1
|
Todd M, Hrdina R. Synthesis of 1,2-Disubstituted Adamantane Derivatives by Construction of the Adamantane Framework. Molecules 2023; 28:7636. [PMID: 38005358 PMCID: PMC10675813 DOI: 10.3390/molecules28227636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
This review summarizes achievements in the synthesis of 1,2-disubstituted adamantane derivatives by the construction of the tricyclic framework either by total synthesis or by ring expansion/contraction reactions of corresponding adamantane homologues. It is intended to complement reviews focusing on the preparation of 1,2-disubstituted derivatives by C-H functionalization methods.
Collapse
Affiliation(s)
| | - Radim Hrdina
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, 12043 Praha, Czech Republic;
| |
Collapse
|
2
|
Fanourakis A, Hodson NJ, Lit AR, Phipps RJ. Substrate-Directed Enantioselective Aziridination of Alkenyl Alcohols Controlled by a Chiral Cation. J Am Chem Soc 2023; 145:7516-7527. [PMID: 36961353 PMCID: PMC10080694 DOI: 10.1021/jacs.3c00693] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Indexed: 03/25/2023]
Abstract
Alkene aziridination is a highly versatile transformation for the construction of chiral nitrogen-containing compounds. Inspired by the success of analogous substrate-directed epoxidations, we report an enantioselective aziridination of alkenyl alcohols, which enables asymmetric nitrene transfer to alkenes with varied substitution patterns, including those not covered by the current protocols. We believe that our method is effective because it is substrate-directed, exploiting a network of attractive non-covalent interactions between the substrate, an achiral dianionic rhodium(II,II) tetracarboxylate dimer, and its two associated cinchona alkaloid-derived cations. It is these cations that provide a defined chiral pocket in which the aziridination can occur. In addition to a thorough evaluation of compatible alkene classes, we advance a practical mnemonic to predict reaction outcome and disclose a range of post-functionalization protocols that highlight the unique synthetic potential of the enantioenriched aziridine-alcohol products.
Collapse
Affiliation(s)
- Alexander Fanourakis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Nicholas J. Hodson
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Arthur R. Lit
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Robert J. Phipps
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
3
|
Runikhina SA, Tsygankov AA, Afanasyev OI, Chusov D. Reductive α-alkylation of ketones with aldehydes at atmospheric pressure of carbon monoxide: the effect of fluoride activation in ruthenium catalysis. MENDELEEV COMMUNICATIONS 2023. [DOI: 10.1016/j.mencom.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
4
|
Hrdina R, Holovko-Kamoshenkova OM, Císařová I, Koucký F, Machalický O. Annulated carbamates are precursors for the ring contraction of the adamantane framework. RSC Adv 2022; 12:31056-31060. [PMID: 36349043 PMCID: PMC9620499 DOI: 10.1039/d2ra06402b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/24/2022] [Indexed: 11/26/2023] Open
Abstract
We report a protocol for the one-pot two-step synthesis of noradamantane methylene amines. The first step is the triflic acid-promoted decarboxylation of adamantane carbamates, which causes rearrangement of the adamantane framework to form noradamantane iminium salts, which are reduced to amines in the second separate step.
Collapse
Affiliation(s)
- Radim Hrdina
- Charles University, Faculty of Science, Department of Organic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Oksana M Holovko-Kamoshenkova
- Charles University, Faculty of Science, Department of Organic Chemistry Hlavova 8 12840 Praha Czech Republic
- Uzhhorod National University Narodna Ploshcha 3 88000 Uzhhorod Ukraine
| | - Ivana Císařová
- Charles University, Faculty of Science, Department of Inorganic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Filip Koucký
- Charles University, Faculty of Science, Department of Inorganic Chemistry Hlavova 8 12840 Praha Czech Republic
| | - Oldřich Machalický
- University of Pardubice, Faculty of Chemical Technology Studentská 573 53210 Pardubice Czech Republic
| |
Collapse
|
5
|
Tiwari MK, Iqubal A, Das P. Intramolecular oxidative C–N bond formation under metal-free conditions: One-pot global functionalization of pyrazole ring. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
6
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate‐Selective Silylation of Primary Alcohols via Remote Functional‐Group Discrimination. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences Kyoto University Yoshida Kyoto, Sakyo-ku 606-8501 Kyoto Japan
| | - Takeo Kawabata
- Institute for Chemical Research Kyoto University Gokasho Uji city Kyoto 611-0011 Japan
- Current address: Department of Pharmaceutical Sciences International University of Health and Welfare 137-1 Enokizu Okawa Fukuoka 831-8501 Japan
| |
Collapse
|
7
|
Enhancing the efficiency of the ruthenium catalysts in the reductive amination without an external hydrogen source. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Hashimoto H, Ueda Y, Takasu K, Kawabata T. Catalytic Substrate-Selective Silylation of Primary Alcohols via Remote Functional-Group Discrimination. Angew Chem Int Ed Engl 2021; 61:e202114118. [PMID: 34942061 DOI: 10.1002/anie.202114118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 11/07/2022]
Abstract
Silylation of alcohols has generally been known to take place at the sterically most accessible less-hindered hydroxy group. However, we report here the catalyst-controlled substrate-selective silylation of primary alcohols, where the selectivity was controlled independent of the innate reactivity of the hydroxy group based on the steric environment. The chain-length-selective silylation of 1, n- amino alcohol derivatives was achieved, where 1,5-amino alcohol derivatives showed outstanding high reactivity in the presence of analogues with a shorter or longer chain length under catalyst-controlled conditions. A highly substrate-selective catalytic silylation of pentanol analogues was also developed, in which the remote functionality at C(5) from the reacting hydroxy groups was effectively discriminated on silylation.
Collapse
Affiliation(s)
- Hisashi Hashimoto
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Yoshihiro Ueda
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
| | - Kiyosei Takasu
- Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida Kyoto, Sakyo-ku, 606-8501, Kyoto, Japan
| | - Takeo Kawabata
- Institute for Chemical Research, Kyoto University Gokasho, Uji city, Kyoto, 611-0011, Japan
- Current address: Department of Pharmaceutical Sciences, International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| |
Collapse
|
9
|
Makarova M, Afanasyev OI, Kliuev F, Nelyubina YV, Godovikova M, Chusov D. Phosphine ligands in the ruthenium-catalyzed reductive amination without an external hydrogen source. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Zonker B, Becker J, Hrdina R. Synthesis of noradamantane derivatives by ring-contraction of the adamantane framework. Org Biomol Chem 2021; 19:4027-4031. [PMID: 33978046 DOI: 10.1039/d1ob00471a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We describe a triflic acid promoted cascade reaction of adamantane derivatives consisting of a decarboxylation of N-methyl protected cyclic carbamates and a subsequent intramolecular nucleophilic 1,2-alkyl shift to generate ring contracted iminium triflates. This reaction expands the family of similar transformations, such as Wagner-Meerwein-, Demjanov-Tiffeneau-, Meinwald- or (semi-)pinacol-rearrangement. It allows the preparation of noradamantane derivatives in a few steps, starting from simple hydroxy-substituted adamantane precursors.
Collapse
Affiliation(s)
- Benjamin Zonker
- Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Jonathan Becker
- Institute of Inorganic and Analytical Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany
| | - Radim Hrdina
- Department of Organic Chemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 40 Praha, Czech Republic.
| |
Collapse
|
11
|
Yasue R, Yoshida K. Enantioselective Desymmetrization of 1,3‐Disubstituted Adamantane Derivatives via Rhodium‐Catalyzed C−H Bond Amination: Access to Optically Active Amino Acids Containing Adamantane Core. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Risa Yasue
- Department of Chemistry Graduate School of Science Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| | - Kazuhiro Yoshida
- Department of Chemistry Graduate School of Science Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
- Molecular Chirality Research Center Chiba University Yayoi-cho, Inage-ku Chiba 263-8522 Japan
| |
Collapse
|
12
|
Burg F, Buchelt C, Kreienborg NM, Merten C, Bach T. Enantioselective Synthesis of Diaryl Sulfoxides Enabled by Molecular Recognition. Org Lett 2021; 23:1829-1834. [PMID: 33606936 DOI: 10.1021/acs.orglett.1c00238] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective sulfoxidation of diaryl-type sulfides was accomplished using a chiral manganese porphyrin complex equipped with a remote molecular recognition site. Despite the marginal size difference between the two substituents at the prostereogenic sulfur center, hydrogen bonding enabled the formation of chiral sulfoxides with exquisite enantioselectivities (16 examples, up to 99% ee). Aside from the precise orientation of a distinct substrate, the quinolone lactam offers an excellent entry point for further derivatization.
Collapse
Affiliation(s)
- Finn Burg
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Christoph Buchelt
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| | - Nora M Kreienborg
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Christian Merten
- Fakultät für Chemie und Biochemie, Ruhr-Universität Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
13
|
Affiliation(s)
- Radim Hrdina
- Institute of Organic Chemistry Justus-Liebig University Giessen Heinrich-Buff-Ring 17 35392 Giessen Germany
| |
Collapse
|
14
|
Biriukov KO, Vinogradov MM, Afanasyev OI, Vasilyev DV, Tsygankov AA, Godovikova M, Nelyubina YV, Loginov DA, Chusov D. Carbon monoxide-driven osmium catalyzed reductive amination harvesting WGSR power. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00695a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
First osmium-catalyzed reductive amination under the water gas–shift reaction conditions was developed. Proposed catalytic system demonstrates high performance even at the catalyst loading as low as 0.0625 mol%.
Collapse
Affiliation(s)
- Klim O. Biriukov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Mikhail M. Vinogradov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Oleg I. Afanasyev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Dmitry V. Vasilyev
- Forschungszentrum Jülich GmbH
- Helmholtz Institute Erlangen-Nürnberg for Renewable Energy (IEK-11)
- 91058 Erlangen
- Germany
| | - Alexey A. Tsygankov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Maria Godovikova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Yulia V. Nelyubina
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
| | - Dmitry A. Loginov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
- G. V. Plekhanov Russian University of Economics
- Moscow 117997
| | - Denis Chusov
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences (INEOS RAS)
- Moscow
- Russian Federation
- G. V. Plekhanov Russian University of Economics
- Moscow 117997
| |
Collapse
|
15
|
Osmium catalysis in the reductive amination using carbon monoxide as a reducing agent. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.111260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Fernandez-Bartolome E, Cruz P, Galán LA, Cortijo M, Delgado-Martínez P, González-Prieto R, Priego JL, Jiménez-Aparicio R. Heteronuclear Dirhodium-Gold Anionic Complexes: Polymeric Chains and Discrete Units. Polymers (Basel) 2020; 12:E1868. [PMID: 32825168 PMCID: PMC7563758 DOI: 10.3390/polym12091868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 11/17/2022] Open
Abstract
In this article, we report on the synthesis and characterization of the tetracarboxylatodirhodium(II) complexes [Rh2(μ-O2CCH2OMe)4(THF)2] (1) and [Rh2(μ-O2CC6H4-p-CMe3)4(OH2)2] (2) by metathesis reaction of [Rh2(μ-O2CMe)4] with the corresponding ligand acting also as the reaction solvent. The reaction of the corresponding tetracarboxylato precursor, [Rh2(μ-O2CR)4], with PPh4[Au(CN)2] at room temperature, yielded the one-dimensional polymers (PPh4)n[Rh2(μ-O2CR)4Au(CN)2]n (R = Me (3), CH2OMe (4), CH2OEt (5)) and the non-polymeric compounds (PPh4)2{Rh2(μ-O2CR)4[Au(CN)2]2} (R = CMe3 (6), C6H4-p-CMe3 (7)). The structural characterization of 1, 3·2CH2Cl2, 4·3CH2Cl2, 5, 6, and 7·2OCMe2 is also provided with a detailed description of their crystal structures and intermolecular interactions. The polymeric compounds 3·2CH2Cl2, 4·3CH2Cl2, and 5 show wavy chains with Rh-Au-Rh and Rh-N-C angles in the ranges 177.18°-178.69° and 163.0°-170.4°, respectively. A comparative study with related rhodium-silver complexes previously reported indicates no significant influence of the gold or silver atoms in the solid-state arrangement of these kinds of complexes.
Collapse
Affiliation(s)
- Estefania Fernandez-Bartolome
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - Paula Cruz
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - Laura Abad Galán
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - Miguel Cortijo
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - Patricia Delgado-Martínez
- Unidad de Difracción de Rayos X, Centro de Asistencia a la Investigación de Técnicas Físicas y Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain;
| | - Rodrigo González-Prieto
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - José L. Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain; (E.F.-B.); (P.C.); (L.A.G.); (M.C.); (J.L.P.)
| |
Collapse
|
17
|
Ostrovskii VS, Runikhina SA, Afanasyev OI, Chusov D. Rhodium‐Catalyzed Reductive Esterification Using Carbon Monoxide as a Reducing Agent. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Vladimir S. Ostrovskii
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 Moscow Russian Federation
| | - Sofiya A. Runikhina
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 Moscow Russian Federation
| | - Oleg I. Afanasyev
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 Moscow Russian Federation
| | - Denis Chusov
- A.N.Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences Vavilova St. 28 119991 Moscow Russian Federation
| |
Collapse
|
18
|
Storch G, van den Heuvel N, Miller SJ. Site-Selective Nitrene Transfer to Conjugated Olefins Directed by Oxazoline Peptide Ligands. Adv Synth Catal 2020; 362:289-294. [PMID: 32256275 PMCID: PMC7108786 DOI: 10.1002/adsc.201900631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 11/06/2022]
Abstract
Site-selective nitrene transfer to di- and polyene substrates has been achieved using designed peptide-embedded bioxazoline ligands capable of binding copper. In model 1,3-diene substrates, the olefinic position proximal to a directing group was selectively functionalized. Additional studies indicate that this selectivity stems from non-covalent substrate-catalyst interactions. The peptide-mediated nitrene transfer was also applied to polyene natural product retinol and selective proximal functionalization allowed access to a cis-pyrroline modified retinoid.
Collapse
Affiliation(s)
- Golo Storch
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | - Scott J Miller
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| |
Collapse
|
19
|
Burg F, Breitenlechner S, Jandl C, Bach T. Enantioselective oxygenation of exocyclic methylene groups by a manganese porphyrin catalyst with a chiral recognition site. Chem Sci 2020; 11:2121-2129. [PMID: 34123300 PMCID: PMC8150113 DOI: 10.1039/c9sc06089h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The natural enzyme cytochrome P450 is widely recognised for its unique ability to catalyse highly selective oxygen insertion reactions into unactivated C–H bonds under mild conditions. Its exceptional potential for organic synthesis served as an inspiration for the presented biomimetic hydroxylation approach. Via a remote hydrogen bonding motif a high enantioselectivity in the manganese-catalysed oxygenation of quinolone analogues (27 examples, 18–64% yield, 80–99% ee) was achieved. The site-selectivity was completely altered in favour of a less reactive but more accessible position. A Mn porphyrin complex with a remote hydrogen bonding motif induces a high enantioselectivity in the oxygenation of 3-alkylquinolones. Compared to an achiral Mn complex, the site-selectivity was completely altered in favour of less reactive methylene groups.![]()
Collapse
Affiliation(s)
- Finn Burg
- Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Stefan Breitenlechner
- Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Christian Jandl
- Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Thorsten Bach
- Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| |
Collapse
|
20
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition-Metal Complexes with Extended Tight-Binding Methods. Angew Chem Int Ed Engl 2019; 58:11078-11087. [PMID: 31141262 DOI: 10.1002/anie.201904021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 01/16/2023]
Abstract
Large transition-metal complexes are used in numerous areas of chemistry. Computer-aided theoretical investigations of such complexes are limited by the sheer size of real systems often consisting of hundreds to thousands of atoms. Accordingly, the development and thorough evaluation of fast semi-empirical quantum chemistry methods that are universally applicable to a large part of the periodic table is indispensable. Herein, we report on the capability of the recently developed GFNn-xTB method family for full quantum-mechanical geometry optimisation of medium to very large transition-metal complexes and organometallic supramolecular structures. The results for a specially compiled benchmark set of 145 diverse closed-shell transition-metal complex structures for all metals up to Hg are presented. Further the GFNn-xTB methods are tested on three established benchmark sets regarding reaction energies and barrier heights of organometallic reactions.
Collapse
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, University of Bonn, Beringstr. 4, 53115, Bonn, Germany
| |
Collapse
|
21
|
Bursch M, Neugebauer H, Grimme S. Structure Optimisation of Large Transition‐Metal Complexes with Extended Tight‐Binding Methods. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Markus Bursch
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Hagen Neugebauer
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical ChemistryInstitute for Physical and Theoretical ChemistryUniversity of Bonn Beringstr. 4 53115 Bonn Germany
| |
Collapse
|
22
|
Burg F, Bach T. Lactam Hydrogen Bonds as Control Elements in Enantioselective Transition-Metal-Catalyzed and Photochemical Reactions. J Org Chem 2019; 84:8815-8836. [DOI: 10.1021/acs.joc.9b01299] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Finn Burg
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department of Chemistry and Catalysis Research Center (CRC), Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| |
Collapse
|