1
|
Li Y, Zong X, Zhao J, Yang L, Zhang C, Zhao H. Evaluating the Effects of Pulsed Electrical Stimulation on the Mechanical Behavior and Microstructure of Medulla Oblongata Tissues. ACS Biomater Sci Eng 2024; 10:838-850. [PMID: 38178628 DOI: 10.1021/acsbiomaterials.3c01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The development of remote surgery hinges on comprehending the mechanical properties of the tissue at the surgical site. Understanding the mechanical behavior of the medulla oblongata tissue is instrumental for precisely determining the remote surgery implementation site. Additionally, exploring this tissue's response under electric fields can inform the creation of electrical stimulation therapy regimens. This could potentially reduce the extent of medulla oblongata tissue damage from mechanical compression. Various types of pulsed electric fields were integrated into a custom-built indentation device for this study. Experimental findings suggested that applying pulsed electric fields amplified the shear modulus of the medulla oblongata tissue. In the electric field, the elasticity and viscosity of the tissue increased. The most significant influence was noted from the low-frequency pulsed electric field, while the burst pulsed electric field had a minimal impact. At the microstructural scale, the application of an electric field led to the concentration of myelin in areas distant from the surface layer in the medulla oblongata, and the orderly structure of proteoglycans became disordered. The alterations observed in the myelin and proteoglycans under an electric field were considered to be the fundamental causes of the changes in the mechanical behavior of the medulla oblongata tissue. Moreover, cell polarization and extracellular matrix cavitation were observed, with transmission electron microscopy results pointing to laminar separation within the myelin at the ultrastructure scale. This study thoroughly explored the impact of electric field application on the mechanical behavior and microstructure of the medulla oblongata tissue, delving into the underlying mechanisms. This investigation delved into the changes and mechanisms in the mechanical behavior and microstructure of medulla oblongata tissue under the influence of electric fields. Furthermore, this study could serve as a reference for the development of electrical stimulation regimens in the central nervous system. The acquired mechanical behavior data could provide valuable baseline information to aid in the evolution of remote surgery techniques involving the medulla oblongata tissue.
Collapse
Affiliation(s)
- Yiqiang Li
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
- Chongqing Research Institute of Jilin University, Chongqing 401120, China
| | - Xiangyu Zong
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
- Chongqing Research Institute of Jilin University, Chongqing 401120, China
| | - Jiucheng Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
- Chongqing Research Institute of Jilin University, Chongqing 401120, China
| | - Li Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Chi Zhang
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
- Chongqing Research Institute of Jilin University, Chongqing 401120, China
| | - Hongwei Zhao
- School of Mechanical & Aerospace Engineering, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Key Laboratory of CNC Equipment Reliability, Ministry of Education, Jilin University, 5988 Renmin Street, Changchun 130025, P. R. China
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang 110167, P. R. China
- Chongqing Research Institute of Jilin University, Chongqing 401120, China
| |
Collapse
|
2
|
Ghose A, Pullarkat P. The role of mechanics in axonal stability and development. Semin Cell Dev Biol 2023; 140:22-34. [PMID: 35786351 PMCID: PMC7615100 DOI: 10.1016/j.semcdb.2022.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/05/2022] [Accepted: 06/13/2022] [Indexed: 01/28/2023]
Abstract
Much of the focus of neuronal cell biology has been devoted to growth cone guidance, synaptogenesis, synaptic activity, plasticity, etc. The axonal shaft too has received much attention, mainly for its astounding ability to transmit action potentials and the transport of material over long distances. For these functions, the axonal cytoskeleton and membrane have been often assumed to play static structural roles. Recent experiments have changed this view by revealing an ultrastructure much richer in features than previously perceived and one that seems to be maintained at a dynamic steady state. The role of mechanics in this is only beginning to be broadly appreciated and appears to involve passive and active modes of coupling different biopolymer filaments, filament turnover dynamics and membrane biophysics. Axons, being unique cellular processes in terms of high aspect ratios and often extreme lengths, also exhibit unique passive mechanical properties that might have evolved to stabilize them under mechanical stress. In this review, we summarize the experiments that have exposed some of these features. It is our view that axonal mechanics deserves much more attention not only due to its significance in the development and maintenance of the nervous system but also due to the susceptibility of axons to injury and neurodegeneration.
Collapse
Affiliation(s)
- Aurnab Ghose
- Indian Institute of Science Education and Research, Pune 411 008, India.
| | - Pramod Pullarkat
- Raman Research Institute, C. V. Raman Avenue, Bengaluru 560 080, India.
| |
Collapse
|
3
|
Sajid N. Topography and mechanical measurements of primary Schwann cells and neuronal cells with atomic force microscope for understanding and controlling nerve growth. Micron 2023; 167:103427. [PMID: 36805164 DOI: 10.1016/j.micron.2023.103427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/16/2023]
Abstract
Peripheral nerve injuries require a piece of substantial information for a satisfactory treatment. The prior peripheral nerve injury knowledge, can improve nerve repair, and its growth at molecular and cellular level. In this study, we employed an atomic force microscope (AFM) to investigate the topography and mechanical properties of the primary Schwann cells and neuronal cells. Tapping mode images and contact points force-volume maps provide the cells topography. Two different probes were used to acquire the micro and nanomechanical properties of the primary Schwann cells, NG-108-15 neuronal cells, and growth cones. Moreover, the sharp probe was only used to investigate neurites nanomechanics. A significant difference in the elastic moduli found between primary Schwann cells, and neuronal cells, with both probes, with consistent results. The elastic moduli of the growth cones were found higher, than the neuronal cells and primary Schwann cells, with both probes. Furthermore, the modulus variations were also found between neurites. These results have significant implications for a better understanding of the peripheral nerve system (PNS) in terms of defining the optimal pattern surface and nerve guidance conduits.
Collapse
Affiliation(s)
- Nusrat Sajid
- Department of Physics, COMSATS University Islamabad, Lahore Campus, Lahore 54000, Pakistan.
| |
Collapse
|
4
|
Wong HL, Hung LT, Kwok SS, Bu Y, Lin Y, Shum HC, Wang H, Lo ACY, Yam GHF, Jhanji V, Shih KC, Chan YK. The anti-scarring role of Lycium barbarum polysaccharide on cornea epithelial-stromal injury. Exp Eye Res 2021; 211:108747. [PMID: 34450184 DOI: 10.1016/j.exer.2021.108747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/07/2021] [Accepted: 08/22/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Cornea epithelial-stromal scarring is related to the differentiation of fibroblasts into opaque myofibroblasts. Our study aims to assess the effectiveness of Lycium barbarum polysaccharide (LBP) solution as a pre-treatment in minimizing corneal scarring. METHODS Human corneal fibroblasts were cultured in a three-dimensional collagen type I-based hydrogel in an eye-on-a-chip model. Fibroblasts were pre-treated with 2 mg/mL LBP for 24 h, followed by another 24-h incubation with 10 ng/mL transforming growth factor-beta 1 (TGF-β1) to induce relevant physiological events after stromal injury. Intracellular pro-fibrotic proteins, extracellular matrix proteins, and pro-inflammatory cytokines that involved in fibrosis, were assessed using immunocytochemistry and enzyme-linked immunosorbent assays. RESULTS Compared to the positive control TGF-β1 group, LBP pre-treated cells had a significantly lower expression of alpha-smooth muscle actin, marker of myofibroblasts, vimentin (p < 0.05), and also extracellular matrix proteins both collagen type II and type III (p < 0.05) that can be found in scar tissues. Moreover, LBP pre-treated cells had a significantly lower secretion of pro-inflammatory cytokines interleukin-6 and interleukin-8 (p < 0.05). The cell-laden hydrogel contraction and stiffness showed no significant difference between LBP pre-treatment and control groups. Fibroblasts pretreated with LBP as well had reduced angiogenic factors expression and suppression of undesired proliferation (p < 0.05). CONCLUSION Our results showed that LBP reduced both pro-fibrotic proteins and pro-inflammatory cytokines on corneal injury in vitro. We suggest that LBP, as a natural Traditional Chinese Medicine, may potentially be a novel topical pre-treatment option prior to corneal refractive surgeries with an improved prognosis.
Collapse
Affiliation(s)
- Ho Lam Wong
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Lap Tak Hung
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Sum Sum Kwok
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yashan Bu
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yuan Lin
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Ho Cheung Shum
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Hua Wang
- Eye Center of Xiangya Hospital, Central South University, China; Hunan Key Laboratory of Ophthalmology, China
| | - Amy Cheuk Yin Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Gary Hin Fai Yam
- Department of Ophthalmology, University of Pittsburgh Medical Centre, USA
| | - Vishal Jhanji
- Department of Ophthalmology, University of Pittsburgh Medical Centre, USA
| | - Kendrick Co Shih
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Yau Kei Chan
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
5
|
Alisafaei F, Gong Z, Johnson VE, Dollé JP, Smith DH, Shenoy VB. Mechanisms of Local Stress Amplification in Axons near the Gray-White Matter Interface. Biophys J 2021; 119:1290-1300. [PMID: 33027609 DOI: 10.1016/j.bpj.2020.08.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/11/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
Diffuse axonal injury is a primary neuropathological feature of concussion and is thought to greatly contribute to the classical symptoms of decreased processing speed and memory dysfunction. Although previous studies have investigated the injury biomechanics at the micro- and mesoscale of concussion, few have addressed the multiscale transmission of mechanical loading at thresholds that can induce diffuse axonal injury. Because it has been recognized that axonal pathology is commonly found at anatomic interfaces across all severities of traumatic brain injury, we combined computational, analytical, and experimental approaches to investigate the potential mechanical vulnerability of axons that span the gray-white tissue interface. Our computational models predict that material heterogeneities at the gray-white interface lead to a highly nonuniform distribution of stress in axons, which was most amplified in axonal regions near the interface. This mechanism was confirmed using an analytical model of an individual fiber in a strained bimaterial interface. Comparisons of these collective data with histopathological evaluation of a swine model of concussion demonstrated a notably similar pattern of axonal damage adjacent to the gray-white interface. The results suggest that the tissue property mismatch at the gray-white matter interface places axons crossing this region at greater risk of mechanical damage during brain tissue deformation from traumatic brain injury.
Collapse
Affiliation(s)
- Farid Alisafaei
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ze Gong
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Victoria E Johnson
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jean-Pierre Dollé
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Douglas H Smith
- Penn Center for Brain Injury and Repair, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, Pennsylvania; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
6
|
Gong Z, Wisdom KM, McEvoy E, Chang J, Adebowale K, Price CC, Chaudhuri O, Shenoy VB. Recursive feedback between matrix dissipation and chemo-mechanical signaling drives oscillatory growth of cancer cell invadopodia. Cell Rep 2021; 35:109047. [PMID: 33909999 DOI: 10.1016/j.celrep.2021.109047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 01/25/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
Most extracellular matrices (ECMs) are known to be dissipative, exhibiting viscoelastic and often plastic behaviors. However, the influence of dissipation, in particular mechanical plasticity in 3D confining microenvironments, on cell motility is not clear. In this study, we develop a chemo-mechanical model for dynamics of invadopodia, the protrusive structures that cancer cells use to facilitate invasion, by considering myosin recruitment, actin polymerization, matrix deformation, and mechano-sensitive signaling pathways. We demonstrate that matrix dissipation facilitates invadopodia growth by softening ECMs over repeated cycles, during which plastic deformation accumulates via cyclic ratcheting. Our model reveals that distinct protrusion patterns, oscillatory or monotonic, emerge from the interplay of timescales for polymerization-associated extension and myosin recruitment dynamics. Our model predicts the changes in invadopodia dynamics upon inhibition of myosin, adhesions, and the Rho-Rho-associated kinase (ROCK) pathway. Altogether, our work highlights the role of matrix plasticity in invadopodia dynamics and can help design dissipative biomaterials to modulate cancer cell motility.
Collapse
Affiliation(s)
- Ze Gong
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katrina M Wisdom
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA; Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eóin McEvoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julie Chang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Kolade Adebowale
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Christopher C Price
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ovijit Chaudhuri
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Vivek B Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Shao X, Sørensen MH, Xia X, Fang C, Hui TH, Chang RCC, Chu Z, Lin Y. Beading of injured axons driven by tension- and adhesion-regulated membrane shape instability. J R Soc Interface 2020; 17:20200331. [PMCID: PMC7423423 DOI: 10.1098/rsif.2020.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 07/13/2020] [Indexed: 08/14/2023] Open
Abstract
The formation of multiple beads along an injured axon will lead to blockage of axonal transport and eventually neuron death, and this has been widely recognized as a hallmark of nervous system degeneration. Nevertheless, the underlying mechanisms remain poorly understood. Here, we report a combined experimental and theoretical study to reveal key factors governing axon beading. Specifically, by transecting well-developed axons with a sharp atomic force microscope probe, significant beading of the axons was triggered. We showed that adhesion was not required for beading to occur, although when present strong axon–substrate attachments seemed to set the locations for bead formation. In addition, the beading wavelength, representing the average distance between beads, was found to correlate with the size and cytoskeleton integrity of axon, with a thinner axon or a disrupted actin cytoskeleton both leading to a shorter beading wavelength. A model was also developed to explain these observations which suggest that axon beading originates from the shape instability of the membrane and is driven by the release of work done by axonal tension as well as the reduction of membrane surface energy. The beading wavelength predicted from this theory was in good agreement with our experiments under various conditions. By elucidating the essential physics behind axon beading, the current study could enhance our understanding of how axonal injury and neurodegeneration progress as well as provide insights for the development of possible treatment strategies.
Collapse
Affiliation(s)
- Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Maja Højvang Sørensen
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Xingyu Xia
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| | - Tsz Hin Hui
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Zhiqin Chu
- Department of Electrical and Electronic Engineering, Joint Appointment with School of Biomedical Sciences, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, People's Republic of China
- HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, People's Republic of China
| |
Collapse
|
8
|
Shao X, You R, Hui TH, Fang C, Gong Z, Yan Z, Chang RCC, Shenoy VB, Lin Y. Tension- and Adhesion-Regulated Retraction of Injured Axons. Biophys J 2019; 117:193-202. [PMID: 31278003 DOI: 10.1016/j.bpj.2019.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/27/2019] [Accepted: 06/14/2019] [Indexed: 12/16/2022] Open
Abstract
Damage-induced retraction of axons during traumatic brain injury is believed to play a key role in the disintegration of the neural network and to eventually lead to severe symptoms such as permanent memory loss and emotional disturbances. However, fundamental questions such as how axon retraction progresses and what physical factors govern this process still remain unclear. Here, we report a combined experimental and modeling study to address these questions. Specifically, a sharp atomic force microscope probe was used to transect axons and trigger their retraction in a precisely controlled manner. Interestingly, we showed that the retracting motion of a well-developed axon can be arrested by strong cell-substrate attachment. However, axon retraction was found to be retriggered if a second transection was conducted, albeit with a lower shrinking amplitude. Furthermore, disruption of the actin cytoskeleton or cell-substrate adhesion significantly altered the retracting dynamics of injured axons. Finally, a mathematical model was developed to explain the observed injury response of neural cells in which the retracting motion was assumed to be driven by the pre-tension in the axon and progress against neuron-substrate adhesion as well as the viscous resistance of the cell. Using realistic parameters, model predictions were found to be in good agreement with our observations under a variety of experimental conditions. By revealing the essential physics behind traumatic axon retraction, findings here could provide insights on the development of treatment strategies for axonal injury as well as its possible interplay with other neurodegenerative diseases.
Collapse
Affiliation(s)
- Xueying Shao
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ran You
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tsz Hin Hui
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Chao Fang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Ze Gong
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Zishen Yan
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China
| | - Raymond Chuen Chung Chang
- Laboratory of Neurodegenerative Diseases, School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Vivek B Shenoy
- Center for Engineering Mechanobiology and Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania.
| | - Yuan Lin
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China; HKU-Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong, China.
| |
Collapse
|
9
|
Kulkarni T, Tam A, Mukhopadhyay D, Bhattacharya S. AFM study: Cell cycle and probe geometry influences nanomechanical characterization of Panc1 cells. Biochim Biophys Acta Gen Subj 2019; 1863:802-812. [PMID: 30763604 DOI: 10.1016/j.bbagen.2019.02.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/18/2019] [Accepted: 02/08/2019] [Indexed: 12/18/2022]
Abstract
Atomic force microscope (AFM) is emerging as an immensely promising tool to study the cellular morphology with a nanometer scale resolution and to analyze nanomechanical properties (NPs) at various physiological conditions. Advancement of AFM technology enables studying living cells and differentiating cancer cell from normal cells based on topography and NPs. Though the trend overlaps from different literature; numerical values of nanomechanical readouts depict variations over a wide range. These anomalies are associated with the experimental setup under study. In this manuscript, we have identified heterogeneity in cell culture system in addition to the selection of AFM probe with specific tip geometry as the major contributors to the above mentioned anomalies. To test our hypothesis, we have used Panc1 cells, which is a pancreatic ductal adenocarcinoma cell type. Our results suggest that the cellular morphology, membrane roughness and NPs calculated from AFM study are distinctly influenced by cell cycle. Furthermore, we found that the NPs readout is also significantly associated with AFM tip geometries. The cells were found to be softer in their early resting phase when indented with pyramidal probe and became increasingly stiffer as they progressed through the cell cycles. On the contrary, when indented with the spherical probe, cells in G0/G1 phase were observed to be the stiffest. Such an exhaustive study of the role of cell cycle in influencing the NPs in Panc1 cell line along with the impact of tip geometry on NPs is the first of its kind, to the best of our knowledge.
Collapse
Affiliation(s)
- Tanmay Kulkarni
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA
| | - Alex Tam
- Electrical Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Debabrata Mukhopadhyay
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA
| | - Santanu Bhattacharya
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, FL, USA; Department of Pathology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|