1
|
Terayama T, Furukawa A. Heterogeneous solvent dissipation coupled with particle rearrangement in shear-thinning non-Brownian suspensions. SOFT MATTER 2024; 20:6714-6722. [PMID: 39023041 DOI: 10.1039/d4sm00055b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Dense non-Brownian suspensions exhibit significant shear thinning, although a comprehensive understanding of the full scope of this phenomenon remains elusive. This study numerically reveals intimate heterogenous coupled dynamics between many-body particle motions and solvent hydrodynamics in shear-thinning non-Brownian suspensions. In our simulation systems, we do not account for frictional contact forces, reflecting experimental conditions under low shear rates where shear thinning occurs, while hydrodynamic interactions are directly incorporated using the Smoothed Profile Method. We demonstrate the spatially correlated viscous dissipation and particle motions; they share the same characteristic length, which decreases with increasing shear rate. We further show that, at lower shear rates, significant particle density changes are induced against the incompressibility of the solvent, suggesting the cooperative creation and annihilation of gaps and flow channels. We discuss that hydrodynamic interactions may substantially restrict particle rearrangements even in highly dense suspensions, influencing the quantitative aspects of macroscopic rheology.
Collapse
Affiliation(s)
- Tomoharu Terayama
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| | - Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
2
|
Kanazawa T, Furukawa A. Microrheology of active suspensions. SOFT MATTER 2024; 20:5527-5537. [PMID: 38920265 DOI: 10.1039/d4sm00408f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
We study the microrheology of active suspensions through direct hydrodynamic simulations using model pusher-like microswimmers. We demonstrate that the friction coefficient of a probe particle is notably reduced by hydrodynamic interactions (HIs) among a moving probe and the swimmers. When a swimmer approaches a probe from the rear (front) side, the repulsive HIs between them are weakened (intensified), which results in a slight front-rear asymmetry in swimmer orientation distribution around the probe, creating a significant additional net driving force acting on the probe from the rear side. The present drag-reduction mechanism qualitatively differs from that of the viscosity-reduction observed in sheared bulk systems and depends on probing details. This study provides insights into our fundamental knowledge of hydrodynamic effects in active suspensions and serves as a practical example illuminating distinctions between micro- and macrorheology measurements.
Collapse
Affiliation(s)
- Takahiro Kanazawa
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Akira Furukawa
- Institute of Industrial Science, University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan.
| |
Collapse
|
3
|
Yuan J, Tanaka H. Impact of Hydrodynamic Interactions on the Kinetic Pathway of Protein Folding. PHYSICAL REVIEW LETTERS 2024; 132:138402. [PMID: 38613272 DOI: 10.1103/physrevlett.132.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 02/29/2024] [Indexed: 04/14/2024]
Abstract
Protein folding is a fundamental process critical to cellular function and human health, but it remains a grand challenge in biophysics. Hydrodynamic interaction (HI) plays a vital role in the self-organization of soft and biological materials, yet its role in protein folding is not fully understood despite folding occurring in a fluid environment. Here, we use the fluid particle dynamics method to investigate many-body hydrodynamic couplings between amino acid residues and fluid motion in the folding kinetics of a coarse-grained four-α-helices bundle protein. Our results reveal that HI helps select fast folding pathways to the native state without being kinetically trapped, significantly speeding up the folding kinetics compared to its absence. First, the directional flow along the protein backbone expedites protein collapse. Then, the incompressibility-induced squeezing flow effects retard the accumulation of non-native hydrophobic contacts, thus preventing the protein from being trapped in local energy minima during the conformational search of the native structure. We also find that the significance of HI in folding kinetics depends on temperature, with a pronounced effect under biologically relevant conditions. Our findings suggest that HI, particularly the short-range squeezing effect, may be crucial in avoiding protein misfolding.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
4
|
Yuan J, Tanaka H. Hydrodynamic Effects on the Collapse Kinetics of Flexible Polyelectrolytes. PHYSICAL REVIEW LETTERS 2024; 132:038101. [PMID: 38307078 DOI: 10.1103/physrevlett.132.038101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/05/2023] [Accepted: 11/28/2023] [Indexed: 02/04/2024]
Abstract
Understanding the collapse kinetics of polyelectrolytes (PEs) is crucial for comprehending various biological and industrial phenomena. Despite occurring in an aqueous environment, previous computational studies have overlooked the influence of hydrodynamic interactions (HIs) facilitated by fluid motion. Here, we directly compute the Navier-Stokes equation to investigate the collapse kinetics of a highly charged flexible PE. Our findings reveal that HI accelerates PE collapse induced by hydrophobicity and multivalent salt. In the case of hydrophobicity, HI induces long-range collective motion of monomers, accelerating the coarsening of local clusters through either Brownian-coagulation-like or evaporation-condensation-like processes, depending on the strength of hydrophobicity with respect to electrostatic interaction. Regarding multivalent salt, HI does not affect the condensation dynamics of multivalent ions but facilitates quicker movement of local dipolar clusters along the PE, thereby expediting the collapse process. These results provide valuable insights into the underlying mechanisms of HI in PE collapse kinetics.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
5
|
Yuan J, Tateno M, Tanaka H. Mechanical Slowing Down of Network-Forming Phase Separation of Polymer Solutions. ACS NANO 2023; 17:18025-18036. [PMID: 37675940 DOI: 10.1021/acsnano.3c04657] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Phase separation is a fundamental phenomenon leading to spatially heterogeneous material distribution, which is critical in nature, biology, material science, and industry. In ordinary phase separation, the minority phase always forms droplets. Contrary to this common belief, even the minority phase can form a network structure in viscoelastic phase separation (VPS). VPS can occur in any mixture with significant mobility differences between their components and is highly relevant to soft matter and biomatter. In contrast to classical phase separation, experiments have shown that VPS in polymer solutions lacks self-similar coarsening, resulting in the absence of a domain-coarsening scaling law. However, the underlying microscopic mechanism of this behavior remains unknown. To this end, we perform fluid particle dynamics simulations of bead-spring polymers, incorporating many-body hydrodynamic interactions between polymers through a solvent. We discover that polymers in the dense-network-forming phase are stretched and store elastic energy when the deformation speed exceeds the polymer dynamics. This self-generated viscoelastic stress mechanically interferes with phase separation and slows its dynamics, disrupting self-similar growth. We also highlight the essential role of many-body hydrodynamic interactions in VPS. The implications of our findings may hold importance in areas such as biological phase separation, porous material formation, and other fields where network structures play a pivotal role.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Michio Tateno
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
6
|
Yuan J, Takae K, Tanaka H. Impact of Inverse Squeezing Flow on the Self-Assembly of Oppositely Charged Colloidal Particles under Electric Field. PHYSICAL REVIEW LETTERS 2022; 129:248001. [PMID: 36563242 DOI: 10.1103/physrevlett.129.248001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
Hydrodynamic interactions (HIs) play a critical role in the self-organization of colloidal suspensions and biological solutions. However, their roles have remained elusive particularly for charged soft matter systems. Here we consider the role of HIs in the self-assembly of oppositely charged colloidal particles, which is a promising candidate for electrical tunable soft materials. We employ the fluid particle dynamics method to consider many-body HIs and the coupling between the colloid, ion, and fluid motions. We find that, under a constant electric field, oppositely charged colloidal particles form clusters and percolate into a gel network, unlike bundlelike aggregates aligned in the field direction observed by Brownian dynamics simulations neglecting HIs. We reveal that the cluster-forming tendency originates from the incompressibility-induced "inverse squeezing flow" effect that dramatically slows down the disaggregation of attached colloids. Our findings indicate that the HI selects a unique kinetic pathway to the nonequilibrium colloidal self-assembly.
Collapse
Affiliation(s)
- Jiaxing Yuan
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Kyohei Takae
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Research Center for Advanced Science and Technology, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
7
|
Alhasan R, Tree DR. Gibbs–Duhem Relation for Phase-Field Models of Polymeric Mixtures. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rami Alhasan
- Chemical Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| | - Douglas R. Tree
- Chemical Engineering Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
8
|
Liu Y, Widmer-Cooper A. A dissipative particle dynamics model for studying dynamic phenomena in colloidal rod suspensions. J Chem Phys 2021; 154:104120. [PMID: 33722052 DOI: 10.1063/5.0041285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A dissipative particle dynamics (DPD) model is developed and demonstrated for studying dynamics in colloidal rod suspensions. The solvent is modeled as conventional DPD particles, while individual rods are represented by a rigid linear chain consisting of overlapping solid spheres, which interact with solvent particles through a hard repulsive potential. The boundary condition on the rod surface is controlled using a surface friction between the solid spheres and the solvent particles. In this work, this model is employed to study the diffusion of a single colloid in the DPD solvent and compared with theoretical predictions. Both the translational and rotational diffusion coefficients obtained at a proper surface friction show good agreement with calculations based on the rod size defined by the hard repulsive potential. In addition, the system-size dependence of the diffusion coefficients shows that the Navier-Stokes hydrodynamic interactions are correctly included in this DPD model. Comparing our results with experimental measurements of the diffusion coefficients of gold nanorods, we discuss the ability of the model to correctly describe dynamics in real nanorod suspensions. Our results provide a clear reference point from which the model could be extended to enable the study of colloid dynamics in more complex situations or for other types of particles.
Collapse
Affiliation(s)
- Yawei Liu
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
9
|
Tateno M, Tanaka H. Power-law coarsening in network-forming phase separation governed by mechanical relaxation. Nat Commun 2021; 12:912. [PMID: 33568666 PMCID: PMC7875975 DOI: 10.1038/s41467-020-20734-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
A space-spanning network structure is a basic morphology in phase separation of soft and biomatter, alongside a droplet one. Despite its fundamental and industrial importance, the physical principle underlying such network-forming phase separation remains elusive. Here, we study the network coarsening during gas-liquid-type phase separation of colloidal suspensions and pure fluids, by hydrodynamic and molecular dynamics simulations, respectively. For both, the detailed analyses of the pore sizes and strain field reveal the self-similar network coarsening and the unconventional power-law growth more than a decade according to ℓ ∝ t1/2, where ℓ is the characteristic pore size and t is the elapsed time. We find that phase-separation dynamics is controlled by mechanical relaxation of the network-forming dense phase, whose limiting process is permeation flow of the solvent for colloidal suspensions and heat transport for pure fluids. This universal coarsening law would contribute to the fundamental physical understanding of network-forming phase separation.
Collapse
Affiliation(s)
- Michio Tateno
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
| |
Collapse
|
10
|
Gomez-Solano JR, Roy S, Araki T, Dietrich S, Maciołek A. Transient coarsening and the motility of optically heated Janus colloids in a binary liquid mixture. SOFT MATTER 2020; 16:8359-8371. [PMID: 32781461 DOI: 10.1039/d0sm00964d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A gold-capped Janus particle suspended in a near-critical binary liquid mixture can self-propel under illumination. We have immobilized such a particle in a narrow channel and carried out a combined experimental and theoretical study of the non-equilibrium dynamics of a binary solvent around it - lasting from the very moment of switching illumination on until the steady state is reached. In the theoretical study we use both a purely diffusive and a hydrodynamic model, which we solve numerically. Our results demonstrate a remarkable complexity of the time evolution of the concentration field around the colloid. This evolution is governed by the combined effects of the temperature gradient and the wettability, and crucially depends on whether the colloid is free to move or is trapped. For the trapped colloid, all approaches indicate that the early time dynamics is purely diffusive and characterized by composition layers travelling with constant speed from the surface of the colloid into the bulk of the solvent. Subsequently, hydrodynamic effects set in. Anomalously large nonequilibrium fluctuations, which result from the temperature gradient and the vicinity of the critical point of the binary liquid mixture, give rise to strong concentration fluctuations in the solvent and to permanently changing coarsening patterns not observed for a mobile particle. The early time dynamics around initially still Janus colloids produces a force which is able to set the Janus colloid into motion. The propulsion due to this transient dynamics is in the direction opposite to that observed after the steady state is attained.
Collapse
Affiliation(s)
- Juan Ruben Gomez-Solano
- Instituto de Fisica, Universidad Nacional Autonoma de México, Apdo. Postal 20-364, 01000, Ciudad de México, Mexico
| | - Sutapa Roy
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Takeaki Araki
- Department of Physics, Kyoto University, Kyoto 606-8502, Japan
| | - S Dietrich
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
| | - Anna Maciołek
- Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany and Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, PL-01-224 Warsaw, Poland.
| |
Collapse
|
11
|
Tateno M, Yanagishima T, Russo J, Tanaka H. Influence of Hydrodynamic Interactions on Colloidal Crystallization. PHYSICAL REVIEW LETTERS 2019; 123:258002. [PMID: 31922768 DOI: 10.1103/physrevlett.123.258002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Indexed: 06/10/2023]
Abstract
One of the biggest unresolved problems in crystallization phenomena is the significant discrepancy in the nucleation rate between experiments and simulations even for the simplest liquid, i.e., the hard-sphere system. A popular explanation for this discrepancy is the neglect of hydrodynamic interactions (HI) in simulation studies. By comparing simulations with and without HI, we show that the long-time diffusive dynamics of the colloids is slowed down more rapidly by hydrodynamic lubrication effects with increasing volume fraction. We find that the kinetics of both nucleation and growth are controlled by this long-time diffusion and that it is possible to account for most of the effects of HI by rescaling with this timescale. Therefore, we conclude that HI is not the primary cause of the accelerated nucleation rates observed in experiments.
Collapse
Affiliation(s)
- Michio Tateno
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Taiki Yanagishima
- Department of Chemistry, University of Oxford, Oxford OX1 3QZ, United Kingdom
| | - John Russo
- Department of Physics, Sapienza University, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
12
|
Yamanaka S, Furukawa A, Tanaka H. Complex dynamical interplay between solid particles and flow in driven granular suspensions. Phys Rev E 2019; 100:012907. [PMID: 31499807 DOI: 10.1103/physreve.100.012907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/10/2023]
Abstract
Granular materials immersed in a fluid are ubiquitous in daily life, industry, and nature. They include food processing, pastes, cosmetics, paints, concretes, cements, muds, wet sands, snows, landslides, and lava flow. They are known to exhibit a rich variety of complex rheological behavior, but the role of a fluid component in such behavior has remained poorly understood due to the nonlocal and many-body nature of hydrodynamic interactions between solid particles mediated by the fluid. We address this fundamental problem by comparing the microrheological response of athermal granular suspensions with and without hydrodynamic interactions to an externally driven probe particle by numerical simulations. We find that the presence of the fluid drastically increases the drag coefficient of the probe particle by more than one order of magnitude near the jamming transition. We reveal that this is a consequence of the nontrivial long-range nature of hydrodynamic interactions, which originates from unlimited cumulative transmission of near-field hydrodynamic interactions due to the incompressibility of both fluid and solid particles. Force chain formation of solid particles is dynamically coupled with hydrodynamic flow, leading to strong spatiotemporal fluctuations of flow pattern and nonlinear rheological response. Our study reveals essential roles of hydrodynamic interactions in complex rheological behavior of dense granular suspensions under an external drive.
Collapse
Affiliation(s)
- Sadato Yamanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Akira Furukawa
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| | - Hajime Tanaka
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
| |
Collapse
|
13
|
Mizuta K, Ishii Y, Kim K, Matubayasi N. Bridging the gap between molecular dynamics and hydrodynamics in nanoscale Brownian motions. SOFT MATTER 2019; 15:4380-4390. [PMID: 31086871 DOI: 10.1039/c9sm00246d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Through molecular dynamics simulations, we examined the hydrodynamic behavior of the Brownian motion of fullerene particles based on molecular interactions. The solvation free energy and velocity autocorrelation function (VACF) were calculated by using the Lennard-Jones (LJ) and Weeks-Chandler-Andersen (WCA) potentials for the solute-solvent and solvent-solvent interactions and by changing the size of the fullerene particles. We also measured the diffusion constant of the fullerene particles and the shear viscosity of the host fluid, and then the hydrodynamic radius aHD was quantified from the Stokes-Einstein relation. The aHD value exceeds that of the gyration radius of the fullerene when the solvation free energy exhibits largely negative values using the LJ potential. In contrast, aHD is similar to the size of bare fullerene when the solvation free energy is positive using the WCA potential. Furthermore, the VACF of the fullerene particles is directly comparable with the analytical expressions utilizing the Navier-Stokes equations both in incompressible and compressible forms. A hydrodynamic long-time tail t-3/2 is demonstrated for timescales longer than the kinematic time of the momentum diffusion over the particle size. However, the VACF at shorter timescales deviates from the hydrodynamic description, particularly for smaller fullerene particles and for the LJ potential. This occurs even though the compressible effect is considered when characterizing the decay of the VACF around the sound-propagation timescale over the particle size. These results indicate that the nanoscale Brownian motion is influenced by the solvation structure around the solute particles originating from the molecular interaction.
Collapse
Affiliation(s)
- Keisuke Mizuta
- Division of Chemical Engineering, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
| | | | | | | |
Collapse
|
14
|
Takae K, Tanaka H. Hydrodynamic simulations of charge-regulation effects in colloidal suspensions. SOFT MATTER 2018; 14:4711-4720. [PMID: 29850748 DOI: 10.1039/c8sm00579f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Self-organization of charged soft matter is of crucial importance in biology. However, it is an extremely complex phenomenon due to dynamical couplings between the hydrodynamic flow, ions, and charges of soft matter. For colloidal suspensions, the coupling between the former two has already been studied by numerical simulations, with the colloid surface charge being fixed. However, the self-organization of colloids and/or the application of an external electric field make the electrostatic environment of each colloid inhomogeneous in both space and time. Thus, this leads to inhomogenisation of the surface charge of each colloid under ionisation equilibrium conditions. This effect is known as "charge regulation" and is of great importance in various electrostatic and electrokinetic phenomena not only in colloid suspensions but also in solutions of biomolecules. However, there has so far been no success in taking the charge regulation effect into account in numerical simulations of colloidal electrokinetics. Here, we extend the fluid particle dynamics (FPD) method to incorporate the charge regulation effect. We present a theoretical formulation of the method and its application to two types of problems, where charge regulation plays an important role: (i) cluster formation of colloid particles and (ii) a single colloid particle under an external field. By these examples, we show not only the importance of considering charge-regulation effects in the self-organization of charged systems but also the applicability of our simulation method to more complex problems of charged soft matter systems.
Collapse
Affiliation(s)
- Kyohei Takae
- Department of Fundamental Engineering, Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.
| | | |
Collapse
|