1
|
Nayak M, Sonowal L, Pradhan L, Upadhyay A, Kamath P, Mukherjee S. Multifunctional (4-in-1) Therapeutic Applications of Nickel Thiocyanate Nanoparticles Impregnated Cotton Gauze as Antibacterial, Antibiofilm, Antioxidant and Wound Healing Agent. Chem Asian J 2024; 19:e202400187. [PMID: 38665128 DOI: 10.1002/asia.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/16/2024] [Indexed: 08/27/2024]
Abstract
The wounds, arises from accidents, burns, surgeries, diabetes, and trauma, can significantly impact well-being and present persistent clinical challenges. Ideal wound dressings should be flexible, stable, antibacterial, antioxidant and anti-inflammatory in nature, facilitating a scarless rapid wound healing. Initiatives were taken to create antibacterial cotton fabrics by incorporating agents like antibiotics and metallic nanoparticles. However, due to a lack of multifunctionality, these materials were not highly effective in causing scarless and rapid wound healing. In this article, nickel thiocyanate nanoparticle (NiSCN-NPs) impregnated cotton gauze wound dressing (NiSCN-CG) was developed. These nanoparticles were non-toxic to normal human cell lines till 1 mg/mL dose and did not cause skin irritation in the rat model. Further, NiSCN-NPs exhibited antimicrobial, antibiofilm and antioxidant activities confirmed using different in vitro experiments. In vivo wound healing studies in rat models using NiSCN-CG demonstrated rapid scarless wound healing. The nickel thiocyanate impregnated cotton gauze presents a novel approach in scarless wound healing, and as an antimicrobial agent, offering a promising solution for diverse wounds and infections in the future.
Collapse
Affiliation(s)
- Malay Nayak
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lidiya Sonowal
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Lipi Pradhan
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Anjali Upadhyay
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Prajwal Kamath
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| | - Sudip Mukherjee
- School of Biomedical Engineering, IIT (BHU), Varanasi, Varanasi, 221005, Uttar Pradesh, India
| |
Collapse
|
2
|
Li N, Zhang C, Xin G, Wang Y, Gao Y, Hu J, Wang Z, He X. Concanavalin-conjugated zinc-metal-organic framework drug for pH-controlled and targeted therapy of wound bacterial infection. Int J Biol Macromol 2024; 278:134637. [PMID: 39128734 DOI: 10.1016/j.ijbiomac.2024.134637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
Wounds are prone to infection which may be fatal to the life of the patient. The use of antibiotics is essential for managing bacterial infections in wounds, but the long-term use of high doses of antibiotics may lead to bacterial drug resistance and even to creation of superbacteria. Therefore, the development of targeted antimicrobial treatment strategies and the reduction in antibiotic usage are of utmost urgency. In this study, a multifunctional nanodrug delivery system (Cef-rhEGF@ZIF-8@ConA) for the treatment of bacteriostatic infection was synthesized through self-assembly of Zn2+, cefradine (Cef) and recombinant human epidermal growth factor (rhEGF), then conjugated with concanavalin (ConA), which undergoes pH-responsive degradation to release the drugs. First, ConA can specifically combine with bacteria and inhibit the rapid release of Zn2+ ions, thus achieving a long-acting antibacterial effect. Cef exerts its antibacterial effect by inhibiting the synthesis of bacterial membrane proteins. Finally, Zn2+ ions released from the Zn-metal-organic framework (MOF) demonstrate bacteriostatic properties by enhancing the permeability of the bacterial cell membrane. Furthermore, rhEGF upregulates angiogenesis-associated genes, thereby promoting angiogenesis, re-epithelialization and wound healing processes. The results showed that Cef-rhEGF@ZIF-8@ConA has good biocompatibility, with antibacterial efficacy against Staphylococcus aureus and Escherichia coli of 99.61 % and 99.75 %, respectively. These nanomaterials can inhibit the release of inflammatory cytokines and promote the release of anti-inflammatory cytokines, while also stimulating the proliferation of fibroblasts to facilitate wound healing. Taken together, the Cef-rhEGF@ZIF-8@ConA nanosystem is an excellent candidate in clinical therapeutics for bacteriostatic infection and wound healing.
Collapse
Affiliation(s)
- Na Li
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Chong Zhang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Gaoli Xin
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yexing Wang
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China
| | - Yuwei Gao
- Institute of Military Veterinary Medicine, Academy of Military Medical Sciences, Changchun 130122, China
| | - Junli Hu
- Key Laboratory of UV-Emitting Materials and Technology, Northeast Normal University, Ministry of Education, Changchun, Jilin 130024, China
| | - Zuobin Wang
- International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| | - Xiuxia He
- School of Life Science and Technology, Changchun University of Science and Technology, Changchun 130022, China; International Research Centre for Nano Handling and Manufacturing of China, Changchun University of Science and Technology, Changchun 130022, China.
| |
Collapse
|
3
|
Alishahi M, Xiao R, Kreismanis M, Chowdhury R, Aboelkheir M, Lopez S, Altier C, Bonassar LJ, Shen H, Uyar T. Antibacterial, Anti-Inflammatory, and Antioxidant Cotton-Based Wound Dressing Coated with Chitosan/Cyclodextrin-Quercetin Inclusion Complex Nanofibers. ACS APPLIED BIO MATERIALS 2024; 7:5662-5678. [PMID: 39097904 DOI: 10.1021/acsabm.4c00751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
Quercetin, recognized for its antioxidant, anti-inflammatory, and antibacterial properties, faces limited biomedical application due to its low solubility. Cotton, a preferred wound dressing material over synthetic ones, lacks inherent antibacterial and wound-healing attributes and can benefit from quercetin features. This study explores the potential of overcoming these challenges through the inclusion complexation of quercetin with cyclodextrins (CDs) and the development of a nanofibrous coating on a cotton nonwoven textile. Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) formed inclusion complexes of quercetin, with chitosan added to enhance antibacterial properties. Phase solubility results showed that inclusion complexation can enhance quercetin solubility up to 20 times, with HP-γ-CD forming a more stable inclusion complexation compared with HP-β-CD. Electrospinning of the nanofibers from HP-β-CD/Quercetin and HP-γ-CD/Quercetin aqueous solutions without the use of a polymeric matrix yielded a uniform, smooth fiber morphology. The structural and thermal analyses of the HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers confirmed the presence of inclusion complexes between quercetin and each of the CDs (HP-β-CD and HP-γ-CD). Moreover, HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed a near-complete loading efficiency of quercetin and followed a fast-releasing profile of quercetin. Both HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers showed significantly higher antioxidant activity compared to pristine quercetin. The HP-β-CD/Quercetin and HP-γ-CD/Quercetin nanofibers also showed antibacterial activity, and with the addition of chitosan in the HP-γ-CD/Quercetin system, the Chitosan/HP-γ-CD/Quercetin nanofibers completely eliminated the investigated bacteria species. The nanofibers were nontoxic and well-tolerated by cells, and exploiting the quercetin and chitosan anti-inflammatory activities resulted in the downregulation of IL-6 and NO secretion in both immune as well as regenerative cells. Overall, CD inclusion complexation markedly enhances quercetin solubility, resulting in a biofunctional antioxidant, antibacterial, and anti-inflammatory wound dressing through a nanofibrous coating on cotton textiles.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Ruobai Xiao
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Melisa Kreismanis
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| | - Serafina Lopez
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, United States
| | - Lawrence J Bonassar
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853, United States
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Hongqing Shen
- Cotton Incorporated, Cary, North Carolina 27513, United States
| | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Wiita EG, Toprakcioglu Z, Jayaram AK, Knowles TPJ. Selenium-silk microgels as antifungal and antibacterial agents. NANOSCALE HORIZONS 2024; 9:609-619. [PMID: 38288551 PMCID: PMC10962633 DOI: 10.1039/d3nh00385j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/29/2023] [Indexed: 03/26/2024]
Abstract
Antimicrobial resistance is a leading threat to global health. Alternative therapeutics to combat the rise in drug-resistant strains of bacteria and fungi are thus needed, but the development of new classes of small molecule therapeutics has remained challenging. Here, we explore an orthogonal approach and address this issue by synthesising micro-scale, protein colloidal particles that possess potent antimicrobial properties. We describe an approach for forming silk-based microgels that contain selenium nanoparticles embedded within the protein scaffold. We demonstrate that these materials have both antibacterial and antifungal properties while, crucially, also remaining highly biocompatible with mammalian cell lines. By combing the nanoparticles with silk, the protein microgel is able to fulfill two critical functions; it protects the mammalian cells from the cytotoxic effects of the bare nanoparticles, while simultaneously serving as a carrier for microbial eradication. Furthermore, since the antimicrobial activity originates from physical contact, bacteria and fungi are unlikely to develop resistance to our hybrid biomaterials, which remains a critical issue with current antibiotic and antifungal treatments. Therefore, taken together, these results provide the basis for innovative antimicrobial materials that can target drug-resistant microbial infections.
Collapse
Affiliation(s)
- Elizabeth G Wiita
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lenseld Road, Cambridge CB2 1EW, UK.
| |
Collapse
|
5
|
Alishahi M, Aboelkheir M, Chowdhury R, Altier C, Shen H, Uyar T. Functionalization of cotton nonwoven with cyclodextrin/lawsone inclusion complex nanofibrous coating for antibacterial wound dressing. Int J Pharm 2024; 652:123815. [PMID: 38242260 DOI: 10.1016/j.ijpharm.2024.123815] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 01/21/2024]
Abstract
Functionalizing cotton to induce biological activity is a viable approach for developing wound dressing. This study explores the development of cotton-based wound dressing through coating with biologically active nanofibers. Bioactive compounds like lawsone offer dual benefits of wound healing and infection prevention, however, their limited solubility and viability hinder their applications. To address this, Hydroxypropyl-beta-cyclodextrin (HP-β-CD) and Hydroxypropyl-gamma-cyclodextrin (HP-γ-CD) were employed. Inclusion complexations of CD/lawsone were achieved at 2:1 and 4:1 M ratios, followed by the fabrication of CD/lawsone nanofibrous systems via electrospinning. Phase solubility studies indicated a twofold increase in lawsone water-solubility with HP-β-CD. Electrospinning yielded smooth and uniform nanofibers with an average diameter of ∼300-700 nm. The results showed that while specific crystalline peaks of lawsone are apparent in the samples with a 2:1 M ratio, they disappeared in 4:1, indicating complete complexation. The nanofibers exhibited ∼100 % loading efficiency of lawsone and its rapid release upon dissolution. Notably, antibacterial assays demonstrated the complete elimination of Escherichia coli and Staphylococcus aureus colonies. The CD/lawsone nanofibers also showed suitable antioxidant activity ranging from 50 % to 70 %. This integrated approach effectively enhances lawsone's solubility through CD complexation and offers promise for bilayer cotton-based wound dressings.
Collapse
Affiliation(s)
- Mohsen Alishahi
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Mahmoud Aboelkheir
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States
| | - Rimi Chowdhury
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | - Craig Altier
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, United States
| | | | - Tamer Uyar
- Fiber Science Program, Department of Human Centered Design, College of Human Ecology, Cornell University, Ithaca, NY 14853, United States.
| |
Collapse
|
6
|
Yang J, Cai F, Lv Y, Jiang T, Zhao X, Hu X, Zheng Y, Shi X. Chitosan nonwoven fabric composited calcium alginate and adenosine diphosphate as a hemostatic bandage for acute bleeding wounds. Int J Biol Macromol 2024; 257:128561. [PMID: 38056735 DOI: 10.1016/j.ijbiomac.2023.128561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023]
Abstract
Acute bleeding following accidental injury is a leading cause of mortality. However, conventional hemostatic bandages impede wound healing by inducing excessive blood loss, dehydration, and adherence to granulation tissue. Strategies such as incorporating active hemostatic agents and implementing chemical modifications can augment the properties of these bandages. Nevertheless, the presence of remote thrombosis and initiators may pose risks to human health. Here, a hemostatic bandage was developed by physically combined chitosan nonwoven fabric, calcium alginate sponge, and adenosine diphosphate. The presented hemostatic bandage not only exhibits active and passive mechanisms for promoting clotting but also demonstrates excellent mechanical properties, breathability, ease of removal without causing damage to the wound bed or surrounding tissues, as well as maintaining an optimal moist environment conducive to wound healing. In vitro evaluation results indicated that the hemostatic bandage possesses favorable cytocompatibility with low levels of hemolysis. Furthermore, it effectively aggregates various blood cells while activating platelets synergistically to promote both extrinsic and intrinsic coagulation pathways. In an in vivo rat model study involving liver laceration and femoral artery injury scenarios, our developed hemostatic bandage demonstrated rapid clot formation capabilities along with reduced blood loss compared to commercially available fabrics.
Collapse
Affiliation(s)
- Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| | - Fengying Cai
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yicheng Lv
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Ting Jiang
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xingkai Zhao
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xueli Hu
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Yunquan Zheng
- Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China
| | - Xianai Shi
- College of Biological Science and Engineering, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China; Fujian Key Laboratory of Medical Instrument and Pharmaceutical Technology, Fuzhou University, No. 2 Xueyuan Road, Fuzhou 350108, China.
| |
Collapse
|
7
|
Fahma F, Firmanda A, Cabral J, Pletzer D, Fisher J, Mahadik B, Arnata IW, Sartika D, Wulandari A. Three-Dimensional Printed Cellulose for Wound Dressing Applications. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1015-1035. [PMID: 37886399 PMCID: PMC10599445 DOI: 10.1089/3dp.2021.0327] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Wounds are skin tissue damage due to trauma. Many factors inhibit the wound healing phase (hemostasis, inflammation, proliferation, and alteration), such as oxygenation, contamination/infection, age, effects of injury, sex hormones, stress, diabetes, obesity, drugs, alcoholism, smoking, nutrition, hemostasis, debridement, and closing time. Cellulose is the most abundant biopolymer in nature which is promising as the main matrix of wound dressings because of its good structure and mechanical stability, moisturizes the area around the wound, absorbs excess exudate, can form elastic gels with the characteristics of bio-responsiveness, biocompatibility, low toxicity, biodegradability, and structural similarity with the extracellular matrix (ECM). The addition of active ingredients as a model drug helps accelerate wound healing through antimicrobial and antioxidant mechanisms. Three-dimensional (3D) bioprinting technology can print cellulose as a bioink to produce wound dressings with complex structures mimicking ECM. The 3D printed cellulose-based wound dressings are a promising application in modern wound care. This article reviews the use of 3D printed cellulose as an ideal wound dressing and their properties, including mechanical properties, permeability aspect, absorption ability, ability to retain and provide moisture, biodegradation, antimicrobial property, and biocompatibility. The applications of 3D printed cellulose in the management of chronic wounds, burns, and painful wounds are also discussed.
Collapse
Affiliation(s)
- Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Bogor, Indonesia
| | - Jaydee Cabral
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Pletzer
- Department of Microbiology & Immunology, University of Otago, Dunedin, New Zealand
| | - John Fisher
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - Bhushan Mahadik
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, USA
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, Indonesia
| | - Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, Makassar, Indonesia
| | - Anting Wulandari
- Department of Agroindustrial Technology, Faculty of Agroindustrial Technology, Padjadjaran University, Bandung, Indonesia
| |
Collapse
|
8
|
Prasad A, Khan S, Monteiro JK, Li J, Arshad F, Ladouceur L, Tian L, Shakeri A, Filipe CDM, Li Y, Didar TF. Advancing In Situ Food Monitoring through a Smart Lab-in-a-Package System Demonstrated by the Detection of Salmonella in Whole Chicken. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302641. [PMID: 37358057 DOI: 10.1002/adma.202302641] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/16/2023] [Indexed: 06/27/2023]
Abstract
With food production shifting away from traditional farm-to-table approaches to efficient multistep supply chains, the incidence of food contamination has increased. Consequently, pathogen testing via inefficient culture-based methods has increased, despite its lack of real-time capabilities and need for centralized facilities. While in situ pathogen detection would address these limitations and enable individual product monitoring, accurate detection within unprocessed, packaged food products without user manipulation has proven elusive. Herein, "Lab-in-a-Package" is presented, a platform capable of sampling, concentrating, and detecting target pathogens within closed food packaging, without intervention. This system consists of a newly designed packaging tray and reagent-infused membrane that can be paired universally with diverse pathogen sensors. The inclined food packaging tray maximizes fluid localization onto the sensing interface, while the membrane acts as a reagent-immobilizing matrix and an antifouling barrier for the sensor. The platform is substantiated using a newly discovered Salmonella-responsive nucleic acid probe, which enables hands-free detection of 103 colony forming units (CFU) g-1 target pathogen in a packaged whole chicken. The platform remains effective when contamination is introduced with toolsand surfaces, ensuring widespread efficacy. Its real-world use for in situ detection is simulated using a handheld fluorescence scanner with smartphone connectivity.
Collapse
Affiliation(s)
- Akansha Prasad
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Jonathan K Monteiro
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8N 3Z5, Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Fatima Arshad
- School of Interdisciplinary Science, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Liane Ladouceur
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Lei Tian
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Amid Shakeri
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, Hamilton, Ontario, L8S 4L7, Canada
| |
Collapse
|
9
|
Prete S, Dattilo M, Patitucci F, Pezzi G, Parisi OI, Puoci F. Natural and Synthetic Polymeric Biomaterials for Application in Wound Management. J Funct Biomater 2023; 14:455. [PMID: 37754869 PMCID: PMC10531657 DOI: 10.3390/jfb14090455] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/28/2023] Open
Abstract
Biomaterials are at the forefront of the future, finding a variety of applications in the biomedical field, especially in wound healing, thanks to their biocompatible and biodegradable properties. Wounds spontaneously try to heal through a series of interconnected processes involving several initiators and mediators such as cytokines, macrophages, and fibroblasts. The combination of biopolymers with wound healing properties may provide opportunities to synthesize matrices that stimulate and trigger target cell responses crucial to the healing process. This review outlines the optimal management and care required for wound treatment with a special focus on biopolymers, drug-delivery systems, and nanotechnologies used for enhanced wound healing applications. Researchers have utilized a range of techniques to produce wound dressings, leading to products with different characteristics. Each method comes with its unique strengths and limitations, which are important to consider. The future trajectory in wound dressing advancement should prioritize economical and eco-friendly methodologies, along with improving the efficacy of constituent materials. The aim of this work is to give researchers the possibility to evaluate the proper materials for wound dressing preparation and to better understand the optimal synthesis conditions as well as the most effective bioactive molecules to load.
Collapse
Affiliation(s)
- Sabrina Prete
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Marco Dattilo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Francesco Patitucci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Giuseppe Pezzi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
| | - Ortensia Ilaria Parisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Francesco Puoci
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (S.P.); (M.D.); (F.P.); (G.P.); (F.P.)
- Macrofarm s.r.l., c/o Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|
10
|
He X, Mao H, Wang S, Tian Z, Zhou T, Cai L. Fabrication of chitosan/phenylboronic acid/SiO 2 hydrogel composite silk fabrics for enhanced adsorption and controllable release on luteolin. Int J Biol Macromol 2023; 248:125926. [PMID: 37481188 DOI: 10.1016/j.ijbiomac.2023.125926] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/29/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Due to the growing demand for self-health and safety, eco-friendly health textile products with natural colors and pharmacological functionalities have gained considerable popularity. Rapid adsorption and controlled release of active molecules are important issues for functional health textiles. In this study, a functionalized chitosan-based hydrogel composite silk fabric was prepared using chitosan, 3-carboxyphenylboronic acid, and 3-(2, 3-epoxypropyl oxygen) propyl silane by dip-pad and vacuum freeze-drying techniques. The results showed that the incorporation of chitosan/phenylboronic/SiO2 hydrogel into silk fibers improved the UV protection capacity, mechanical properties, and adsorption properties of silk fabrics. The effects of various parameters on the luteolin adsorption properties of silk fabrics were discussed, including metal salt types, salt dosage, pH value, dyeing temperature, initial luteolin concentration, and dyeing time. Under the dyeing temperature of 60 °C and pH of 6.8, the luteolin exhaustion of the composite silk was more than that of the untreated silk, and the adsorption process followed the quasi-second-order kinetic model and the Langmuir adsorption isotherm model. Furthermore, the luteolin-dyed composite silk materials exhibited strong antioxidant activity and controllable release behavior with various pH levels. The as-prepared chitosan-hydrogel composite silk could be a promising material for the sustained release of drugs in medical and healthcare textiles.
Collapse
Affiliation(s)
- Xuemei He
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Haiyan Mao
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Shuzhen Wang
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Zhongliang Tian
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Tianchi Zhou
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Lu Cai
- School of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China.
| |
Collapse
|
11
|
Singh P, Verma C, Gupta A, Mukhopadhyay S, Gupta B. Development of κ-carrageenan-PEG/lecithin bioactive hydrogel membranes for antibacterial adhesion and painless detachment. Int J Biol Macromol 2023; 247:125789. [PMID: 37437679 DOI: 10.1016/j.ijbiomac.2023.125789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/05/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
The issue of wound dressing adherence poses a substantial challenge in the field of wound care, with implications both clinically and economically. Overcoming this challenge requires the development of a hydrogel dressing that enables painless removal without causing any secondary damage. However, addressing this issue still remains a significant challenge that requires attention and further exploration. The present study is focused on the synthesis of hydrogel membranes based on κ-carrageenan (CG), polyethylene glycol (PEG), and soy lecithin (LC), which can provide superior antioxidant and antibacterial attachment properties with a tissue anti adhesion activity for allowing an easy removability without causing secondary damage. The (CG-PEG)/LC mass ratio was varied to fabricate hydrogel membranes via a facile approach of physical blending and solution casting. The physicochemical properties of (CG-PEG)/LC hydrogel membranes were studied by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FTIR), X-ray diffraction (XRD), differential scanning calorimetry (DSC), and mechanical analyses. The membranes showed significantly enhanced mechanical properties with excellent flexibility and had high swelling capacity (˃1000 %), which would provide a moist condition for wound healing. The membranes also exhibited excellent free radical scavenging ability (>60 %). In addition, the (CG-PEG)/LC hydrogel membranes showed reduced peel strength 26.5 N/m as a result of weakening the hydrogel-gelatin interface during an in vitro gelatin peeling test. Moreover, the membrane showed superior antibacterial adhesion activity (>90 %) against both S. aureus and E. coli due to the presence of both PEG and LC. The results also suggested that the hydrogel membranes exhibit NIH3T3 cell antiadhesion property, making them promising material for easy detachment from the healed tissue without causing secondary damage. Thus, this novel combination of (CG-PEG)/LC hydrogel membranes have immense application potential as a biomaterial in the healthcare sector.
Collapse
Affiliation(s)
- Pratibha Singh
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Chetna Verma
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Amlan Gupta
- Department of Pathology, Sikkim Manipal Institute of Medical Sciences, Tadong, Gangtok, Sikkim 737102, India
| | - Samrat Mukhopadhyay
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Bhuvanesh Gupta
- Bioengineering Laboratory, Department of Textile and Fiber Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India.
| |
Collapse
|
12
|
Jiang P, Li Q, Luo Y, Luo F, Che Q, Lu Z, Yang S, Yang Y, Chen X, Cai Y. Current status and progress in research on dressing management for diabetic foot ulcer. Front Endocrinol (Lausanne) 2023; 14:1221705. [PMID: 37664860 PMCID: PMC10470649 DOI: 10.3389/fendo.2023.1221705] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Diabetic foot ulcer (DFU) is a major complication of diabetes and is associated with a high risk of lower limb amputation and mortality. During their lifetime, 19%-34% of patients with diabetes can develop DFU. It is estimated that 61% of DFU become infected and 15% of those with DFU require amputation. Furthermore, developing a DFU increases the risk of mortality by 50%-68% at 5 years, higher than some cancers. Current standard management of DFU includes surgical debridement, the use of topical dressings and wound decompression, vascular assessment, and glycemic control. Among these methods, local treatment with dressings builds a protective physical barrier, maintains a moist environment, and drains the exudate from DFU wounds. This review summarizes the development, pathophysiology, and healing mechanisms of DFU. The latest research progress and the main application of dressings in laboratory and clinical stage are also summarized. The dressings discussed in this review include traditional dressings (gauze, oil yarn, traditional Chinese medicine, and others), basic dressings (hydrogel, hydrocolloid, sponge, foam, film agents, and others), bacteriostatic dressings, composite dressings (collagen, nanomaterials, chitosan dressings, and others), bioactive dressings (scaffold dressings with stem cells, decellularized wound matrix, autologous platelet enrichment plasma, and others), and dressings that use modern technology (3D bioprinting, photothermal effects, bioelectric dressings, microneedle dressings, smart bandages, orthopedic prosthetics and regenerative medicine). The dressing management challenges and limitations are also summarized. The purpose of this review is to help readers understand the pathogenesis and healing mechanism of DFU, help physicians select dressings correctly, provide an updated overview of the potential of biomaterials and devices and their application in DFU management, and provide ideas for further exploration and development of dressings. Proper use of dressings can promote DFU healing, reduce the cost of treating DFU, and reduce patient pain.
Collapse
Affiliation(s)
- Pingnan Jiang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qianhang Li
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yanhong Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Feng Luo
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Qingya Che
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Zhaoyu Lu
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Shuxiang Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yang
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xia Chen
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| | - Yulan Cai
- Department of Endocrinology and Metabolism, the Second Affiliated Hospital of Zunyi Medical University, Zunyi, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Endocrinology, Kweichow Moutai Hospital, Renhuai, Guizhou, China
| |
Collapse
|
13
|
Zamora-Mendoza L, Gushque F, Yanez S, Jara N, Álvarez-Barreto JF, Zamora-Ledezma C, Dahoumane SA, Alexis F. Plant Fibers as Composite Reinforcements for Biomedical Applications. Bioengineering (Basel) 2023; 10:804. [PMID: 37508831 PMCID: PMC10376539 DOI: 10.3390/bioengineering10070804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Plant fibers possess high strength, high fracture toughness and elasticity, and have proven useful because of their diversity, versatility, renewability, and sustainability. For biomedical applications, these natural fibers have been used as reinforcement for biocomposites to infer these hybrid biomaterials mechanical characteristics, such as stiffness, strength, and durability. The reinforced hybrid composites have been tested in structural and semi-structural biodevices for potential applications in orthopedics, prosthesis, tissue engineering, and wound dressings. This review introduces plant fibers, their properties and factors impacting them, in addition to their applications. Then, it discusses different methodologies used to prepare hybrid composites based on these widespread, renewable fibers and the unique properties that the obtained biomaterials possess. It also examines several examples of hybrid composites and their biomedical applications. Finally, the findings are summed up and some thoughts for future developments are provided. Overall, the focus of the present review lies in analyzing the design, requirements, and performance, and future developments of hybrid composites based on plant fibers.
Collapse
Affiliation(s)
- Lizbeth Zamora-Mendoza
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Fernando Gushque
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Sabrina Yanez
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Nicole Jara
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - José F Álvarez-Barreto
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica de Murcia, Avda, Los Jerónimos 135, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Si Amar Dahoumane
- Department of Chemistry and Biochemistry, Université de Moncton, 18 Avenue Antonine-Maillet, Moncton, NB E1A 3E9, Canada
| | - Frank Alexis
- Departamento de Ingeniería Química, Colegio de Ciencias e Ingenierías, Instituto de Microbiología, Institute for Energy and Materials, Universidad San Francisco de Quito USFQ, Quito 170901, Ecuador
| |
Collapse
|
14
|
Prakashan D, Roberts A, Gandhi S. Recent advancement of nanotherapeutics in accelerating chronic wound healing process for surgical wounds and diabetic ulcers. Biotechnol Genet Eng Rev 2023:1-29. [PMID: 36641600 DOI: 10.1080/02648725.2023.2167432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/08/2023] [Indexed: 01/16/2023]
Abstract
One of the greatest challenges faced during surgical procedures is closing and healing of wounds, which are essential in the field of orthopaedics, trauma, intensive care and general surgery. One of the main causes of death has been linked to chronic wounds, especially in immunosuppressant or diabetic patients. Due to increasing chronic wound fatality along with different pathologies associated with them, the current therapeutic methods are insufficient which has established an eminent need for innovative techniques. Traditionally, wound healing was carried out using formulations and ointments containing silver combined with different biomaterial, but was found to be toxic. Hence, the advent of alternative nanomaterial-based therapeutics for effective wound healing have come into existence. In this review, we have discussed an overview of wound infections such as different wound types, the wound healing process, dressing of wounds and conventional therapies. Furthermore, we have explored various nanotechnological advances made in wound healing therapy which include the use of promising candidates such as organic, inorganic, hybrid nanoparticles/nanocomposites and synthetic/natural polymer-based nanofibers. This review further highlights nanomaterial-based applications for regeneration of tissue in wound healing and can provide a base for researchers worldwide to contribute to this advancing medical area of wound therapy.
Collapse
Affiliation(s)
- Drishya Prakashan
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Akanksha Roberts
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| | - Sonu Gandhi
- DBT-National Institute of Animal Biotechnology (NIAB), Hyderabad, Telangana, India
- DBT-Regional Centre for Biotechnology (RCB), Faridabad, Haryana, India
| |
Collapse
|
15
|
Sasmal PK, Ganguly S. Polymer in hemostasis and follow‐up wound healing. J Appl Polym Sci 2023. [DOI: 10.1002/app.53559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | - Somenath Ganguly
- Department of Chemical Engineering Indian Institute of Technology Kharagpur India
| |
Collapse
|
16
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Chang A, Ye Z, Ye Z, Deng J, Lin J, Wu C, Zhu H. Citric acid crosslinked sphingan WL gum hydrogel films supported ciprofloxacin for potential wound dressing application. Carbohydr Polym 2022; 291:119520. [DOI: 10.1016/j.carbpol.2022.119520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022]
|
18
|
Multifunctional hydrogels for wound dressings using xanthan gum and polyacrylamide. Int J Biol Macromol 2022; 217:944-955. [PMID: 35908675 DOI: 10.1016/j.ijbiomac.2022.07.181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022]
Abstract
Developing advanced dressings that integrate multiple functions is one of the major challenges in current clinical wound treatment. In this study, Xanthan gum (XG) and polyacrylamide (PAAm) materials were used to prepare hydrogel dressings by one-pot method. With the combination of the PAAm network and the XG network, the PAAm-XG hydrogels showed the tensile strength of 0.36 MPa and the stretchability as large as 2078 %. The prepared PAAm-XG hydrogels had excellent water uptake efficiency with the swelling ratio of 1200 %. Besides, the developed dressings possessed outstanding biocompatibility, universal adhesion and self-healing ability. More importantly, the PAAm-XG hydrogels can be successfully loaded with Cefixime and human recombinant epidermal growth factor, and these loaded hydrogels released these bioactive molecules in sustained ways. As a result, both E. coli and S. aureus bacteria were inactivated after contacting with the Cefixime-loaded hydrogels for 24 h. Furthermore, in vivo data demonstrated that the PAAm-XG hydrogel dressings significantly accelerated the wound healing in a mouse model. All of these indicate that the multifunctional PAAm-XG hydrogels are promising candidates for wound treatment.
Collapse
|
19
|
Alves C, Ribeiro A, Pinto E, Santos J, Soares G. Exploring Z-Tyr-Phe-OH-based hydrogels loaded with curcumin for the development of dressings for wound healing. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Tan M, Xu Y, Gao Z, Yuan T, Liu Q, Yang R, Zhang B, Peng L. Recent Advances in Intelligent Wearable Medical Devices Integrating Biosensing and Drug Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108491. [PMID: 35008128 DOI: 10.1002/adma.202108491] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Indexed: 05/27/2023]
Abstract
The primary roles of precision medicine are to perform real-time examination, administer on-demand medication, and apply instruments continuously. However, most current therapeutic systems implement these processes separately, leading to treatment interruption and limited recovery in patients. Personalized healthcare and smart medical treatment have greatly promoted research on and development of biosensing and drug-delivery integrated systems, with intelligent wearable medical devices (IWMDs) as typical systems, which have received increasing attention because of their non-invasive and customizable nature. Here, the latest progress in research on IWMDs is reviewed, including their mechanisms of integrating biosensing and on-demand drug delivery. The current challenges and future development directions of IWMDs are also discussed.
Collapse
Affiliation(s)
- Minhong Tan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ziqi Gao
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Tiejun Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Qingjun Liu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Rusen Yang
- School of Advanced Materials and Nanotechnology, Xidian University, Xian, 710126, P. R. China
| | - Bin Zhang
- School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Lihua Peng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, P. R. China
| |
Collapse
|
21
|
Syed Abdullah SS, Faisul Aris FA, Said Azmi SNN, Anak John JHS, Khairul Anuar NN, Mohd Asnawi ASF. Development and evaluation of ciprofloxacin-bacterial cellulose composites produced through in situ incorporation method. BIOTECHNOLOGY REPORTS 2022; 34:e00726. [PMID: 35686008 PMCID: PMC9171441 DOI: 10.1016/j.btre.2022.e00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/11/2022] [Accepted: 03/24/2022] [Indexed: 10/24/2022]
|
22
|
Naseri E, Ahmadi A. A review on wound dressings: Antimicrobial agents, biomaterials, fabrication techniques, and stimuli-responsive drug release. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
23
|
Shaheen TI, Abdelhameed MF, Zaghloul S, Montaser AS. In vivo assessment of the durable, green and in situ bio-functional cotton fabrics based carboxymethyl chitosan nanohybrid for wound healing application. Int J Biol Macromol 2022; 209:485-497. [PMID: 35398385 DOI: 10.1016/j.ijbiomac.2022.04.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/28/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
Herein, a newly developed approach for durable antibacterial cotton fabrics coated carboxymethyl chitosan (CMCs) via ionic crosslinking driven by cationization of cotton surface (CC) with 3-chloro-2-hydroxyl propyl-trimethyl ammonium chloride (CHTAC). In this regard, the novelty was extended to impart a highly antibacterial activity through harnessing of the as-functionalized CMCs/CC in situ preparation of AgNPs, without using of hazardous reductants. The antibacterial activity of the in situ prepared AgNPs onto CMCs/CC as well as the in vivo study on the rat lab were investigated to evaluate their healing efficiency, pathological tissues and biomarkers. Results affirmed that the treatment of CC with 10% of CMCs was adequate to achieve the highest swelling ratio which, in turns, is able to in situ deposition of AgNPs with a size range of 2-10 nm onto CC/CMCs rendering them a highly durable antibacterial activity against both Gram +Ve and Gram -Ve bacteria, which had a bacterial reduction of 98% to 86% after 20 washing cycles. Furthermore, the in vivo study revealed effectively the advantageous uses of the cotton functionalized with AgNPs compared to CC/CMCs in wound healing via alleviating the oxidative stress and promoting hyaluronic acid in wounded skin as well as increasing RUNX2 in healed skin tissues.
Collapse
Affiliation(s)
- Tharwat I Shaheen
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Mohamed F Abdelhameed
- Department of Pharmacology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| | - Saad Zaghloul
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - A S Montaser
- Institute of Textile Research and Technology, National Research Centre, Scopus affiliation ID 60014618, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
24
|
Mayilswamy N, Jaya Prakash N, Kandasubramanian B. Design and fabrication of biodegradable electrospun nanofibers loaded with biocidal agents. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2021.2021905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Neelaambhigai Mayilswamy
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology, Deemed University (DU), Pune, India
| |
Collapse
|
25
|
Jana S, Das P, Mukherjee J, Banerjee D, Ghosh PR, Kumar Das P, Bhattacharya RN, Nandi SK. Waste-derived biomaterials as building blocks in the biomedical field. J Mater Chem B 2022; 10:489-505. [PMID: 35018942 DOI: 10.1039/d1tb02125g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent developments in the biomedical arena have led to the fabrication of innovative biomaterials by utilizing bioactive molecules obtained from biological wastes released from fruit and beverage processing industries, and fish, meat, and poultry industries. These biological wastes that end up in water bodies as well as in landfills are an affluent source of animal- and plant-derived proteins, bio ceramics and polysaccharides such as collagens, gelatins, chitins, chitosans, eggshell membrane proteins, hydroxyapatites, celluloses, and pectins. These bioactive molecules have been intricately designed into scaffolds and dressing materials by utilizing advanced technologies for drug delivery, tissue engineering, and wound healing relevance. These biomaterials are environment-friendly, biodegradable, and biocompatible, and show excellent tissue regeneration attributes. Additionally, being cost-effective they can reduce the burden on the healthcare system as well as provide a sustainable solution to waste management. In this review, the current trends in the utilization of plant and animal waste-derived biomaterials in various biomedical fields are considered along with a separate section on their applications as xenografts.
Collapse
Affiliation(s)
- Sonali Jana
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Piyali Das
- Department of Microbiology, School of Life Sciences and Biotechnology, Adamas University, Barasat, West Bengal 700126, India
| | - Joydip Mukherjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Dipak Banerjee
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Prabal Ranjan Ghosh
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | - Pradip Kumar Das
- Department of Veterinary Physiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India
| | | | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India.
| |
Collapse
|
26
|
Ortega F, Versino F, López OV, García MA. Biobased composites from agro-industrial wastes and by-products. EMERGENT MATERIALS 2022; 5:873-921. [PMID: 34849454 PMCID: PMC8614084 DOI: 10.1007/s42247-021-00319-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/14/2021] [Indexed: 05/09/2023]
Abstract
The greater awareness of non-renewable natural resources preservation needs has led to the development of more ecological high-performance polymeric materials with new functionalities. In this regard, biobased composites are considered interesting options, especially those obtained from agro-industrial wastes and by-products. These are low-cost raw materials derived from renewable sources, which are mostly biodegradable and would otherwise typically be discarded. In this review, recent and innovative academic studies on composites obtained from biopolymers, natural fillers and active agents, as well as green-synthesized nanoparticles are presented. An in-depth discussion of biobased composites structures, properties, manufacture, and life-cycle assessment (LCA) is provided along with a wide up-to-date overview of the most recent works in the field with appropriate references. Potential uses of biobased composites from agri-food residues such as active and intelligent food packaging, agricultural inputs, tissue engineering, among others are described, considering that the specific characteristics of these materials should match the proposed application.
Collapse
Affiliation(s)
- Florencia Ortega
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Florencia Versino
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| | - Olivia Valeria López
- Planta Piloto de Ingeniería Química (PLAPIQUI), UNS-CONICET, Camino La Carrindanga km.7 (8000), Bahía Blanca, Argentina
| | - María Alejandra García
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA), UNLP-CONICET-CICPBA, 47 y 116 (1900), La Plata, Argentina
| |
Collapse
|
27
|
Khan F, Atif M, Haseen M, Kamal S, Khan MS, Shahid S, Nami SAA. Synthesis, classification and properties of hydrogels: their applications in drug delivery and agriculture. J Mater Chem B 2021; 10:170-203. [PMID: 34889937 DOI: 10.1039/d1tb01345a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Absorbent polymers or hydrogel polymer materials have an enhanced water retention capacity and are widely used in agriculture and medicine. The controlled release of bioactive molecules (especially drug proteins) by hydrogels and the encapsulation of living cells are some of the active areas of drug discovery research. Hydrogel-based delivery systems may result in a therapeutically advantageous outcome for drug delivery. They can provide various sequential therapeutic agents including macromolecular drugs, small molecule drugs, and cells to control the release of molecules. Due to their controllable degradability, ability to protect unstable drugs from degradation and flexible physical properties, hydrogels can be used as a platform in which various chemical and physical interactions with encapsulated drugs for controlled release in the system can be studied. Practically, hydrogels that possess biodegradable properties have aroused greater interest in drug delivery systems. The original three-dimensional structure gets broken down into non-toxic substances, thus confirming the excellent biocompatibility of the gel. Chemical crosslinking is a resource-rich method for forming hydrogels with excellent mechanical strength. But in some cases the crosslinker used in the synthesis of the hydrogels may cause some toxicity. However, the physically cross-linked hydrogel preparative method is an alternative solution to overcome the toxicity of cross-linkers. Hydrogels that are responsive to stimuli formed from various natural and synthetic polymers can show significant changes in their properties under external stimuli such as temperature, pH, light, ion changes, and redox potential. Stimulus-responsive hydrogels have a wider range of applications in biomedicine including drug delivery, gene delivery and tissue regeneration. Stimulus-responsive hydrogels loaded with multiple drugs show controlled and sustained drug release and can act as drug carriers. By integrating stimulus-responsive hydrogels, such as those with improved thermal responsiveness, pH responsiveness and dual responsiveness, into textile materials, advanced functions can be imparted to the textile materials, thereby improving the moisture and water retention performance, environmental responsiveness, aesthetic appeal, display and comfort of textiles. This review explores the stimuli-responsive hydrogels in drug delivery systems and examines super adsorbent hydrogels and their application in the field of agriculture.
Collapse
Affiliation(s)
- Faisal Khan
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Atif
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Haseen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Shahid Kamal
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| | - Mohd Shoeb Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, India
| | - Shumaila Shahid
- Division of Plant Pathology, ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Shahab A A Nami
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India.
| |
Collapse
|
28
|
|
29
|
Khan MUA, Razaq SIA, Mehboob H, Rehman S, Al-Arjan WS, Amin R. Antibacterial and Hemocompatible pH-Responsive Hydrogel for Skin Wound Healing Application: In Vitro Drug Release. Polymers (Basel) 2021; 13:3703. [PMID: 34771258 PMCID: PMC8588096 DOI: 10.3390/polym13213703] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/04/2023] Open
Abstract
The treatment of successive skin wounds necessitates meticulous medical procedures. In the care and treatment of skin wounds, hydrogels produced from natural polymers with controlled drug release play a crucial role. Arabinoxylan is a well-known and widely available biological macromolecule. We produced various formulations of blended composite hydrogels (BCHs) from arabinoxylan (ARX), carrageenan (CG), and reduced graphene oxide (rGO) using and cross-linked them with an optimal amount of tetraethyl orthosilicate (TEOS). The structural, morphological, and mechanical behavior of the BCHs samples were determined using Fourier-transform infrared spectroscopy (FT-IR), Scanning electron microscope (SEM), mechanical testing, and wetting, respectively. The swelling and degradation assays were performed in phosphate-buffered saline (PBS) solution and aqueous media. Maximum swelling was observed at pH 7 and the least swelling in basic pH regions. All composite hydrogels were found to be hemocompatible. In vitro, silver sulfadiazine release profile in PBS solution was analyzed via the Franz diffusion method, and maximum drug release (87.9%) was observed in 48 h. The drug release kinetics was studied against different mathematical models (zero-order, first-order, Higuchi, Hixson-Crowell, Korsmeyer-Peppas, and Baker-Lonsdale models) and compared their regression coefficient (R2) values. It was observed that drug release follows the Baker-Lonsdale model, as it has the highest value (0.989) of R2. Hence, the obtained results indicated that, due to optimized swelling, wetting, and degradation, the blended composite hydrogel BCH-3 could be an essential wound dressing biomaterial for sustained drug release for skin wound care and treatment.
Collapse
Affiliation(s)
- Muhammad Umar Aslam Khan
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia
- Institute of Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU),1954 Huashan Road, Shanghai 200030, China;
- Nanosciences and Technology Department (NS & TD), National Center for Physics, Quaid-i-Azam University Campus, Islamabad 44000, Pakistan
| | - Saiful Izwan Abd Razaq
- Institute of Personalized Medicine, School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University (SJTU),1954 Huashan Road, Shanghai 200030, China;
- Centre for Advanced Composite Materials Universiti Teknologi Malaysia Skudai, Johor Bahru 81310, Johor, Malaysia
| | - Hassan Mehboob
- Department of Engineering Management, College of Engineering, Prince Sultan University, Rafha Street, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Sarish Rehman
- Chemistry Department, McGill University, 801 Sherbrooke St. W, Montreal, QC H3A0G4, Canada;
| | - Wafa Shamsan Al-Arjan
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Rashid Amin
- Department of Biology, College of Sciences, University of Hafr Al Batin, Hafar Al-Batin 39524, Saudi Arabia;
| |
Collapse
|
30
|
Jo YK, Heo SJ, Peredo AP, Mauck RL, Dodge GR, Lee D. Stretch-responsive adhesive microcapsules for strain-regulated antibiotic release from fabric wound dressings. Biomater Sci 2021; 9:5136-5143. [PMID: 34223592 DOI: 10.1039/d1bm00628b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial infection of a wound is a major complication that can significantly delay proper healing and even necessitate surgical debridement. Conventional non-woven fabric dressings, including gauzes, bandages and cotton wools, often fail in treating wound infections in a timely manner due to their passive release mechanism of antibiotics. Here, we propose adhesive mechanically-activated microcapsules (MAMCs) capable of strongly adhering to a fibrous matrix to achieve a self-regulated release of antibiotics upon uniaxial stretching of non-woven fabric dressings. To achieve this, a uniform population of polydopamine (PDA)-coated MAMCs (PDA-MAMCs) are prepared using a microfluidics technique and subsequent oxidative dopamine polymerization. The PDA-MAMC allows for robust mechano-activation within the fibrous network through high retention and effective transmission of mechanical force under stretching. By validating the potential of a PDA-MAMCs-laden gauze to release antibiotics in a tensile strain-dependent manner, we demonstrate that PDA-MAMCs can be successfully incorporated into a woven material and create a smart wound dressing for control of bacterial infections. This new mechano-activatable delivery approach will open up a new avenue for a stretch-triggered, on-demand release of therapeutic cargos in skin-mountable or wearable biomedical devices.
Collapse
Affiliation(s)
- Yun Kee Jo
- Department of Chemical and Biomolecular Engineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Cao F, Wei C, Ma G, Hou L, Zhang R, Mei L, Qin Q. Synthesis of photothermal antimicrobial cotton gauze using AuNPs as photothermal transduction agents. RSC Adv 2021; 11:25976-25982. [PMID: 35479434 PMCID: PMC9037119 DOI: 10.1039/d1ra01597d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 07/22/2021] [Indexed: 12/27/2022] Open
Abstract
Cotton gauze has been used as a wound dressing since the 19th century, and still plays an important role in current clinical therapies. However, the antimicrobial ability of cotton gauze is limited. In this work, gold nanoparticles (AuNPs) were used as photothermal transduction agents to synthesize modified photothermal antimicrobial cotton gauze. The modified cotton gauze was synthesized by immersing and heating the clinical cotton gauze with AuNPs solution. XPS, ICP-OES, FTIR, XRD and SEM characterizations confirmed that AuNPs were successfully decorated on the surface of cotton gauzes. Besides, the mechanical properties, air and water vapour permeability performance of cotton gauze were not changed after modification. Photothermal antimicrobial experiments confirmed that AuNPs modified on the cotton gauze could convert light to heat, inducing rapid temperature increase of the cotton gauze. And the heat could kill microbial cells permeated in the modified cotton gauze, giving it the potential of being used for photothermal antimicrobial therapy.
Collapse
Affiliation(s)
- Fengyi Cao
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Changmin Wei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Gangqing Ma
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Like Hou
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Rencong Zhang
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Lin Mei
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| | - Qi Qin
- School of Materials and Chemical Engineering, Zhongyuan University of Technology Zhengzhou 450007 P. R. China
| |
Collapse
|
32
|
Abstract
OBJECTIVE The burden of the management of problematic skin wounds characterised by a compromised skin barrier is growing rapidly. Almost six million patients are affected in the US alone, with an estimated market of $25 billion annually. There is an urgent requirement for efficient mechanism-based treatments and more efficacious drug delivery systems. Novel strategies are needed for faster healing by reducing infection, moisturising the wound, stimulating the healing mechanisms, speeding up wound closure and reducing scar formation. METHODS A systematic review of qualitative studies was conducted on the recent perspectives of nanotechnology in burn wounds management. Pubmed, Scopus, EMBASE, CINAHL and PsychINFO databases were all systematically searched. Authors independently rated the reporting of the qualitative studies included. A comprehensive literature search was conducted covering various resources up to 2018-2019. Traditional techniques aim to simply cover the wound without playing any active role in wound healing. However, nanotechnology-based solutions are being used to create multipurpose biomaterials, not only for regeneration and repair, but also for on-demand delivery of specific molecules. The chronic nature and associated complications of nonhealing wounds have led to the emergence of nanotechnology-based therapies that aim at facilitating the healing process and ultimately repairing the injured tissue. CONCLUSION Nanotechnology-based therapy is in the forefront of next-generation therapy that is able to advance wound healing of hard-to-heal wounds. In this review, we will highlight the developed nanotechnology-based therapeutic agents and assess the viability and efficacy of each treatment. Herein we will explore the unmet needs and future directions of current technologies, while discussing promising strategies that can advance the wound-healing field.
Collapse
Affiliation(s)
- Ruan Na
- Orthopedics Department, Affiliated Tongji Hospital of Huazhong University of Science and Technology, Wuhan City, Hubei Province, 430030, China
| | - Tian Wei
- Department of Biomedical Engineering
| |
Collapse
|
33
|
Gobi R, Ravichandiran P, Babu RS, Yoo DJ. Biopolymer and Synthetic Polymer-Based Nanocomposites in Wound Dressing Applications: A Review. Polymers (Basel) 2021; 13:polym13121962. [PMID: 34199209 PMCID: PMC8232021 DOI: 10.3390/polym13121962] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Biopolymers are materials obtained from a natural origin, such as plants, animals, microorganisms, or other living beings; they are flexible, elastic, or fibrous materials. Polysaccharides and proteins are some of the natural polymers that are widely used in wound dressing applications. In this review paper, we will provide an overview of biopolymers and synthetic polymer-based nanocomposites, which have promising applications in the biomedical research field, such as wound dressings, wound healing, tissue engineering, drug delivery, and medical implants. Since these polymers have intrinsic biocompatibility, low immunogenicity, non-toxicity, and biodegradable properties, they can be used for various clinical applications. The significant advancements in materials research, drug development, nanotechnology, and biotechnology have laid the foundation for changing the biopolymeric structural and functional properties. The properties of biopolymer and synthetic polymers were modified by blending them with nanoparticles, so that these materials can be used as a wound dressing application. Recent wound care issues, such as tissue repairs, scarless healing, and lost tissue integrity, can be treated with blended polymers. Currently, researchers are focusing on metal/metal oxide nanomaterials such as zinc oxide (ZnO), cerium oxide (CeO2), silver (Ag), titanium oxide (TiO2), iron oxide (Fe2O3), and other materials (graphene and carbon nanotubes (CNT)). These materials have good antimicrobial properties, as well as action as antibacterial agents. Due to the highly antimicrobial properties of the metal/metal oxide materials, they can be used for wound dressing applications.
Collapse
Affiliation(s)
- Ravichandran Gobi
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
| | - Palanisamy Ravichandiran
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell System, Jeonbuk National University, Jeonju 54896, Korea;
- Department of Life Sciences, College of Natural Sciences, Jeonbuk National University, Jeonju 545896, Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 545896, Korea
| | - Ravi Shanker Babu
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore 632014, India;
- Correspondence: (R.S.B.); (D.J.Y.)
| | - Dong Jin Yoo
- R&D Education Center for Whole Life Cycle R&D of Fuel Cell System, Jeonbuk National University, Jeonju 54896, Korea;
- Department of Life Sciences, College of Natural Sciences, Jeonbuk National University, Jeonju 545896, Korea
- Department of Energy Storage/Conversion Engineering of Graduate School, Hydrogen and Fuel Cell Research Center, Jeonbuk National University, Jeonju 545896, Korea
- Correspondence: (R.S.B.); (D.J.Y.)
| |
Collapse
|
34
|
Mohan D, Teong ZK, Sajab MS, Kamarudin NHN, Kaco H. Intact Fibrillated 3D-Printed Cellulose Macrofibrils/CaCO 3 for Controlled Drug Delivery. Polymers (Basel) 2021; 13:1912. [PMID: 34201366 PMCID: PMC8227662 DOI: 10.3390/polym13121912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The tendency to use cellulose fibrils for direct ink writing (DIW) of three-dimensional (3D) printing has been growing extensively due to their advantageous mechanical properties. However, retaining cellulose in its fibrillated forms after the printing process has always been a challenge. In this study, cellulose macrofibrils (CMFs) from oil palm empty fruit bunch (OPEFB) fibers were partially dissolved for consistent viscosity needed for DIW 3D printing. The printed CMF structure obtained from optimized printing profiles (volumetric flow rate, Qv = 9.58 mm/s; print speed, v = 20 mm/s), exhibited excellent mechanical properties (tensile strength of 66 MPa, Young's modulus of 2.16 GPa, and elongation of 8.76%). The remarkable structural and morphological effects of the intact cellulose fibrils show a homogeneous distribution with synthesized precipitated calcium carbonate (CaCO3) nanoparticles. The shear-aligned CMF/CaCO3 printed composite exhibited a sustained therapeutic drug release profile that can reduce rapid release that has adverse effects on healthy cells. In comparison with the initial burst release of 5-fluorouracil (5-FU) by CaCO3, the controlled release of 5-fluorouracil can be varied (48 to 75%) with the composition of CMF/CaCO3 allowing efficient release over time.
Collapse
Affiliation(s)
- Denesh Mohan
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (Z.K.T.); (N.H.N.K.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zee Khai Teong
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (Z.K.T.); (N.H.N.K.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (Z.K.T.); (N.H.N.K.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Nur Hidayatul Nazirah Kamarudin
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (Z.K.T.); (N.H.N.K.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hatika Kaco
- Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|
35
|
Hu T, Lo ACY. Collagen-Alginate Composite Hydrogel: Application in Tissue Engineering and Biomedical Sciences. Polymers (Basel) 2021; 13:1852. [PMID: 34199641 PMCID: PMC8199729 DOI: 10.3390/polym13111852] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/23/2021] [Accepted: 05/27/2021] [Indexed: 02/07/2023] Open
Abstract
Alginate (ALG), a polysaccharide derived from brown seaweed, has been extensively investigated as a biomaterial not only in tissue engineering but also for numerous biomedical sciences owing to its wide availability, good compatibility, weak cytotoxicity, low cost, and ease of gelation. Nevertheless, alginate lacks cell-binding sites, limiting long-term cell survival and viability in 3D culture. Collagen (Col), a major component protein found in the extracellular matrix (ECM), exhibits excellent biocompatibility and weak immunogenicity. Furthermore, collagen contains cell-binding motifs, which facilitate cell attachment, interaction, and spreading, consequently maintaining cell viability and promoting cell proliferation. Recently, there has been a growing body of investigations into collagen-based hydrogel trying to overcome the poor mechanical properties of collagen. In particular, collagen-alginate composite (CAC) hydrogel has attracted much attention due to its excellent biocompatibility, gelling under mild conditions, low cytotoxicity, controllable mechanic properties, wider availability as well as ease of incorporation of other biomaterials and bioactive agents. This review aims to provide an overview of the properties of alginate and collagen. Moreover, the application of CAC hydrogel in tissue engineering and biomedical sciences is also discussed.
Collapse
Affiliation(s)
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China;
| |
Collapse
|
36
|
Mouro C, Dunne CP, Gouveia IC. Designing New Antibacterial Wound Dressings: Development of a Dual Layer Cotton Material Coated with Poly(Vinyl Alcohol)_Chitosan Nanofibers Incorporating Agrimonia eupatoria L. Extract. Molecules 2020; 26:molecules26010083. [PMID: 33375482 PMCID: PMC7795418 DOI: 10.3390/molecules26010083] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 12/20/2022] Open
Abstract
Wounds display particular vulnerability to microbial invasion and infections by pathogenic bacteria. Therefore, to reduce the risk of wound infections, researchers have expended considerable energy on developing advanced therapeutic dressings, such as electrospun membranes containing antimicrobial agents. Among the most used antimicrobial agents, medicinal plant extracts demonstrate considerable potential for clinical use, due primarily to their efficacy allied to relatively low incidence of adverse side-effects. In this context, the present work aimed to develop a unique dual-layer composite material with enhanced antibacterial activity derived from a coating layer of Poly(vinyl alcohol) (PVA) and Chitosan (CS) containing Agrimonia eupatoria L. (AG). This novel material has properties that facilitate it being electrospun above a conventional cotton gauze bandage pre-treated with 2,2,6,6-tetramethylpiperidinyl-1-oxy free radical (TEMPO). The produced dual-layer composite material demonstrated features attractive in production of wound dressings, specifically, wettability, porosity, and swelling capacity. Moreover, antibacterial assays showed that AG-incorporated into PVA_CS's coating layer could effectively inhibit Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa) growth. Equally important, the cytotoxic profile of the dual-layer material in normal human dermal fibroblast (NHDF) cells demonstrated biocompatibility. In summary, these data provide initial confidence that the TEMPO-oxidized cotton/PVA_CS dressing material containing AG extract demonstrates adequate mechanical attributes for use as a wound dressing and represents a promising approach to prevention of bacterial wound contamination.
Collapse
Affiliation(s)
- Cláudia Mouro
- FibEnTech Research Unit, Textile Department, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal;
| | - Colum P. Dunne
- Centre for Interventions in Infection, Inflammation & Immunity (4i), School of Medicine, University of Limerick, V94 T9PX Limerick, Ireland;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Textile Department, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal;
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
37
|
Biocompatible smart cellulose nanofibres for sustained drug release via pH and temperature dual-responsive mechanism. Carbohydr Polym 2020; 249:116876. [DOI: 10.1016/j.carbpol.2020.116876] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/22/2023]
|
38
|
Hu W, Wang Z, Zha Y, Gu X, You W, Xiao Y, Wang X, Zhang S, Wang J. High Flexible and Broad Antibacterial Nanodressing Induces Complete Skin Repair with Angiogenic and Follicle Regeneration. Adv Healthc Mater 2020; 9:e2000035. [PMID: 32378346 DOI: 10.1002/adhm.202000035] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/30/2020] [Accepted: 04/10/2020] [Indexed: 12/21/2022]
Abstract
Complete skin reconstruction is a hierarchically physiological assembly involving epidermis, dermis, vasculature, innervation, hair follicles, and sweat glands. Despite various wound dressings having been developed for skin regeneration, few works refer to the complete skin regeneration, particularly lacking for vasculatures and hair follicles. Herein, an instructive wound dressing that integrates the antibacterial property of quaternized chitin and the mechanical strength and biological multifunction of silk fibroin through layer-by-layer electrostatic self-assembly is designed and reported. The resultant dressings exhibit a nanofibrous structure ranging from 471.5 ± 212.1 to 756.9 ± 241.8 nm, suitable flexibility with tensile strength up to 4.47 ± 0.29 MPa, and broad-spectrum antibacterial activity against Escherichia coli and Staphylococcus aureus. More interestingly, the current dressing system remarkably accelerates in vivo vascular reconstruction within 15 days, and the number of regenerated hair follicles reaches up to 22 ± 4 mm-2, which is comparable to the normal tissue (27 ± 2 mm-2). Those crucial functions might originate from the combination between quaternized chitin and silk fibroin and the hierarchical structure of electrospun nanofiber. This work establishes an easy but effective pathway to design a multifunctional wound dressing for the complete skin regeneration.
Collapse
Affiliation(s)
- Weikang Hu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zijian Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Yao Zha
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xiang Gu
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Wenjie You
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
- Human Genetics Resource Preservation Center in Hubei, Zhongnan Hospital of Wuhan University, Wuhan, 430071, P. R. China
| | - Shengmin Zhang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Jianglin Wang
- Advanced Biomaterials and Tissue Engineering Center, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| |
Collapse
|
39
|
Liang J, Cui L, Li J, Guan S, Zhang K, Li J. Aloe vera: A Medicinal Plant Used in Skin Wound Healing. TISSUE ENGINEERING PART B-REVIEWS 2020; 27:455-474. [PMID: 33066720 DOI: 10.1089/ten.teb.2020.0236] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Skin injury is a major problem threatening human physical and mental health, and how to promote wound healing has been the focus. Developing new wound dressings is an important strategy in skin regeneration. Aloe vera is a medicinal plant with a long history, complex constituents, and various pharmacological activities. Many studies have shown that A. vera plays an important role in promoting wound healing. Adding A. vera to wound dressing has become an ideal way. This review will describe the process of skin injury and wound healing and analyze the role of A. vera in wound healing. In addition, the types of wound dressing and the applications of A. vera in wound dressing will be discussed.
Collapse
Affiliation(s)
- Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jiankang Li
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Shuaimeng Guan
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, P.R. China
| | - Jingan Li
- School of Materials Science and Engineering and Henan Key Laboratory of Advanced Magnesium Alloy, Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
40
|
Gunes OC, Ziylan Albayrak A. Antibacterial Polypeptide nisin containing cotton modified hydrogel composite wound dressings. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03429-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Khan A, Wang B, Ni Y. Chitosan-Nanocellulose Composites for Regenerative Medicine Applications. Curr Med Chem 2020; 27:4584-4592. [PMID: 31985365 DOI: 10.2174/0929867327666200127152834] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 06/29/2019] [Accepted: 12/24/2019] [Indexed: 11/22/2022]
Abstract
Regenerative medicine represents an emerging multidisciplinary field that brings together engineering methods and complexity of life sciences into a unified fundamental understanding of structure-property relationship in micro/nano environment to develop the next generation of scaffolds and hydrogels to restore or improve tissue functions. Chitosan has several unique physico-chemical properties that make it a highly desirable polysaccharide for various applications such as, biomedical, food, nutraceutical, agriculture, packaging, coating, etc. However, the utilization of chitosan in regenerative medicine is often limited due to its inadequate mechanical, barrier and thermal properties. Cellulosic nanomaterials (CNs), owing to their exceptional mechanical strength, ease of chemical modification, biocompatibility and favorable interaction with chitosan, represent an attractive candidate for the fabrication of chitosan/ CNs scaffolds and hydrogels. The unique mechanical and biological properties of the chitosan/CNs bio-nanocomposite make them a material of choice for the development of next generation bio-scaffolds and hydrogels for regenerative medicine applications. In this review, we have summarized the preparation method, mechanical properties, morphology, cytotoxicity/ biocompatibility of chitosan/CNs nanocomposites for regenerative medicine applications, which comprises tissue engineering and wound dressing applications.
Collapse
Affiliation(s)
- Avik Khan
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Baobin Wang
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Yonghao Ni
- Limerick Pulp and Paper Centre, Department of Chemical Engineering; University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
42
|
Naomi R, Fauzi MB. Cellulose/Collagen Dressings for Diabetic Foot Ulcer: A Review. Pharmaceutics 2020; 12:E881. [PMID: 32957476 PMCID: PMC7558961 DOI: 10.3390/pharmaceutics12090881] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic foot ulcer (DFU) is currently a global concern and it requires urgent attention, as the cost allocation by the government for DFU increases every year. This review was performed to provide scientific evidence on the advanced biomaterials that can be utilised as a first-line treatment for DFU patients. Cellulose/collagen dressings have a biological property on non-healing wounds, such as DFU. This review aims to analyse scientific-based evidence of cellulose/collagen dressing for DFU. It has been proven that the healing rate of cellulose/collagen dressing for DFU patients demonstrated a significant improvement in wound closure as compared to current standard or conventional dressings. It has been scientifically proven that cellulose/collagen dressing provides a positive effect on non-healing DFU. There is a high tendency for cellulose/collagen dressing to be used, as it highly promotes angiogenesis with a rapid re-epithelisation rate that has been proven effective in clinical trials.
Collapse
Affiliation(s)
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
43
|
Montaser A, Rehan M, El-Senousy W, Zaghloul S. Designing strategy for coating cotton gauze fabrics and its application in wound healing. Carbohydr Polym 2020; 244:116479. [DOI: 10.1016/j.carbpol.2020.116479] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/14/2020] [Accepted: 05/15/2020] [Indexed: 01/08/2023]
|
44
|
Daisy EAC, Rajendran NK, Houreld NN, Marraiki N, Elgorban AM, Rajan M. Curcumin and Gymnema sylvestre extract loaded graphene oxide-polyhydroxybutyrate‑sodium alginate composite for diabetic wound regeneration. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
45
|
Dharmalingam K, Anandalakshmi R. Functionalization of cellulose-based nanocomposite hydrogel films with zinc oxide complex and grapefruit seed extract for potential applications in treating chronic wounds. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Аbilova G, Makhayeva D, Irmukhametova G, Khutoryanskiy V. Chitosan based hydrogels and their use in medicine. CHEMICAL BULLETIN OF KAZAKH NATIONAL UNIVERSITY 2020. [DOI: 10.15328/cb1100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Chitosan is a natural biopolymer, polysaccharide, a product of chitin deacetylation. Chitosan is a non-toxic, biocompatible and biodegradable polymer with high biological activity and stability in the environment. In addition, chitosan is obtained from natural renewable resources and is an inexpensive substance. Due to all these properties, chitosan is widely used in practical medicine, for example, in the form of hydrogel dosage forms in combination with natural and synthetic polymers.
This review is focused on polymer hydrogel materials based on chitosan. Special attention is paid to the preparation and use of wound dressings for the treatment of wounds of various etiologies. The use of hydrogel wound dressings based on this polysaccharide allows to create a protective shell on the surface of various wounds, to prolong delivery of antibacterial agents, peptides and other active substances, which significantly increases the effectiveness of therapy. Bactericidal and sorption properties of chitosan-based hydrogels established in experimental and clinical studies are discussed.
Collapse
|
47
|
Yang L, Zhan C, Huang X, Hong L, Fang L, Wang W, Su J. Durable Antibacterial Cotton Fabrics Based on Natural Borneol-Derived Anti-MRSA Agents. Adv Healthc Mater 2020; 9:e2000186. [PMID: 32338449 DOI: 10.1002/adhm.202000186] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/12/2020] [Indexed: 11/10/2022]
Abstract
Borneol, a natural extract with unique bicyclic monoterpene structure, has attracted increasing attention due to its broad-spectrum antibacterial properties via membrane disruption mechanism. However, the negligible water solubility of borneol limits its antibacterial efficiency. Herein, borneol-based water-soluble antibacterial agents are designed and synthesized to combat multi-drug resistant bacteria. The integration of borneol with hydrophilic poly(N,N-dimethylethyl methacrylate) (PDMAEMA) polymer chains boosts the antibacterial capability of borneol against Gram-negative, Gram-positive, and even multi-drug resistant bacteria. Methicillin-resistant Staphylococcus aureus (MRSA) are completely killed upon treatment with 50 µg mL-1 of borneol-based polymers and Escherichia coli are annihilated at 39 µg mL-1 . It is further demonstrated that the borneol-based antibacterial agents can be grafted onto cotton fabrics as a nonleaching antibacterial agent, which have higher sustained antibacterial activity than cotton fabrics coated with the commercial quaternary ammonium finishing agents (AEM 5700). The functionalized fabrics with excellent bactericidal activity, especially against MRSA, may have great potential applications in managing hospital-acquired infections.
Collapse
Affiliation(s)
- Liu Yang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| | - Chengdong Zhan
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Xiangyue Huang
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Liangzhi Hong
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Liming Fang
- Department of Polymer Materials Science and EngineeringGuangdong Provincial Key Laboratory of Luminescence from Molecular AggregatesSouth China University of Technology Guangzhou 510640 China
| | - Wen Wang
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| | - Jianyu Su
- School of Food Science and EngineeringGuangdong Province Key Laboratory for Green Processing of Natural Products and Product SafetySouth China University of Technology Guangzhou 510640 China
| |
Collapse
|
48
|
Naskar A, Kim KS. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020; 12:E499. [PMID: 32486142 PMCID: PMC7356512 DOI: 10.3390/pharmaceutics12060499] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
49
|
Man E, Hoskins C. Towards advanced wound regeneration. Eur J Pharm Sci 2020; 149:105360. [PMID: 32361177 DOI: 10.1016/j.ejps.2020.105360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/22/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Wound management is a major contributor towards the economic burden placed upon the national health service (NHS), serving as an important target for the development of advanced therapeutic interventions. The economic expenditure of wound care for the NHS exceeds £5 billion per annum, thus presenting a significant opportunity for the introduction of alternative treatments in regards to their approach in tackling the ever increasing prevalence of wound management associated problems. As most wounds typically fall under the acute or chronic category, it is therefore necessary to design a therapeutic intervention capable of effectively resolving the pathologies associated with each problem. Such an intervention should be of increased economic viability and therapeutic effectiveness when compared to standardized treatments, thus helping to alleviate the financial burden imposed upon the NHS. The purpose of this review is to critically analyse the various aspects associated with wound management, detailing the fundamental concepts of dermal regeneration, whilst also providing an evaluation of the different materials and methods that can be utilised to achieve maximal wound regeneration. The primary aspects of this review revolve around the three concepts of antibacterial methodology, enhancement of dermal regeneration and the utilisation of a carrier medium to facilitate the regenerative process. Each aspect is explored, conveying its justifications as a target for dermal regeneration, whilst offering various solutions towards the fulfilment of a therapeutic design that is both effective and financially feasible.
Collapse
Affiliation(s)
- Ernest Man
- Department of Pure and Applied Chemistry, Faculty of Science, University of Strathclyde, Glasgow, Scotland, G1 1RD, United Kingdom
| | - Clare Hoskins
- Department of Pure and Applied Chemistry, Faculty of Science, University of Strathclyde, Glasgow, Scotland, G1 1RD, United Kingdom.
| |
Collapse
|
50
|
He H, Cheng M, Liang Y, Zhu H, Sun Y, Dong D, Wang S. Intelligent Cellulose Nanofibers with Excellent Biocompatibility Enable Sustained Antibacterial and Drug Release via a pH-Responsive Mechanism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:3518-3527. [PMID: 32091890 DOI: 10.1021/acs.jafc.9b06588] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Novel nanosized biomass-based pH-responsive cellulose nanofibers (CNF-PEI) with excellent biocompatibility were tailored by grafting polyethylenimine (PEI) onto carboxylated cellulose nanofibers (CNF-COOH); the active site (-COOH, 0.96 mmol/g) was anchored on cellulose nanofibers (CNFs) to introduce PEI with a high density (10.57 mmol/g) of amino groups. The as-prepared CNF-PEI not only maintained the good properties of CNFs but also possessed excellent biocompatibility and pH-responsive properties, offering interesting possibilities for pH-induced sustained drug release and medical dressing. The CNF-PEI showed rapid wettability conversion from hydrophilic, underwater superoleophobic (WCA = 20.7°, OCA = 159.3°) to hydrophobic, superoleophilic (WCA = 129.6°, OCA = 29.7°) in response to pH change from acidic conditions to alkaline conditions. The antibacterial activity of CNF-PEI toward Escherichia coli and Listeria monocytogenes was 100% and 94.6% under acidic conditions, respectively. Furthermore, the pH-responsive mechanism of CNF-PEI was revealed by XPS, 13C NMR, 1H NMR, and AFM analyses.
Collapse
Affiliation(s)
- Hui He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Meixiao Cheng
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yuting Liang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Hongxiang Zhu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yupei Sun
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Die Dong
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| |
Collapse
|