1
|
Kavitha K, Navaneethan D, Balagurunathan R, Subramaniam RT, Shaik MR, Guru A. Exploring the biocompatibility and healing activity of actinobacterial-enhanced reduced nano-graphene oxide in in vitro and in vivo model and induce bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways. Mol Biol Rep 2024; 51:702. [PMID: 38822942 DOI: 10.1007/s11033-024-09600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/01/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND The development of cost-effective, simple, environment-friendly biographene is an area of interest. To accomplish environmentally safe, benign culturing that has advantages over other methods to reduce the graphene oxide (GO), extracellular metabolites from actinobacteria associated with mushrooms were used for the first time. METHODS Bactericidal effect of GO against methicillin-resistant Staphylococcus aureus, antioxidant activity, and hydroxyapatite-like bone layer formation, gene expression analysis and appropriate biodegradation of the microbe-mediated synthesis of graphene was studied. RESULTS Isolated extracellular contents Streptomyces achromogenes sub sp rubradiris reduced nano-GO to graphene (rGO), which was further examined by spectrometry and suggested an efficient conversion and significant reduction in the intensity of all oxygen-containing moieties and shifted crystalline peaks. Electron microscopic results also suggested the reduction of GO layer. In addition, absence of significant toxicity in MG-63 cell line, intentional free radical scavenging prowess, liver and kidney histopathology, and Wistar rat bone regeneration through modulation of OPG/RANKL/RUNX2/ALP pathways show the feasibility of the prepared nano GO. CONCLUSIONS The study demonstrates the successful synthesis of biographene from actinobacterial extracellular metabolites, its potential biomedical applications, and its promising role in addressing health and environmental concerns.
Collapse
Affiliation(s)
- K Kavitha
- Department of Biotechnology Paavai Engineering College, Pachal, Namakkal, Tamil Nadu, 637018, India.
- Center for Research and Development, K.S.Rangasamy College of Technology, Tiruchengode, Namakkal, 637215, India.
| | - D Navaneethan
- Department of Chemistry, J.K.K. Nataraja College of Arts and Science, Komarapalayam, Namakkal, Tamil Nadu, 638183, India
| | - R Balagurunathan
- Research and Development, Vivekanandha Educational Institutions, Elayampalayam, Tiruchengode, Namakkal, Tamil Nadu, 637 205, India.
| | - Ramesh T Subramaniam
- Department of Physics, Faculty of Science, Center for Ionics University of Malaya, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh-11451, Saudi Arabia
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, 600 077, India
| |
Collapse
|
2
|
Xu Z, Wang B, Huang R, Guo M, Han D, Yin L, Zhang X, Huang Y, Li X. Efforts to promote osteogenesis-angiogenesis coupling for bone tissue engineering. Biomater Sci 2024; 12:2801-2830. [PMID: 38683241 DOI: 10.1039/d3bm02017g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Repair of bone defects exceeding a critical size has been always a big challenge in clinical practice. Tissue engineering has exhibited great potential to effectively repair the defects with less adverse effect than traditional bone grafts, during which how to induce vascularized bone formation has been recognized as a critical issue. Therefore, recently many studies have been launched to attempt to promote osteogenesis-angiogenesis coupling. This review summarized comprehensively and explored in depth current efforts to ameliorate the coupling of osteogenesis and angiogenesis from four aspects, namely the optimization of scaffold components, modification of scaffold structures, loading strategies for bioactive substances, and employment tricks for appropriate cells. Especially, the advantages and the possible reasons for every strategy, as well as the challenges, were elaborated. Furthermore, some promising research directions were proposed based on an in-depth analysis of the current research. This paper will hopefully spark new ideas and approaches for more efficiently boosting new vascularized bone formations.
Collapse
Affiliation(s)
- Zhiwei Xu
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Bingbing Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Ruoyu Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Mengyao Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| | - Di Han
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Lan Yin
- Key Laboratory of Advanced Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiaoyun Zhang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Yong Huang
- College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Rd, Haidian District, Beijing, 100083, China.
| |
Collapse
|
3
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
4
|
Yanli Z, Jiayao M, Chunqing Z, Yuting Z, Zhiyan Z, Yulin Z, Minghan L, Longquan S, Dehong Y, Wenjuan Y. MY-1-Loaded Nano-Hydroxyapatite Accelerated Bone Regeneration by Increasing Type III Collagen Deposition in Early-Stage ECM via a Hsp47-Dependent Mechanism. Adv Healthc Mater 2023; 12:e2300332. [PMID: 36999955 DOI: 10.1002/adhm.202300332] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/13/2023] [Indexed: 04/01/2023]
Abstract
The extracellular matrix (ECM) plays a crucial part in regulating stem cell function through its distinctive mechanical and chemical effect. Therefore, it is worth studying how to activate the driving force of osteoblast cells by dynamic changing of ECM and accelerate the bone regeneration. In this research, a novel peptide MY-1 is designed and synthesized. To achieve its sustained releasing, the nano-hydroxyapatite (nHA) is chosen as the carrier of MY-1 by mixed adsorption. The results reveal that the sustainable releasing of MY-1 regulates the synthesis and secretion of ECM from rat bone marrow mesenchymal stem cells (rBMSCs), which promotes the cell migration and osteogenic differentiation in the early stage of bone regeneration. Further analyses demonstrate that MY-1 increases the expression and nuclear translocation of β-catenin, and then upregulates the level of heat shock protein 47 (Hsp47), thereby accelerating the synthesis and secretion of type III collagen (Col III) at the early stage. Finally, the promoted rapid transformation of Col III to Col I at late stage benefits the bone regeneration. Hence, this study can provide a theoretical basis for the local application of MY-1 in bone regeneration.
Collapse
Affiliation(s)
- Zhang Yanli
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Mo Jiayao
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zheng Chunqing
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zeng Yuting
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhou Zhiyan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Zhang Yulin
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Li Minghan
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Shao Longquan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yang Dehong
- Department of Orthopedics - Spinal Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| | - Yan Wenjuan
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China
| |
Collapse
|
5
|
Guo X, Song P, Li F, Yan Q, Bai Y, He J, Che Q, Cao H, Guo J, Su Z. Research Progress of Design Drugs and Composite Biomaterials in Bone Tissue Engineering. Int J Nanomedicine 2023; 18:3595-3622. [PMID: 37416848 PMCID: PMC10321437 DOI: 10.2147/ijn.s415666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023] Open
Abstract
Bone, like most organs, has the ability to heal naturally and can be repaired slowly when it is slightly injured. However, in the case of bone defects caused by diseases or large shocks, surgical intervention and treatment of bone substitutes are needed, and drugs are actively matched to promote osteogenesis or prevent infection. Oral administration or injection for systemic therapy is a common way of administration in clinic, although it is not suitable for the long treatment cycle of bone tissue, and the drugs cannot exert the greatest effect or even produce toxic and side effects. In order to solve this problem, the structure or carrier simulating natural bone tissue is constructed to control the loading or release of the preparation with osteogenic potential, thus accelerating the repair of bone defect. Bioactive materials provide potential advantages for bone tissue regeneration, such as physical support, cell coverage and growth factors. In this review, we discuss the application of bone scaffolds with different structural characteristics made of polymers, ceramics and other composite materials in bone regeneration engineering and drug release, and look forward to its prospect.
Collapse
Affiliation(s)
- Xinghua Guo
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Pan Song
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Feng Li
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Qihao Yan
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Jincan He
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou, 510310, People’s Republic of China
| | - Qishi Che
- Guangzhou Rainhome Pharm & Tech Co., Ltd, Science City, Guangzhou, 510663, People’s Republic of China
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan, 528458, People’s Republic of China
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou, 510006, People’s Republic of China
| |
Collapse
|
6
|
Ilhan M, Kilicarslan M, Alcigir ME, Bagis N, Ekim O, Orhan K. Clindamycin phosphate and bone morphogenetic protein-7 loaded combined nanoparticle-graft and nanoparticle-film formulations for alveolar bone regeneration - An in vitro and in vivo evaluation. Int J Pharm 2023; 636:122826. [PMID: 36918117 DOI: 10.1016/j.ijpharm.2023.122826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/03/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
Commonly utilized techniques for healing alveolar bone destruction such as the use of growth factors, suffering from short half-life, application difficulties, and the ability to achieve bioactivity only in the presence of high doses of growth factor. The sustained release of growth factors through a scaffold-based delivery system offers a promising and innovative tool in dentistry. Furthermore, it is suggested to guide the host response by using antimicrobials together with growth factors to prevent recovery and achieve ideal regeneration. Herein, the aim was to prepare and an in vitro - in vivo evaluation of bone morphogenetic protein 7 (BMP-7) and clindamycin phosphate (CDP) loaded polymeric nanoparticles, and their loading into the alginate-chitosan polyelectrolyte complex film or alloplastic graft to accelerate hard tissue regeneration. PLGA nanoparticles containing CDP and BMP-7, separately or together, were prepared using the double emulsion solvent evaporation technique. Through in vitro assays, it was revealed that spherical particles were homogeneously distributed in the combination formulations, and sustained release could be achieved for >12 weeks with all formulations. Also, results from the micro-CT and histopathological analyses indicated that CDP and BMP-7 loaded nanoparticle-film formulations were more effective in treatment than the nanoparticle loaded grafts.
Collapse
Affiliation(s)
- Miray Ilhan
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Türkiye; Duzce University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 81620 Duzce, Türkiye.
| | - Muge Kilicarslan
- Ankara University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06560 Ankara, Türkiye.
| | - Mehmet Eray Alcigir
- Kirikkale University, Faculty of Veterinary Medicine, Department of Pathology, 71450 Kirikkale, Türkiye.
| | - Nilsun Bagis
- Ankara University, Faculty of Dentistry, Department of Periodontology, 06560 Ankara, Türkiye.
| | - Okan Ekim
- Ankara University, Faculty of Veterinary Medicine, Department of Anatomy, 06110 Ankara, Türkiye.
| | - Kaan Orhan
- Ankara University, Faculty of Dentistry, Department of Dentomaxillofacial Radiology, 06560 Ankara, Türkiye.
| |
Collapse
|
7
|
Zhang QY, Tan J, Nie R, Song YT, Zhou XL, Feng ZY, Huang K, Zou CY, Yuan QJ, Zhao LM, Zhang XZ, Jiang YL, Liu LM, Li-Ling J, Xie HQ. Acceleration of wound healing by composite small intestinal submucosa hydrogels through immunomodulation. COMPOSITES PART B: ENGINEERING 2023; 254:110550. [DOI: 10.1016/j.compositesb.2023.110550] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
|
8
|
Wang T, Liu K, Wang J, Xiang G, Hu X, Bai H, Lei W, Tao TH, Feng Y. Spatiotemporal Regulation of Injectable Heterogeneous Silk Gel Scaffolds for Accelerating Guided Vertebral Repair. Adv Healthc Mater 2023; 12:e2202210. [PMID: 36465008 DOI: 10.1002/adhm.202202210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Osteoporotic vertebral fracture is jeopardizing the health of the aged population around the world, while the hypoxia microenvironment and oxidative damage of bone defect make it difficult to perform effective tissue regeneration. The balance of oxidative stress and the coupling of vessel and bone ingrowth are critical for bone regeneration. In this study, an injectable heterogeneous silk gel scaffold which can spatiotemporally and sustainedly release bone mesenchymal stem cell-derived small extracellular vesicles, HIF-1α pathway activator, and inhibitor is developed for bone repair and vertebral reinforcement. The initial enhancement of HIF-1α upregulates the expression of VEGF to promote angiogenesis, and the balance of reactive oxygen species level is regulated to effectively eliminate oxidative damage and abnormal microenvironment. The subsequent inhibition of HIF-1α avoids the overexpression of VEGF and vascular overgrowth. Meanwhile, complex macroporous structures and suitable mechanical support can be obtained within the silk gel scaffolds, which will promote in situ bone regeneration. These findings provide a new clinical translation strategy for osteoporotic vertebral augmentation on basis of hypoxia microenvironment improvement.
Collapse
Affiliation(s)
- Tianji Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Keyin Liu
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Jing Wang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Geng Xiang
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaofan Hu
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Hao Bai
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wei Lei
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Tiger H Tao
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 200031, China.,Institute of Brain-Intelligence Technology, Zhangjiang Laboratory, Shanghai, 200031, China.,Shanghai Research Center for Brain Science and Brain-Inspired Intelligence, Shanghai, 200031, China
| | - Yafei Feng
- Department of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
9
|
Chen L, Huang X, Chen H, Bao D, Su X, Wei L, Hu N, Huang W, Xiang Z. Hypoxia-mimicking scaffolds with controlled release of DMOG and PTHrP to promote cartilage regeneration via the HIF-1α/YAP signaling pathway. Int J Biol Macromol 2023; 226:716-729. [PMID: 36526060 DOI: 10.1016/j.ijbiomac.2022.12.094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/25/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
Efficiently driving chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) while avoiding undesired hypertrophy remains a challenge in the field of cartilage tissue engineering. Here, we report the sequential combined application of dimethyloxalylglycine (DMOG) and parathyroid hormone-related protein (PTHrP) to facilitate chondrogenesis and prevent hypertrophy. To support their delivery, poly(lactic-co-glycolic acid) (PLGA) microspheres were fabricated using a double emulsion method. Subsequently, these microspheres were incorporated onto a poly(l-lactic acid) (PLLA) scaffold with a highly porous structure, high interconnectivity and collagen-like nanofiber architecture to construct a microsphere-based scaffold delivery system. These functional constructs demonstrated that the spatiotemporally controlled release of DMOG and PTHrP effectively mimicked the hypoxic microenvironment to promote chondrogenic differentiation with phenotypic stability in a 3D culture system, which had a certain correlation with the interaction between hypoxia-inducible Factor 1 alpha (HIF-1α) and yes-associated protein (YAP). Subcutaneous implantation in nude mice revealed that the constructs were able to maintain cartilage formation in vivo at 4 and 8 weeks. Overall, this study indicated that DMOG and PTHrP controlled-release PLGA microspheres incorporated with PLLA nanofibrous scaffolds provided an advantageous 3D hypoxic microenvironment for efficacious and clinically relevant cartilage regeneration and is a promising treatment for cartilage injury.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xiao Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Dingsu Bao
- Department of Orthopedics, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Xudong Su
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Li Wei
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
10
|
Shen M, Wang L, Gao Y, Feng L, Xu C, Li S, Wang X, Wu Y, Guo Y, Pei G. 3D bioprinting of in situ vascularized tissue engineered bone for repairing large segmental bone defects. Mater Today Bio 2022; 16:100382. [PMID: 36033373 PMCID: PMC9403505 DOI: 10.1016/j.mtbio.2022.100382] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/18/2022] Open
Abstract
Large bone defects remain an unsolved clinical challenge because of the lack of effective vascularization in newly formed bone tissue. 3D bioprinting is a fabrication technology with the potential to create vascularized bone grafts with biological activity for repairing bone defects. In this study, vascular endothelial cells laden with thermosensitive bio-ink were bioprinted in situ on the inner surfaces of interconnected tubular channels of bone mesenchymal stem cell-laden 3D-bioprinted scaffolds. Endothelial cells exhibited a more uniform distribution and greater seeding efficiency throughout the channels. In vitro, the in situ bioprinted endothelial cells can form a vascular network through proliferation and migration. The in situ vascularized tissue-engineered bone also resulted in a coupling effect between angiogenesis and osteogenesis. Moreover, RNA sequencing analysis revealed that the expression of genes related to osteogenesis and angiogenesis is upregulated in biological processes. The in vivo 3D-bioprinted in situ vascularized scaffolds exhibited excellent performance in promoting new bone formation in rat calvarial critical-sized defect models. Consequently, in situ vascularized tissue-engineered bones constructed using 3D bioprinting technology have a potential of being used as bone grafts for repairing large bone defects, with a possible clinical application in the future. 3D bioprinting was used to fabricate in situ vascularized tissue engineered bone. In situ bioprinted endothelial cells exhibited uniform distribution and greater seeding efficiency. 3D-bioprinted scaffold produced coupling between angiogenesis and osteogenesis.
Collapse
Key Words
- 3D bioprinted BMSCs-laden GelMA hydrogel scaffold, (GB)
- 3D bioprinting
- 3D dual-extrusion bioprinted BMSCs-laden GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (GB-3PR)
- 3D dual-extrusion bioprinted GelMA hydrogel and RAOECs-laden 3P hydrogel scaffold, (G-3PR)
- 3D printed GelMA hydrogel scaffold, (G)
- 4′,6-diamidino-2-phenylindole, (DAPI)
- Alizarin red S, (ARS)
- Alkaline phosphatase, (ALP)
- Dulbecco's modified Eagle's medium, (DMEM)
- Dulbecco's phosphate-buffered saline, (DPBS)
- Fourier-transform infrared, (FTIR)
- In situ vascularization
- Large segmental bone defects
- PLA-PEG-PLA, (3P)
- RNA sequencing Analysis
- Tissue engineering
- analysis of variance, (ANOVA)
- bone mesenchymal stem cells, (BMSCs)
- bone mineral density, (BMD)
- bone volume to tissue volume, (BV/TV)
- complementary DNA, (cDNA)
- differentially expressed genes, (DEGs)
- endothelial cells, (ECs)
- ethylenediamine tetraacetic acid, (EDTA)
- extracellular matrix, (ECM)
- fetal bovine serum, (FBS)
- gelatin methacryloyl, (GelMA)
- gene ontology, (GO)
- glyceraldehyde-3-phosphate dehydrogenase, (GAPDH)
- green fluorescent protein, (GFP)
- hematoxylin and eosin, (H&E)
- lithium phenyl-2,4,6-trimethylbenzoylphosphinate, (LAP)
- micro-computed tomography, (micro-CT)
- nuclear magnetic resonance, (NMR)
- optical density, (OD)
- paraformaldehyde, (PFA)
- phosphate-buffered saline, (PBS)
- polyethylene glycol, (PEG)
- polylactic acid, (PLA)
- polyvinylidene fluoride, (PVDF)
- radioimmunoprecipitation assay, (RIPA)
- rat aortic endothelial cells, (RAOECs)
- real-time polymerase chain reaction, (RT-PCR)
- standard deviation, (SD)
- tissue-engineered bone, (TEB)
- tris buffered saline with Tween-20, (TBST)
Collapse
Affiliation(s)
- Mingkui Shen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yi Gao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chuangye Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sijing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaohu Wang
- Department of Orthopedics, Affiliated to Zhengzhou University, Zhengzhou, 450007, China
| | - Yulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yao Guo
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author.
| |
Collapse
|
11
|
Li D, Xie J, Qiu Y, Zhang S, Chen J. Multifunctional Mesoporous Silica Nanoparticles Reinforced Silk Fibroin Composite with Antibacterial and Osteogenic Effects for Infectious Bone Rehabilitation. Int J Nanomedicine 2022; 17:5661-5678. [PMID: 36457548 PMCID: PMC9707390 DOI: 10.2147/ijn.s387347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/04/2022] [Indexed: 09/05/2023] Open
Abstract
BACKGROUND Existing implant materials cannot meet the essential multifunctional requirements of repairing infected bone defects, such as antibacterial and osteogenesis abilities. A promising strategy to develop a versatile biomimicry composite of the natural bone structure may be accomplished by combining a multifunctional nanoparticle with an organic scaffold. METHODS In this study, a quaternary ammonium silane-modified mesoporous silica containing nano silver (Ag@QHMS) was successfully synthesized and further combined with silk fibroin (SF) to fabricate the multifunctional nano-reinforced scaffold (SF-Ag@QHMS) using the freeze-drying method. Furthermore, the antibacterial and osteogenic effects of this composite were evaluated in vitro and in vivo. RESULTS SF-Ag@QHMS inherited a three-dimensional porous structure (porosity rate: 91.90 ± 0.62%) and better mechanical characteristics (2.11 ± 0.06 kPa) than that of the SF scaffold (porosity rate: 91.62 ± 1.65%; mechanic strength: 2.02 ± 0.01 kPa). Simultaneously, the introduction of versatile nanoparticles has provided the composite with additional antibacterial ability against Porphyromonas gingivalis, which can be maintained for 15 days. Furthermore, the expression of osteogenic-associated factors was up-regulated due to the silver ions eluting from the composite scaffold. The in vivo micro-CT and histological results indicated that the new bone formation was not only localized around the border of the defect but also arose more in the center with the support of the composite. CONCLUSION The multifunctional silver-loaded mesoporous silica enhanced the mechanical strength of the composite while also ensuring greater and sustained antibacterial and osteogenic properties, allowing the SF-Ag@QHMS composite to be used to repair infected bone defects.
Collapse
Affiliation(s)
- Dexiong Li
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jing Xie
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yubei Qiu
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Fujian Key Laboratory of Fujian College and University, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Sihui Zhang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| | - Jiang Chen
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
12
|
Khan HM, Liao X, Sheikh BA, Wang Y, Su Z, Guo C, Li Z, Zhou C, Cen Y, Kong Q. Smart biomaterials and their potential applications in tissue engineering. J Mater Chem B 2022; 10:6859-6895. [PMID: 36069198 DOI: 10.1039/d2tb01106a] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Smart biomaterials have been rapidly advancing ever since the concept of tissue engineering was proposed. Interacting with human cells, smart biomaterials can play a key role in novel tissue morphogenesis. Various aspects of biomaterials utilized in or being sought for the goal of encouraging bone regeneration, skin graft engineering, and nerve conduits are discussed in this review. Beginning with bone, this study summarizes all the available bioceramics and materials along with their properties used singly or in conjunction with each other to create scaffolds for bone tissue engineering. A quick overview of the skin-based nanocomposite biomaterials possessing antibacterial properties for wound healing is outlined along with skin regeneration therapies using infrared radiation, electrospinning, and piezoelectricity, which aid in wound healing. Furthermore, a brief overview of bioengineered artificial skin grafts made of various natural and synthetic polymers has been presented. Finally, by examining the interactions between natural and synthetic-based biomaterials and the biological environment, their strengths and drawbacks for constructing peripheral nerve conduits are highlighted. The description of the preclinical outcome of nerve regeneration in injury healed with various natural-based conduits receives special attention. The organic and synthetic worlds collide at the interface of nanomaterials and biological systems, producing a new scientific field including nanomaterial design for tissue engineering.
Collapse
Affiliation(s)
- Haider Mohammed Khan
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Xiaoxia Liao
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Bilal Ahmed Sheikh
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Yixi Wang
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhixuan Su
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Chuan Guo
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Changchun Zhou
- College of Biomedical Engineering, Sichuan University, Chengdu 610064, China.,National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610064, China.
| | - Ying Cen
- Department of Burn and Plastic Surgery, West China School of Medicine, West China Hospital, Sichuan University, 610041, Chengdu, China.
| | - Qingquan Kong
- Department of Orthopedics, West China Hospital, Sichuan University, 610041, Chengdu, China.
| |
Collapse
|
13
|
Shen M, Wang L, Feng L, Gao Y, Li S, Wu Y, Xu C, Pei G. bFGF-Loaded Mesoporous Silica Nanoparticles Promote Bone Regeneration Through the Wnt/β-Catenin Signalling Pathway. Int J Nanomedicine 2022; 17:2593-2608. [PMID: 35698561 PMCID: PMC9188412 DOI: 10.2147/ijn.s366926] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/01/2022] [Indexed: 12/22/2022] Open
Abstract
Background Bone defects remain an unsolved clinical problem due to the lack of effective osteogenic induction protocols. Nanomaterials play an important role in bone defect repair by stimulating osteogenesis. However, constructing an effective bioactive nanomaterial remains a substantial challenge. Methods In this study, mesoporous silica nanoparticles (MSNs) were prepared and used as nanocarriers for basic fibroblast growth factor (bFGF). The characteristics and biological properties of the synthetic bFGF@MSNs were tested. The osteogenic effects of the particles on the behavior of MC3T3-E1 cells were investigated in vitro. In addition, the differentially expressed genes during induction of osteogenesis were analyzed by transcriptomic sequencing. Radiological and histological observations were carried out to determine bone regeneration capability in a distal femur defect model. Results Achieving bFGF sustained release, bFGF@MSNs had uniform spherical morphology and good biocompatibility. In vitro osteogenesis induction experiments showed that bFGF@MSNs exhibited excellent osteogenesis performance, with upregulation of osteogenesis-related genes (RUNX2, OCN, Osterix, ALP). Transcriptomic sequencing revealed that the Wnt/β-catenin signalling pathway could be activated in regulation of biological processes. In vivo, bone defect repair experiments showed enhanced bone regeneration, as indicated by radiological and histological analysis, after the application of bFGF@MSNs. Conclusion bFGF@MSNs can promote bone regeneration by activating the Wnt/β-catenin signalling pathway. These particles are expected to become a potential therapeutic bioactive material for clinical application in repairing bone defects in the future.
Collapse
Affiliation(s)
- Mingkui Shen
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Lulu Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Li Feng
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Yi Gao
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Sijing Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Yulan Wu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| | - Chuangye Xu
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
- Correspondence: Chuangye Xu; Guoxian Pei, Email ;
| | - Guoxian Pei
- School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, People’s Republic of China
| |
Collapse
|
14
|
Wu XY, Zhu YM, Qi Y, Xu WW, Jing-Zhai. Erythropoietin, as a biological macromolecule in modification of tissue engineered constructs: A review. Int J Biol Macromol 2021; 193:2332-2342. [PMID: 34793816 DOI: 10.1016/j.ijbiomac.2021.11.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022]
Abstract
In recent years, tissue engineering has emerged as a promising approach to address limitations of organ transplantation. The ultimate goal of tissue engineering is to provide scaffolds that closely mimic the physicochemical and biological cues of native tissues' extracellular matrix. In this endeavor, new generation of scaffolds have been designed that utilize the incorporation of signaling molecules in order to improve cell recruitment, enhance angiogenesis, exert healing activities, and increase the engraftment of the scaffolds. Among different signaling molecules, the role of erythropoietin (EPO) in regenerative medicine is increasingly being appreciated. It is a biological macromolecule which can prevent programed cell death, modulate inflammation, induce cell proliferation, and provide tissue protection in different disease models. In this review, we have outlined and critically analyzed different techniques of scaffolds' modification with EPO or EPO-loaded nanoparticles. We have also explored different strategies for the incorporation of EPO into scaffolds. Non-hematopoietic functions of EPO have also been discussed. Finalizing with detailed discussion surrounding the applications, challenges, and future perspectives of EPO-modified scaffolds in regenerative medicine.
Collapse
Affiliation(s)
- Xiao-Yu Wu
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Yi-Miao Zhu
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Yang Qi
- First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210046, China
| | - Wen-Wen Xu
- Department of Gynaecology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| | - Jing-Zhai
- Department of Surgical Oncology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
15
|
Roig-Sanchez S, Torrecilla O, Floriach-Clark J, Parets S, Levkin PA, Roig A, Laromaine A. One-Step Biosynthesis of Soft Magnetic Bacterial Cellulose Spheres with Localized Nanoparticle Functionalization. ACS APPLIED MATERIALS & INTERFACES 2021; 13:55569-55576. [PMID: 34766498 PMCID: PMC8631704 DOI: 10.1021/acsami.1c17752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Actuated structures are becoming relevant in medical fields; however, they call for flexible/soft-base materials that comply with biological tissues and can be synthesized in simple fabrication steps. In this work, we extend the palette of techniques to afford soft, actuable spherical structures taking advantage of the biosynthesis process of bacterial cellulose. Bacterial cellulose spheres (BCS) with localized magnetic nanoparticles (NPs) have been biosynthesized using two different one-pot processes: in agitation and on hydrophobic surface-supported static culture, achieving core-shell or hollow spheres, respectively. Magnetic actuability is conferred by superparamagnetic iron oxide NPs (SPIONs), and their location within the structure was finely tuned with high precision. The size, structure, flexibility and magnetic response of the spheres have been characterized. In addition, the versatility of the methodology allows us to produce actuated spherical structures adding other NPs (Au and Pt) in specific locations, creating Janus structures. The combination of Pt NPs and SPIONs provides moving composite structures driven both by a magnetic field and a H2O2 oxidation reaction. Janus Pt/SPIONs increased by five times the directionality and movement of these structures in comparison to the controls.
Collapse
Affiliation(s)
- Soledad Roig-Sanchez
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Oriol Torrecilla
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Jordi Floriach-Clark
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sebastià Parets
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Pavel A. Levkin
- Institute
of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen 76344, Germany
| | - Anna Roig
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Anna Laromaine
- Institut
de Ciència de Materials de Barcelona, ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
16
|
Liu L, Shang Y, Li C, Jiao Y, Qiu Y, Wang C, Wu Y, Zhang Q, Wang F, Yang Z, Wang L. Hierarchical Nanostructured Electrospun Membrane with Periosteum-Mimic Microenvironment for Enhanced Bone Regeneration. Adv Healthc Mater 2021; 10:e2101195. [PMID: 34350724 DOI: 10.1002/adhm.202101195] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/17/2021] [Indexed: 12/11/2022]
Abstract
An ideal periosteum substitute should be able to mimic the periosteum microenvironment that continuously provides growth factors, recruits osteoblasts, and subsequent extracellular matrix (ECM) mineralization to accelerate bone regeneration. Here, a calcium-binding peptide-loaded poly(ε-caprolactone) (PCL) electrospun membrane modified by the shish-kebab structure that can mimic the periosteum microenvironment was developed as a bionic periosteum. The calcium-binding peptide formed by the negatively charged heptaglutamate domain (E7) in the E7-BMP-2 with calcium ion in the tricalcium phosphate sol (TCP sol) through electrostatic chelation not only extended the release cycle of E7-BMP-2 but also promoted the biomineralization of the bionic periosteum. Cell experiments showed that the bionic periosteum could significantly improve the osteogenic differentiation of the rat-bone marrow-derived mesenchymal stem cells (rBMSCs) through both chemical composition and physical structure. The in vivo evaluation of the bionic periosteum confirmed the inherent osteogenesis of this periosteum microenvironment, which could promote the regeneration of vascularized bone tissue. Therefore, the hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment is a promising periosteum substitute for the treatment of bone defects.
Collapse
Affiliation(s)
- Laijun Liu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yuna Shang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin 300071 China
| | - Chaojing Li
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yongjie Jiao
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yanchen Qiu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Chengyi Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Yuge Wu
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Qiuyun Zhang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| | - Fujun Wang
- Key Laboratory of Textile Industry for Biomedical Textile Materials and Technology Donghua University Shanghai 201620 China
| | - Zhimou Yang
- State Key Laboratory of Medicinal Chemical Biology Key Laboratory of Bioactive Materials Ministry of Education and College of Life Sciences Nankai University Tianjin 300071 China
| | - Lu Wang
- Key Laboratory of Textile Science and Technology of Ministry of Education College of Textiles Donghua University Shanghai 201620 China
| |
Collapse
|
17
|
王 聪, 桑 伟, 陈 燕, 宋 滇. [Electrospun PLGA scaffold loaded with osteogenic growth peptide accelerates cranial bone repair in rats]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1183-1190. [PMID: 34549709 PMCID: PMC8527238 DOI: 10.12122/j.issn.1673-4254.2021.08.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVE To study the feasibility of electrospun poly(D, L-lactide-co-glycolide) (PLGA) scaffold loaded with osteogenic growth peptide (OGP) for bone tissue engineering. METHODS PLGA scaffolds were prepared by electrospinning PLGA solution without OGP(control group)or with 0.1%, 0.2%and 0.4%OGP(0.1%OGP@PLGA, 0.2%OGP@PLGA, and 0.4%OGP@PLGA scaffolds, respectively).The microstructure of the scaffolds was observed by scanning electron microscopy(SEM).The scaffolds were soaked in PBS to confirm the release pattern of OGP.The biocompatibility of the scaffolds was evaluated using CCK-8 assay and live/dead staining after a 7-day coculture with rat bone marrow-derived mesenchymal stem cells(BMSCs).ALP assay and ARS staining were used to evaluate osteoinduction capacity of the scaffolds co-cultured with rat BMSCs for 14 days.In a male SD rat model of skull defect(5 mm in diameter), bone defect repair was evaluated 8 weeks after implantation of the scaffolds using Micro-CT, HE and Masson staining. RESULTS The electrospun scaffolds had a fibrous structure similar to extracellular matrix(ECM)and were capable of sustained release of OGP for at least one month.Co-culture with 0.2%OGP@PLGA and 0.4%OGP@PLGA scaffolds, as compared with pure PLGA scaffold, significantly promoted the growth of rat BMSCs ((P < 0.01).The cells co-cultured with 0.4%OGP@PLGA scaffold showed the highest ALP activity and the greatest number of calcium nodules, indicating its strong osteoinduction ability (P < 0.01).Micro-CT and HE and Masson staining results showed that 0.4%OGP@PLGA scaffold had significantly better ability for promoting bone repair than the other two OGP-loaded scaffolds(P < 0.01). CONCLUSION The electrospun PLGA scaffold loaded with OGP effectively mimics the structure of ECM and has a good biocompatibility and osteoinduction ability, suggesting its potential as a new bone tissue engineering scaffold for bone defect repair.
Collapse
Affiliation(s)
- 聪 王
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 伟林 桑
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| | - 燕敏 陈
- 上海市第一人民医院教育处, 上海 201620Department of Education, Shanghai First People′s Hospital, Shanghai 201620, China
| | - 滇文 宋
- 南京医科大学附属上海一院临床医学院骨科, 上海 201620Department of Orthopedics, Shanghai General Hospital of Nanjing Medical University, Shanghai 201620, China
| |
Collapse
|
18
|
Pan P, Yue Q, Li J, Gao M, Yang X, Ren Y, Cheng X, Cui P, Deng Y. Smart Cargo Delivery System based on Mesoporous Nanoparticles for Bone Disease Diagnosis and Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2004586. [PMID: 34165902 PMCID: PMC8224433 DOI: 10.1002/advs.202004586] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/11/2021] [Indexed: 05/05/2023]
Abstract
Bone diseases constitute a major issue for modern societies as a consequence of progressive aging. Advantages such as open mesoporous channel, high specific surface area, ease of surface modification, and multifunctional integration are the driving forces for the application of mesoporous nanoparticles (MNs) in bone disease diagnosis and treatment. To achieve better therapeutic effects, it is necessary to understand the properties of MNs and cargo delivery mechanisms, which are the foundation and key in the design of MNs. The main types and characteristics of MNs for bone regeneration, such as mesoporous silica (mSiO2 ), mesoporous hydroxyapatite (mHAP), mesoporous calcium phosphates (mCaPs) are introduced. Additionally, the relationship between the cargo release mechanisms and bone regeneration of MNs-based nanocarriers is elucidated in detail. Particularly, MNs-based smart cargo transport strategies such as sustained cargo release, stimuli-responsive (e.g., pH, photo, ultrasound, and multi-stimuli) controllable delivery, and specific bone-targeted therapy for bone disease diagnosis and treatment are analyzed and discussed in depth. Lastly, the conclusions and outlook about the design and development of MNs-based cargo delivery systems in diagnosis and treatment for bone tissue engineering are provided to inspire new ideas and attract researchers' attention from multidisciplinary areas spanning chemistry, materials science, and biomedicine.
Collapse
Affiliation(s)
- Panpan Pan
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Qin Yue
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610051, China
| | - Juan Li
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Meiqi Gao
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xuanyu Yang
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Yuan Ren
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Xiaowei Cheng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Penglei Cui
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Yonghui Deng
- Department of Chemistry, Department of Gastroenterology, Zhongshan Hospital of Fudan University, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
19
|
Lopes SV, Collins MN, Reis RL, Oliveira JM, Silva-Correia J. Vascularization Approaches in Tissue Engineering: Recent Developments on Evaluation Tests and Modulation. ACS APPLIED BIO MATERIALS 2021; 4:2941-2956. [DOI: 10.1021/acsabm.1c00051] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Soraia V. Lopes
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Maurice N. Collins
- Bernal Institute, School of Engineering, University of Limerick, Limerick V94 T9PX, Ireland
| | - Rui L. Reis
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Silva-Correia
- 3B’s Research Group, Research Institute on Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, Guimarães 4805-017, Portugal
- ICVS/3B’s − PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
20
|
Platelet lysates-based hydrogels incorporating bioactive mesoporous silica nanoparticles for stem cell osteogenic differentiation. Mater Today Bio 2021; 9:100096. [PMID: 33665604 PMCID: PMC7903011 DOI: 10.1016/j.mtbio.2021.100096] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Scaffolds for bone tissue regeneration should provide the right cues for stem cell adhesion and proliferation, but also lead to their osteogenic differentiation. Hydrogels of modified platelet lysates (PLMA) show the proper mechanical stability for cell encapsulation and contain essential bioactive molecules required for cell maintenance. We prepared a novel PLMA-based nanocomposite for bone repair and regeneration capable of releasing biofactors to induce osteogenic differentiation. Human bone marrow-derived mesenchymal stem cells (hBM-MSCs) were encapsulated in PLMA hydrogels containing bioactive mesoporous silica nanoparticles previously loaded with dexamethasone and functionalized with calcium and phosphate ions. After 21 d of culture, hBM-MSCs remained viable, presented a stretched morphology, and showed signs of osteogenic differentiation, namely the presence of significant amounts of alkaline phosphatase, bone morphogenic protein-2 and osteopontin, hydroxyapatite, and calcium nodules. Developed for the first time, PLMA/MSNCaPDex nanocomposites were able to guide the differentiation of hBM-MSCs without any other osteogenic supplementation.
Collapse
|
21
|
Tavares MT, Gaspar VM, Monteiro MV, Farinha JPS, Baleizao C, Mano J. GelMA/bioactive silica nanocomposite bioinks for stem cell osteogenic differentiation. Biofabrication 2021; 13. [PMID: 33455952 DOI: 10.1088/1758-5090/abdc86] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/15/2021] [Indexed: 01/12/2023]
Abstract
Leveraging 3D bioprinting for processing stem cell-laden biomaterials has unlocked a tremendous potential for fabricating living 3D constructs for bone tissue engineering. Even though several bioinks developed to date display suitable physicochemical properties for stem cell seeding and proliferation, they generally lack the nanosized minerals present in native bone bioarchitecture. To enable the bottom-up fabrication of biomimetic 3D constructs for bioinstructing stem cells pro-osteogenic differentiation, herein we developed multi-bioactive nanocomposite bioinks that combine the organic and inorganic building blocks of bone. For the organic component gelatin methacrylate (GelMA), a photocrosslinkable denaturated collagen derivative used for 3D bioprinting was selected due to its rheological properties display of cell adhesion moities to which bone tissue precursors such as human bone marrow derived mesenchymal stem cells (hBM-MSCs) can attach to. The inorganic building block was formulated by incorporating mesoporous silica nanoparticles functionalized with calcium, phosphate and dexamethasone (MSNCaPDex), which previously proven to induce osteogenic differentiation. The newly formulated photocrosslinkable nanocomposite GelMA bioink incorporating MSNCaPDex nanoparticles and laden with hBM-MSCs was sucessfully processed into a 3D bioprintable construct with structural fidelity and well dispersed nanoparticles throughout the hydrogel matrix. These nanocomposite constructs could induce the deposition of apatite in vitro, thus showing attractive bioactivity properties. Viability and differentiation studies showed that hBM-MSCs remained viable and exhibited osteogenic differentiation biomarkers when incorporated in GelMA/MSNCaPDex constructs and without requiring further biochemical nor mechanical stimuli. Overall, our nanocomposite bioink has demonstrated excellent processability via extrusion bioprinting into osteogenic constructs with potential application in bone tissue repair and regeneration.
Collapse
Affiliation(s)
- Márcia T Tavares
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| | - Maria V Monteiro
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago Aveiro, Portugal, Aveiro, Portugal, 3810-193, PORTUGAL
| | - José Paulo S Farinha
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa Instituto Superior Técnico, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, Lisboa, 1049-001, PORTUGAL
| | - Carlos Baleizao
- Centro de Química Estrutural and Department of Chemical Engineering, Universidade de Lisboa, Complexo Interdisciplinar Instituto Superior Técnico Av. Rovisco Pais 1, Lisboa, 1049-001, PORTUGAL
| | - João Mano
- CICECO - Aveiro Institute of Materials, Universidade de Aveiro Departamento de Quimica, CICECO - Complexo de Laboratórios Tecnológicos Campus Universitário de Santiago, Aveiro, Portugal, 3810-193, PORTUGAL
| |
Collapse
|
22
|
Chen Y, Fei W, Zhao Y, Wang F, Zheng X, Luan X, Zheng C. Sustained delivery of 17β-estradiol by human amniotic extracellular matrix (HAECM) scaffold integrated with PLGA microspheres for endometrium regeneration. Drug Deliv 2020; 27:1165-1175. [PMID: 32755258 PMCID: PMC7470125 DOI: 10.1080/10717544.2020.1801891] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 01/06/2023] Open
Abstract
The endometrial injury usually results in intrauterine adhesions (IUAs). However, there is no effective treatment to promote the regeneration of the endometrium currently. The decellularized amnion membrane (AM) is a promising material in human tissue repair and regeneration due to its biocompatibility, biodegradability, as well as the preservation of abundant bioactive components. Here, an innovative drug-delivering system based on human amniotic extracellular matrix (HAECM) scaffolds were developed to facilitate endometrium regeneration. The 17β-estradiol (E2) loaded PLGA microspheres (E2-MS) were well dispersed in the scaffolds without altering their high porosity. E2 released from E2-MS-HAECM scaffolds in vitro showed a decreased initial burst release followed with a sustained release for 21 days, which coincided with the female menstrual cycle. Results of cell proliferation suggested E2-MS-HAECM scaffolds had good biocompatibility and provided more biologic guidance of endometrial cell proliferation except for mechanical supports. Additionally, the mRNA expression of growth factors in endometrial cells indicated that HAECM scaffolds could upregulate the expression of EGF and IGF-1 to achieve endometrium regeneration. Therefore, these advantages provide the drug-loaded bioactive scaffolds with new choices for the treatments of IUAs.
Collapse
Affiliation(s)
- Yue Chen
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Weidong Fei
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Yunchun Zhao
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Fengmei Wang
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Xiaoling Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Xiaofei Luan
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| | - Caihong Zheng
- Department of Pharmacy, Women’s Hospital, School of Medicine,
Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Lyons JG, Plantz MA, Hsu WK, Hsu EL, Minardi S. Nanostructured Biomaterials for Bone Regeneration. Front Bioeng Biotechnol 2020; 8:922. [PMID: 32974298 PMCID: PMC7471872 DOI: 10.3389/fbioe.2020.00922] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
This review article addresses the various aspects of nano-biomaterials used in or being pursued for the purpose of promoting bone regeneration. In the last decade, significant growth in the fields of polymer sciences, nanotechnology, and biotechnology has resulted in the development of new nano-biomaterials. These are extensively explored as drug delivery carriers and as implantable devices. At the interface of nanomaterials and biological systems, the organic and synthetic worlds have merged over the past two decades, forming a new scientific field incorporating nano-material design for biological applications. For this field to evolve, there is a need to understand the dynamic forces and molecular components that shape these interactions and influence function, while also considering safety. While there is still much to learn about the bio-physicochemical interactions at the interface, we are at a point where pockets of accumulated knowledge can provide a conceptual framework to guide further exploration and inform future product development. This review is intended as a resource for academics, scientists, and physicians working in the field of orthopedics and bone repair.
Collapse
Affiliation(s)
- Joseph G. Lyons
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Mark A. Plantz
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Wellington K. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Erin L. Hsu
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| | - Silvia Minardi
- Department of Orthopaedic Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
- Simpson Querrey Institute, Northwestern University, Chicago, IL, United States
| |
Collapse
|
24
|
Overcoming barriers confronting application of protein therapeutics in bone fracture healing. Drug Deliv Transl Res 2020; 11:842-865. [PMID: 32783153 DOI: 10.1007/s13346-020-00829-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bone fracture is a major contributor to debilitation and death among patients with bone diseases. Thus, osteogenic protein therapeutics and their delivery to bone have been extensively researched as strategies to accelerate fracture healing. To prevent morbidity and mortality of fractures, which occur frequently in the aging population, there is a critical need for development of first-line therapeutics. Bone morphogenic protein-2 (BMP-2) has been at the forefront of bone regeneration research for its potent osteoinduction, despite safety concerns and biophysiological obstacles of delivery to bone. However, continued pursuit of osteoinductive proteins as a therapeutic option is largely aided by drug delivery systems, playing an imperative role in enhancing safety and efficacy. In this work, we highlighted several types of drug delivery platforms and their biomaterials, to evaluate the suitability in overcoming challenges of therapeutic protein delivery for bone regeneration. To showcase the clinical considerations for each type of platform, we have assessed the most common route of administration strategies for bone regeneration, classifying the platforms as implantable or injectable. Additionally, we have analyzed the commonly utilized models and methodology for safety and efficacy evaluation of these osteogenic protein-loaded systems, to present clinical opinions for future directions of research in this field. It is hoped that this review will promote research and development of clinically translatable osteogenic protein therapeutics, while targeting first-line treatment status for achieving desired outcomes of fracture healing. Graphical abstract.
Collapse
|
25
|
Chen L, Zhou X, He C. Mesoporous silica nanoparticles for tissue-engineering applications. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1573. [PMID: 31294533 DOI: 10.1002/wnan.1573] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/29/2022]
Abstract
Mesoporous silica nanoparticles (MSNs) have been widely investigated as a nanocarrier for the delivery of various cargoes in nanomedicine. The application of MSNs in tissue engineering is a relatively newly emerged field that has gained much research interest. In this review, the recent advances in the tissue-engineering application of MSNs are summarized. The controlled synthesis of MSNs is delineated first in terms of tuning the morphology, pore size of MSNs, and its surface chemistry, as well as biodegradability. Then, the different roles of MSNs in tissue engineering are successively introduced, which mainly comprise the delivery of bioactive factors, the inherent bioactivity of MSNs, stem cells labelling, and the impacts of incorporated MSNs on scaffolds. Furthermore, the recent progress in the applications of MSNs for tissue engineering, particularly bone tissue engineering, is summarized in detail. Finally, the challenges or potential trends for the further applications of MSNs in tissue engineering are also discussed. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- Liang Chen
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Xiaojun Zhou
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| | - Chuanglong He
- Key Laboratory of Science and Technology of Eco-Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, China
| |
Collapse
|
26
|
Kamali A, Oryan A, Hosseini S, Ghanian MH, Alizadeh M, Baghaban Eslaminejad M, Baharvand H. Cannabidiol-loaded microspheres incorporated into osteoconductive scaffold enhance mesenchymal stem cell recruitment and regeneration of critical-sized bone defects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:64-75. [PMID: 31029357 DOI: 10.1016/j.msec.2019.03.070] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/05/2019] [Accepted: 03/21/2019] [Indexed: 02/07/2023]
Abstract
Recruitment of mesenchymal stem cells (MSCs) to an injury site and their differentiation into the desired cell lineage are implicated in deficient bone regeneration. To date, there is no ideal structure that provides these conditions for bone regeneration. In the current study, we aim to develop a novel scaffold that induces MSC migration towards the defect site, followed by their differentiation into an osteogenic lineage. We have fabricated a gelatin/nano-hydroxyapatite (G/nHAp) scaffold that delivered cannabidiol (CBD)-loaded poly (lactic-co-glycolic acid) (PLGA) microspheres to critical size radial bone defects in a rat model. The fabricated scaffolds were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM), and then analyzed for porosity and degradation rate. The release profile of CBD from the PLGA microsphere and CBD-PLGA-G/nHAp scaffold was analyzed by fluorescence spectroscopy. We performed an in vitro assessment of the effects of CBD on cellular behaviors of viability and osteogenic differentiation. Radiological evaluation, histomorphometry, and immunohistochemistry (IHC) analysis of all defects in the scaffold and control groups were conducted following transplantation into the radial bone defects. An in vitro migration assay showed that CBD considerably increased MSCs migration. qRT-PCR results showed upregulated expression of osteogenic markers in the presence of CBD. Histological and immunohistochemical findings confirmed new bone formation and reconstruction of the defect at 4 and 12 week post-surgery (WPS) in the CBD-PLGA-G/nHAp group. Immunofluorescent analysis revealed enhanced migration of MSCs into the defect areas in the CBD-PLGA-G/nHAp group in vivo. Based on the results of the current study, we concluded that CBD improved bone healing and showed a critical role for MSC migration in the bone regeneration process.
Collapse
Affiliation(s)
- Amir Kamali
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ahmad Oryan
- Department of Pathology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Samaneh Hosseini
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohammad Hossein Ghanian
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Maryam Alizadeh
- Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mohamadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
27
|
Song P, Hu C, Pei X, Sun J, Sun H, Wu L, Jiang Q, Fan H, Yang B, Zhou C, Fan Y, Zhang X. Dual modulation of crystallinity and macro-/microstructures of 3D printed porous titanium implants to enhance stability and osseointegration. J Mater Chem B 2019; 7:2865-2877. [PMID: 32255089 DOI: 10.1039/c9tb00093c] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The macro architecture and micro surface topological morphology of implants play essential roles in bone tissue regeneration.
Collapse
|