1
|
Cometta S, Hutmacher DW, Chai L. In vitro models for studying implant-associated biofilms - A review from the perspective of bioengineering 3D microenvironments. Biomaterials 2024; 309:122578. [PMID: 38692146 DOI: 10.1016/j.biomaterials.2024.122578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/01/2024] [Accepted: 04/13/2024] [Indexed: 05/03/2024]
Abstract
Biofilm research has grown exponentially over the last decades, arguably due to their contribution to hospital acquired infections when they form on foreign body surfaces such as catheters and implants. Yet, translation of the knowledge acquired in the laboratory to the clinic has been slow and/or often it is not attempted by research teams to walk the talk of what is defined as 'bench to bedside'. We therefore reviewed the biofilm literature to better understand this gap. Our search revealed substantial development with respect to adapting surfaces and media used in models to mimic the clinical settings, however many of the in vitro models were too simplistic, often discounting the composition and properties of the host microenvironment and overlooking the biofilm-implant-host interactions. Failure to capture the physiological growth conditions of biofilms in vivo results in major differences between lab-grown- and clinically-relevant biofilms, particularly with respect to phenotypic profiles, virulence, and antimicrobial resistance, and they essentially impede bench-to-bedside translatability. In this review, we describe the complexity of the biological processes at the biofilm-implant-host interfaces, discuss the prerequisite for the development and characterization of biofilm models that better mimic the clinical scenario, and propose an interdisciplinary outlook of how to bioengineer biofilms in vitro by converging tissue engineering concepts and tools.
Collapse
Affiliation(s)
- Silvia Cometta
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia.
| | - Dietmar W Hutmacher
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; Faculty of Engineering, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, Brisbane, QLD 4059, Australia.
| | - Liraz Chai
- Max Planck Queensland Centre, Queensland University of Technology, Brisbane, QLD 4000, Australia; The Hebrew University of Jerusalem, Institute of Chemistry, Jerusalem, 91904, Israel; The Harvey M. Krueger Family Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
2
|
Candry P, Godfrey BJ, Wang Z, Sabba F, Dieppa E, Fudge J, Balogun O, Wells G, Winkler MKH. Tailoring polyvinyl alcohol-sodium alginate (PVA-SA) hydrogel beads by controlling crosslinking pH and time. Sci Rep 2022; 12:20822. [PMID: 36460678 PMCID: PMC9718846 DOI: 10.1038/s41598-022-25111-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Hydrogel-encapsulated catalysts are an attractive tool for low-cost intensification of (bio)-processes. Polyvinyl alcohol-sodium alginate hydrogels crosslinked with boric acid and post-cured with sulfate (PVA-SA-BS) have been applied in bioproduction and water treatment processes, but the low pH required for crosslinking may negatively affect biocatalyst functionality. Here, we investigate how crosslinking pH (3, 4, and 5) and time (1, 2, and 8 h) affect the physicochemical, elastic, and process properties of PVA-SA-BS beads. Overall, bead properties were most affected by crosslinking pH. Beads produced at pH 3 and 4 were smaller and contained larger internal cavities, while optical coherence tomography suggested polymer cross-linking density was higher. Optical coherence elastography revealed PVA-SA-BS beads produced at pH 3 and 4 were stiffer than pH 5 beads. Dextran Blue release showed that pH 3-produced beads enabled higher diffusion rates and were more porous. Last, over a 28-day incubation, pH 3 and 4 beads lost more microspheres (as cell proxies) than beads produced at pH 5, while the latter released more polymer material. Overall, this study provides a path forward to tailor PVA-SA-BS hydrogel bead properties towards a broad range of applications, such as chemical, enzymatic, and microbially catalyzed (bio)-processes.
Collapse
Affiliation(s)
- Pieter Candry
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700 USA
| | - Bruce J. Godfrey
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700 USA
| | - Ziwei Wang
- grid.16753.360000 0001 2299 3507Mechanical Engineering Department, Northwestern University, Evanston, IL 60208 USA
| | | | - Evan Dieppa
- grid.16753.360000 0001 2299 3507Theoretical and Applied Mechanics Program, Northwestern University, Evanston, IL 60208 USA
| | - Julia Fudge
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700 USA
| | - Oluwaseyi Balogun
- grid.16753.360000 0001 2299 3507Mechanical Engineering Department, Northwestern University, Evanston, IL 60208 USA ,grid.16753.360000 0001 2299 3507Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208 USA
| | - George Wells
- grid.16753.360000 0001 2299 3507Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208 USA
| | - Mari-Karoliina Henriikka Winkler
- grid.34477.330000000122986657Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, WA 98195-2700 USA
| |
Collapse
|
3
|
Delory A, Lemoult F, Lanoy M, Eddi A, Prada C. Soft elastomers: A playground for guided waves. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:3343. [PMID: 35649895 DOI: 10.1121/10.0011391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mechanical waves propagating in soft materials play an important role in physiology. They can be natural, such as the cochlear wave in the inner ear of mammalians, or controlled, such as in elastography in the context of medical imaging. In a recent study, Lanoy, Lemoult, Eddi, and Prada [Proc. Natl. Acad. Sci. U.S.A. 117(48), 30186-30190 (2020)] implemented an experimental tabletop platform that allows direct observation of in-plane guided waves in a soft strip. Here, a detailed description of the setup and signal processing steps is presented as well as the theoretical framework supporting them. One motivation is to propose a tutorial experiment for visualizing the propagation of guided elastic waves. Last, the versatility of the experimental platform is exploited to illustrate experimentally original features of wave physics, such as backward modes, stationary modes, and Dirac cones.
Collapse
Affiliation(s)
- Alexandre Delory
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Fabrice Lemoult
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Maxime Lanoy
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| | - Antonin Eddi
- Laboratoire Physique et Mécanique des Milieux Hétérogènes, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Claire Prada
- Institut Langevin, ESPCI Paris, Université PSL, CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Li M, Matouš K, Nerenberg R. Data-driven modeling of heterogeneous viscoelastic biofilms. Biotechnol Bioeng 2022; 119:1301-1313. [PMID: 35129209 DOI: 10.1002/bit.28056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 11/06/2022]
Abstract
Biofilms are typically heterogeneous in morphology, structure, and composition, resulting in non-uniform mechanical properties. The distribution of mechanical properties, in turn, determines the biofilm behavior, such as deformation and detachment. Most biofilm models neglect biofilm heterogeneity, especially at the microscale. In this study, an image-based modeling approach was developed to transform two-dimensional optical coherence tomography (OCT) biofilm images to a pixel-scale non-Newtonian viscosity map of the biofilm. The map was calibrated using the bulk viscosity data from rheometer tests, based on assumed maximum and minimum viscosities and a relationship between OCT image intensity signals and non-Newtonian viscosity. While not quantitatively measuring biofilm viscosity for each pixel, it allows a rational spatial allocation of viscosities within the biofilm: areas with lower cell density, e.g., voids, are assigned lower viscosities, and areas with high cell densities are assigned higher viscosities. The spatial distribution of non-Newtonian viscosity was applied in an established Oldroyd-B constitutive model and implemented using the phase-field continuum approach for the deformation and stress analysis. The heterogeneous model was able to predict deformations more accurately than a homogenous one. Stress distribution in the heterogeneous biofilm displayed better characteristics than that in the homogeneous one, because it is highly dependent on the viscosity distribution. This work, using a pixel-scale, image-based approach to map the mechanical heterogeneity of biofilms for computational deformation and stress analysis, provides a novel modeling approach that allows the consideration of biofilm structural and mechanical heterogeneity. Future research should better characterize the relationship between OCT signal and viscosity, and consider other constitutive models for biofilm mechanical behavior. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengfei Li
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| | - Karel Matouš
- University of Notre Dame, Department of Aerospace and Mechanical Engineering, Notre Dame, IN, 46556, USA
| | - Robert Nerenberg
- University of Notre Dame, Department of Civil and Environmental Engineering and Earth Sciences, 156 Fitzpatrick Hall, Notre Dame, IN, 46556, USA
| |
Collapse
|
5
|
Pitre JJ, Kirby MA, Li DS, Shen TT, Wang RK, O'Donnell M, Pelivanov I. Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE. Sci Rep 2020; 10:12983. [PMID: 32737363 PMCID: PMC7395720 DOI: 10.1038/s41598-020-69909-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/21/2020] [Indexed: 12/28/2022] Open
Abstract
The cornea provides the largest refractive power for the human visual system. Its stiffness, along with intraocular pressure (IOP), are linked to several pathologies, including keratoconus and glaucoma. Although mechanical tests can quantify corneal elasticity ex vivo, they cannot be used clinically. Dynamic optical coherence elastography (OCE), which launches and tracks shear waves to estimate stiffness, provides an attractive non-contact probe of corneal elasticity. To date, however, OCE studies report corneal moduli around tens of kPa, orders-of-magnitude less than those (few MPa) obtained by tensile/inflation testing. This large discrepancy impedes OCE's clinical adoption. Based on corneal microstructure, we introduce and fully characterize a nearly-incompressible transversely isotropic (NITI) model depicting corneal biomechanics. We show that the cornea must be described by at least two shear moduli, contrary to current single-modulus models, decoupling tensile and shear responses. We measure both as a function of IOP in ex vivo porcine cornea, obtaining values consistent with both tensile and shear tests. At pressures above 30 mmHg, the model begins to fail, consistent with non-linear changes in cornea at high IOP.
Collapse
Affiliation(s)
- John J Pitre
- Department of Bioengineering, University of Washington, Seattle, WA, USA.
| | - Mitchell A Kirby
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - David S Li
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, USA
| | - Tueng T Shen
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Ruikang K Wang
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Department of Ophthalmology, University of Washington, Seattle, WA, USA
| | - Matthew O'Donnell
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Ivan Pelivanov
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
6
|
Li M, Matouš K, Nerenberg R. Predicting biofilm deformation with a viscoelastic phase‐field model: Modeling and experimental studies. Biotechnol Bioeng 2020; 117:3486-3498. [DOI: 10.1002/bit.27491] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/18/2020] [Accepted: 07/10/2020] [Indexed: 01/27/2023]
Affiliation(s)
- Mengfei Li
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| | - Karel Matouš
- Department of Aerospace and Mechanical Engineering University of Notre Dame Notre Dame Indiana
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences University of Notre Dame Notre Dame Indiana
| |
Collapse
|
7
|
Liou HC, Sabba F, Packman AI, Rosenthal A, Wells G, Balogun O. Towards mechanical characterization of granular biofilms by optical coherence elastography measurements of circumferential elastic waves. SOFT MATTER 2019; 15:5562-5573. [PMID: 31282532 DOI: 10.1039/c9sm00739c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microbial granular biofilms are spherical, multi-layered aggregates composed of communities of bacterial cells encased in a complex matrix of hydrated extracellular polymeric substances (EPS). While granular aggregates are increasingly used for applications in industrial and municipal wastewater treatment, their underlying mechanical properties are poorly understood. The challenges of viscoelastic characterization for these structures are due to their spherical geometry, spatially heterogeneous properties, and their delicate nature. In this study, we report a model-based approach for nondestructive characterization of viscoelastic properties (shear modulus and shear viscosity) of alginate spheres with different concentrations, which was motivated by our measurements in granular biofilms. The characterization technique relies on experimental measurements of circumferential elastic wave speeds as a function of frequency in the samples using the Optical Coherence Elastography (OCE) technique. A theoretical model was developed to estimate the viscoelastic properties of the samples from OCE data through inverse analysis. This work represents the first attempt to explore elastic waves for mechanical characterization of granular biofilms. The combination of the OCE technique and the theoretical model presented in this paper provides a framework that can facilitate quantitative viscoelastic characterization of samples with curved geometries and the study of the relationships between morphology and mechanical properties in granular biofilms.
Collapse
Affiliation(s)
- Hong-Cin Liou
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208, USA.
| | - Fabrizio Sabba
- Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Aaron I Packman
- Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Alex Rosenthal
- Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - George Wells
- Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208, USA
| | - Oluwaseyi Balogun
- Mechanical Engineering Department, Northwestern University, Evanston, IL 60208, USA. and Civil and Environmental Engineering Department, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
8
|
Pelivanov I, Gao L, Pitre J, Kirby MA, Song S, Li D, Shen TT, Wang RK, O’Donnell M. Does group velocity always reflect elastic modulus in shear wave elastography? JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-11. [PMID: 31342691 PMCID: PMC6650747 DOI: 10.1117/1.jbo.24.7.076003] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/08/2019] [Indexed: 05/04/2023]
Abstract
Dynamic elastography is an attractive method to evaluate tissue biomechanical properties. Recently, it was extended from US- and MR-based modalities to optical ones, such as optical coherence tomography for three-dimensional (3-D) imaging of propagating mechanical waves in subsurface regions of soft tissues, such as the eye. The measured group velocity is often used to convert wave speed maps into 3-D images of the elastic modulus distribution based on the assumption of bulk shear waves. However, the specific geometry of OCE measurements in bounded materials such as the cornea and skin calls into question elasticity reconstruction assuming a simple relationship between group velocity and shear modulus. We show that in layered media the bulk shear wave assumption results in highly underestimated shear modulus reconstructions and significant structural artifacts in modulus images. We urge the OCE community to be careful in using the group velocity to evaluate tissue elasticity and to focus on developing robust reconstruction methods to accurately reconstruct images of the shear elastic modulus in bounded media.
Collapse
Affiliation(s)
- Ivan Pelivanov
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- Address all correspondence to Ivan Pelivanov, E-mail:
| | - Liang Gao
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - John Pitre
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Mitchell A. Kirby
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Shaozhen Song
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - David Li
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
- University of Washington, Department of Chemical Engineering, Seattle, Washington, United States
| | - Tueng T. Shen
- University of Washington, Department of Ophthalmology, Seattle, Washington, United States
| | - Ruikang K. Wang
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| | - Matthew O’Donnell
- University of Washington, Department of Bioengineering, Seattle, Washington, United States
| |
Collapse
|