1
|
Gao X, Zheng M, Hou B, Wu J, Zhu M, Zhang Y, Wang K, Han B. Recent Progress in the Auxiliary Phase Enhanced Flexible Piezocomposites. ENERGY & ENVIRONMENTAL MATERIALS 2024. [DOI: 10.1002/eem2.12837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/07/2024] [Indexed: 10/28/2024]
Abstract
Piezocomposites with both flexibility and electromechanical conversion characteristics have been widely applied in various fields, including sensors, energy harvesting, catalysis, and biomedical treatment. In the composition of piezocomposites or their preparation process, a category of materials is commonly employed that do not possess piezoelectric properties themselves but play a crucial role in performance enhancement. In this review, the concept of auxiliary phase is first proposed to define these materials, aiming to provide a new perspective for designing high‐performance piezocomposites. Three different categories of modulation forms of auxiliary phase in piezocomposites are systematically summarized, including the modification of piezo‐matrix, the modification of piezo‐fillers, and the construction of special structures. Each category emphasizes the role of the auxiliary phase and systematically discusses the latest advancements and the physical mechanisms of the auxiliary phase enhanced flexible piezocomposites. Finally, a summary and future outlook of piezocomposites based on the auxiliary phase are provided.
Collapse
Affiliation(s)
- Xin Gao
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mupeng Zheng
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Boyue Hou
- School of Basic Medical Sciences Capital Medical University Beijing 100069 China
| | - Junshu Wu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Mankang Zhu
- College of Materials Science and Engineering Beijing University of Technology Beijing 100124 China
| | - Yunfan Zhang
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| | - Ke Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Bing Han
- Department of Orthodontics Peking University School and Hospital of Stomatology & National Center of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & NMPA Key Laboratory for Dental Materials Beijing 100089 China
| |
Collapse
|
2
|
Cui J, Du L, Meng Z, Gao J, Tan A, Jin X, Zhu X. Ingenious Structure Engineering to Enhance Piezoelectricity in Poly(vinylidene fluoride) for Biomedical Applications. Biomacromolecules 2024; 25:5541-5591. [PMID: 39129463 DOI: 10.1021/acs.biomac.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The future development of wearable/implantable sensing and medical devices relies on substrates with excellent flexibility, stability, biocompatibility, and self-powered capabilities. Enhancing the energy efficiency and convenience is crucial, and converting external mechanical energy into electrical energy is a promising strategy for long-term advancement. Poly(vinylidene fluoride) (PVDF), known for its piezoelectricity, is an outstanding representative of an electroactive polymer. Ingeniously designed PVDF-based polymers have been fabricated as piezoelectric devices for various applications. Notably, the piezoelectric performance of PVDF-based platforms is determined by their structural characteristics at different scales. This Review highlights how researchers can strategically engineer structures on microscopic, mesoscopic, and macroscopic scales. We discuss advanced research on PVDF-based piezoelectric platforms with diverse structural designs in biomedical sensing, disease diagnosis, and treatment. Ultimately, we try to give perspectives for future development trends of PVDF-based piezoelectric platforms in biomedicine, providing valuable insights for further research.
Collapse
Affiliation(s)
- Jiwei Cui
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Lijun Du
- Shanghai Huayi 3F New Materials Co., Ltd., No. 560 Xujiahui Road, Shanghai 200025, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Zhiheng Meng
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Jiayin Gao
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Anning Tan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
| | - Xin Jin
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, People's Republic of China
- Joint Research and Development Center of Fluorine Materials of Shanghai Jiao Tong University and Huayi 3F, 1391 Humin Road, Shanghai 200240, People's Republic of China
| |
Collapse
|
3
|
Wang N, Zhang H, Qiu X, Gerhard R, van Turnhout J, Cressotti J, Zhao D, Tang L, Cao Y. Recent Advances in Ferroelectret Fabrication, Performance Optimization, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2400657. [PMID: 38719210 DOI: 10.1002/adma.202400657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/24/2024] [Indexed: 05/29/2024]
Abstract
The growing demand for wearable devices has sparked a significant interest in ferroelectret films. They possess flexibility and exceptional piezoelectric properties due to strong macroscopic dipoles formed by charges trapped at the interface of their internal cavities. This review of ferroelectrets focuses on the latest progress in fabrication techniques for high temperature resistant ferroelectrets with regular and engineered cavities, strategies for optimizing their piezoelectric performance, and novel applications. The charging mechanisms of bipolar and unipolar ferroelectrets with closed and open-cavity structures are explained first. Next, the preparation and piezoelectric behavior of ferroelectret films with closed, open, and regular cavity structures using various materials are discussed. Three widely used models for predicting the piezoelectric coefficients (d33) are outlined. Methods for enhancing the piezoelectric performance such as optimized cavity design, utilization of fabric electrodes, injection of additional ions, application of DC bias voltage, and synergy of foam structure and ferroelectric effect are illustrated. A variety of applications of ferroelectret films in acoustic devices, wearable monitors, pressure sensors, and energy harvesters are presented. Finally, the future development trends of ferroelectrets toward fabrication and performance optimization are summarized along with its potential for integration with intelligent systems and large-scale preparation.
Collapse
Affiliation(s)
- Ningzhen Wang
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - He Zhang
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Xunlin Qiu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Reimund Gerhard
- Institute of Physics and Astronomy, Faculty of Science, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Jan van Turnhout
- Department of Materials Science and Engineering, Delft University of Technology, Delft, 2628 CD, The Netherlands
| | - Jason Cressotti
- Electrical Insulation Research Center, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Dong Zhao
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Liang Tang
- School of Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yang Cao
- Electrical Insulation Research Center, Institute of Materials Science, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
4
|
Song Z, Cai X, Wang Y, Yang W, Li W. Leveraging Ferroelectret Nanogenerators for Acoustic Applications. MICROMACHINES 2023; 14:2145. [PMID: 38138314 PMCID: PMC10744867 DOI: 10.3390/mi14122145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/12/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023]
Abstract
Ferroelectret nanogenerator (FENG), renowned for its remarkable electromechanical conversion efficiency and low Young's modulus, has gained significant attention in various acoustic applications. The increasing interest is attributed to the crucial role acoustic devices play in our daily lives. This paper provides a comprehensive review of the advancements made in using FENG for acoustic applications. It elaborates on the operational mechanism of FENG in acoustics, with a special focus on comparing the influence of different fabrication materials and techniques on its properties. This review categorizes acoustic applications of FENG into three primary areas: acoustic sensing, acoustic actuation, and acoustic energy harvesting. The detailed descriptions of FENG's implementations in these areas are provided, and potential directions and challenges for further development are outlined. By demonstrating the wide range of potential applications for FENG, it is shown that FENG can be adapted to meet different individual needs.
Collapse
Affiliation(s)
- Ziling Song
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Xianfa Cai
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Yiqin Wang
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
| | - Wenyu Yang
- School of Mechanical Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China;
| | - Wei Li
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Rd., Nanjing 210046, China; (Z.S.); (X.C.); (Y.W.)
- Department of Mechanical Engineering, University of Vermont, 33 Colchester Ave., Burlington, VT 05405, USA
| |
Collapse
|
5
|
Zhang X, Zhao J, Xie P, Wang S. Biomedical Applications of Electrets: Recent Advance and Future Perspectives. J Funct Biomater 2023; 14:320. [PMID: 37367284 DOI: 10.3390/jfb14060320] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Recently, electrical stimulation, as a non-pharmacological physical stimulus, has been widely exploited in biomedical and clinical applications due to its ability to significantly enhance cell proliferation and differentiation. As a kind of dielectric material with permanent polarization characteristics, electrets have demonstrated tremendous potential in this field owing to their merits of low cost, stable performance, and excellent biocompatibility. This review provides a comprehensive summary of the recent advances in electrets and their biomedical applications. We first provide a brief introduction to the development of electrets, as well as typical materials and fabrication methods. Subsequently, we systematically describe the recent advances of electrets in biomedical applications, including bone regeneration, wound healing, nerve regeneration, drug delivery, and wearable electronics. Finally, the present challenges and opportunities have also been discussed in this emerging field. This review is anticipated to provide state-of-the-art insights on the electrical stimulation-related applications of electrets.
Collapse
Affiliation(s)
- Xinyuan Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Jiulong Zhao
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Pei Xie
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, No. 168 Changhai Road, Shanghai 200433, China
| | - Shige Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, No. 516 Jungong Road, Shanghai 200093, China
| |
Collapse
|
6
|
Li W, Cao Y, Wang C, Sepúlveda N. Ferroelectret nanogenerators for the development of bioengineering systems. CELL REPORTS. PHYSICAL SCIENCE 2023; 4:101388. [PMID: 37693856 PMCID: PMC10487350 DOI: 10.1016/j.xcrp.2023.101388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bioengineering devices and systems will become a practical and versatile technology in society when sustainability issues, primarily pertaining to their efficiency, sustainability, and human-machine interaction, are fully addressed. It has become evident that technological paths should not rely on a single operation mechanism but instead on holistic methodologies that integrate different phenomena and approaches with complementary advantages. As an intriguing invention, the ferroelectret nanogenerator (FENG) has emerged with promising potential in various fields of bioengineering. Utilizing the changes in the engineered macro-scale electric dipoles to create displacement current (and vice versa), FENGs have been demonstrated to be a compelling strategy for bidirectional conversion of energy between the electrical and mechanical domains. Here we provide a comprehensive overview of the latest advancements in integrating FENGs in bioengineering systems, focusing on the applications with the most potential and the underlying current constraints.
Collapse
Affiliation(s)
- Wei Li
- Department of Mechanical Engineering, University of Vermont, Burlington, VT 05405, USA
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Yunqi Cao
- State Key Laboratory of Industrial Control Technology, College of Control Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Chuan Wang
- Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Nelson Sepúlveda
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
7
|
Single fibre enables acoustic fabrics via nanometre-scale vibrations. Nature 2022; 603:616-623. [PMID: 35296860 DOI: 10.1038/s41586-022-04476-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 01/27/2022] [Indexed: 11/08/2022]
Abstract
Fabrics, by virtue of their composition and structure, have traditionally been used as acoustic absorbers1,2. Here, inspired by the auditory system3, we introduce a fabric that operates as a sensitive audible microphone while retaining the traditional qualities of fabrics, such as machine washability and draping. The fabric medium is composed of high-Young's modulus textile yarns in the weft of a cotton warp, converting tenuous 10-7-atmosphere pressure waves at audible frequencies into lower-order mechanical vibration modes. Woven into the fabric is a thermally drawn composite piezoelectric fibre that conforms to the fabric and converts the mechanical vibrations into electrical signals. Key to the fibre sensitivity is an elastomeric cladding that concentrates the mechanical stress in a piezocomposite layer with a high piezoelectric charge coefficient of approximately 46 picocoulombs per newton, a result of the thermal drawing process. Concurrent measurements of electric output and spatial vibration patterns in response to audible acoustic excitation reveal that fabric vibrational modes with nanometre amplitude displacement are the source of the electrical output of the fibre. With the fibre subsuming less than 0.1% of the fabric by volume, a single fibre draw enables tens of square metres of fabric microphone. Three different applications exemplify the usefulness of this study: a woven shirt with dual acoustic fibres measures the precise direction of an acoustic impulse, bidirectional communications are established between two fabrics working as sound emitters and receivers, and a shirt auscultates cardiac sound signals.
Collapse
|
8
|
Yang C, Chen F, Sun J, Chen N. Boosted Mechanical Piezoelectric Energy Harvesting of Polyvinylidene Fluoride/Barium Titanate Composite Porous Foam Based on Three-Dimensional Printing and Foaming Technology. ACS OMEGA 2021; 6:30769-30778. [PMID: 34805705 PMCID: PMC8600620 DOI: 10.1021/acsomega.1c04998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The popularity of intelligent and green electronic devices means that the use of renewable mechanical energy has gradually become an inevitable choice for social development. However, it is difficult for the existing energy harvesters to meet the requirement for efficient collection of discrete mechanical energy due to the limitation of traditional two-dimensional (2D) film deformation. In this research, a green and convenient supercritical carbon dioxide foaming (Sc-CO2)-assisted selective laser sintering method was developed, and piezoelectric energy harvesters with a 3D porous structure of polyvinylidene fluoride (PVDF)/barium titanate (BaTiO3) were successfully constructed. The 3D structure combined with the porous structure made full use of the normal space, amplified the stress-strain effect, and improved the piezoelectric output capability. Under the synergistic effect of BaTiO3, the foams exhibited high output with an output voltage of 20.9 V and a current density of 0.371 nA/mm2, which exceeded most of the known PVDF/BaTiO3 energy harvesters, and the prepared piezoelectric energy harvester could directly light up 11 green light-emitting diodes and charge a 1 μF commercial capacitor to 4.98 V within 180 s. This work emphasizes the key role of 3D printing and Sc-CO2 foaming in fabricating 3D piezoelectric energy harvesters.
Collapse
Affiliation(s)
- Cheng Yang
- State
Key Laboratory of Polymer Materials Engineering (Sichuan University),
Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Fang Chen
- State
Key Laboratory of Polymer Materials Engineering (Sichuan University),
Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jingyao Sun
- State
Key Laboratory of Polymer Materials Engineering (Sichuan University),
Polymer Research Institute, Sichuan University, Chengdu 610065, China
- State
Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
- College
of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ning Chen
- State
Key Laboratory of Polymer Materials Engineering (Sichuan University),
Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
9
|
Ansari MA, Somdee P, Marossy K. Synthesis of cross-linked polyurethane elastomers with the inclusion of polar-aromatic moieties (BA, PNBA and 3, 5-DNBA): Electrical and thermo-mechanical properties analysis. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02538-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AbstractIn this work, we used the design strategy “doped nonpolar polymers” and synthesized the polyurethane elastomers (PUEs) by doping with highly polar aromatic molecules such as benzoic acid (BA), 4(para)-nitro-benzoic acid (PNBA), and 3, 5-di-nitro-benzoic acid (3, 5-DNBA) by using the solution casting method. The effect of each molecule in three different weight percentages 2%, 4%, and 6% on electrical and thermo-mechanical properties of the material has studied. Experiments were carried out to determine electrical properties such as DC volume resistivity, dielectric constant, and loss factor. DMA and DSC measurements were done to assess thermo-mechanical properties. Also, thermal conductivity measurement was carried out and a strong nitro group and doping percentage dependent results have been observed. A comparative analysis of the effect on the said properties was done among the doped and undoped PUEs.
Collapse
|
10
|
Liu X, Shang Y, Zhang J, Zhang C. Ionic Liquid-Assisted 3D Printing of Self-Polarized β-PVDF for Flexible Piezoelectric Energy Harvesting. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14334-14341. [PMID: 33729751 DOI: 10.1021/acsami.1c03226] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Three-dimensional (3D) printing technologies have unparalleled advantages in constructing piezoelectric devices with three-dimensional structures, which are conducive to improving the efficiency of energy harvesting. Among them, fused deposition modeling (FDM) is the most widely used thanks to its low cost and wide range of molding materials. However, as the best piezoelectric polymer, a high electroactive β-phase poly(vinylidene fluoride) (PVDF) piezoelectric device cannot be directly obtained by FDM printing because the β-crystal is unstable at the molten state. Herein, we develop for the first time ionic liquid (IL)-assisted FDM for direct printing of β-PVDF piezoelectric devices. An IL can induce and maintain β crystals during melt extrusion and FDM printing, ensuring that the β-crystal in the printed PVDF device is as high as 98.3%, which is the highest in 3D-printed PVDF as far as we know. Furthermore, the shearing force provided by the FDM facilitates the directional arrangement of the dipoles, resulting in the printed PVDF device having self-polarization characteristics without poling. Finally, the piezoelectric output voltage of the 3D-printed PVDF device is 4.7 times that of the flat PVDF device, and its area current density (17.5 nA cm-2) is more than that of the reported 3D-printed PVDF piezoelectric device in the literature by two orders of magnitude. The one-step 3D printing strategy proposed in this paper can realize the rapid preparation of complex-shaped and lightweight self-polarized β-PVDF-based piezoelectric devices for energy harvesting.
Collapse
Affiliation(s)
- Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yinghao Shang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Yang C, Chen N, Liu X, Wang Q, Zhang C. Coupling selective laser sintering and supercritical CO2 foaming for 3D printed porous polyvinylidene fluoride with improved piezoelectric performance. RSC Adv 2021; 11:20662-20669. [PMID: 35479375 PMCID: PMC9033981 DOI: 10.1039/d1ra03341g] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/24/2021] [Indexed: 12/27/2022] Open
Abstract
In this study, a facile strategy coupling selective laser sintering (SLS) and supercritical carbon dioxide (ScCO2) foaming technology is proposed to prepare a three-dimensional porous polyvinylidene fluoride (PVDF) with an improved piezoelectric output. The effects of foaming conditions including temperature and pressure on foam morphology, crystallization behavior and piezoelectric properties have been systematically studied. It is found that indeed the mechanical stretching foaming process greatly improves the produced content up to 76.2% of the β-phase in PVDF. The piezoelectric output of the PVDF foam with the highest open-circuit voltage could go up to 8 V (4.5 times printed parts), which could light up 4 LED lights and charge 4.7 μF 50 V capacitor to 3.51 V in 275 s. This study provides a feasible approach to 3D porous material fabrication for achieving high-performance piezoelectric materials and demonstrates the promising potential of energy harvesters and smart sensors. In this study, a facile strategy coupling selective laser sintering (SLS) and supercritical carbon dioxide (ScCO2) foaming technology is proposed to prepare a three-dimensional porous polyvinylidene fluoride (PVDF) with an improved piezoelectric output.![]()
Collapse
Affiliation(s)
- Cheng Yang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu
- China
| |
Collapse
|
12
|
|
13
|
Shirahase T, Akasaka S, Asai S. Organic solvent-free fabrication of mesoporous polymer monolith from miscible PLLA/PMMA blend. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122742] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|