at 320 °C, 380 °C and 400 °C, respectively. This contradiction can be ascribed to the varied functions of the surface defects with different concentrations in the black TiO2 during the catalytic process. In particular, the defects at low concentrations boost photocatalysis but reverse photocatalysis at high concentrations when they act as charge recombination centers. This study provides significant insight for the fabrication of high-efficiency visible-light-driven catalytic black TiO2 and the understanding of its catalysis mechanism. Our work provides significant insights into the design of hollow black TiO2 spheres and the mechanism accounting for their high-efficient visible-light-driven catalysis.![]()
Collapse
Affiliation(s)
- Xiongrui Jiang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Zhiyao Yan
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Jing Zhang
- College of Architecture and Environment
- Sichuan University
- Chengdu 610065
- China
| | - Junzheng Gao
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Wanxia Huang
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Qiwu Shi
- College of Materials Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Hengzhong Zhang
- Center for High Pressure Science and Technology Advance Research
- Shanghai 201203
- China
| |
Collapse
|
22
|
Huang J, Xu B, Tian L, Pati PB, Etman AS, Sun J, Hammarström L, Tian H. A heavy metal-free CuInS2 quantum dot sensitized NiO photocathode with a Re molecular catalyst for photoelectrochemical CO2 reduction. Chem Commun (Camb) 2019; 55:7918-7921. [DOI: 10.1039/c9cc04222a] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heavy metal-free CuInS2 QDs as a photosensitizer and a Re molecular catalyst have been successfully employed to co-sensitize a NiO photocathode for CO2 reduction into CO.
Collapse
Affiliation(s)
- Jing Huang
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Bo Xu
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Lei Tian
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Palas Baran Pati
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Ahmed S. Etman
- Department of Materials and Environmental Chemistry (MMK)
- Stockholm University
- SE 106 91 Stockholm
- Sweden
| | - Junliang Sun
- Department of Materials and Environmental Chemistry (MMK)
- Stockholm University
- SE 106 91 Stockholm
- Sweden
| | - Leif Hammarström
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Haining Tian
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|