1
|
Sun X, Jiang Q, Zhang Y, Su J, Liu W, Lv J, Yang F, Shu W. Advances in fluorescent probe development for bioimaging of potential Parkinson's biomarkers. Eur J Med Chem 2024; 267:116195. [PMID: 38330868 DOI: 10.1016/j.ejmech.2024.116195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease. The clinical symptoms of PD are usually related to motor symptoms, including postural instability, rigidity, bradykinesia, and resting tremors. At present, the pathology of PD is not yet clear. Therefore, revealing the underlying pathological mechanism of PD is of great significance. A variety of bioactive molecules are produced during the onset of Parkinson's, and these bioactive molecules may be a key factor in the development of Parkinson's. The emerging fluorescence imaging technology has good sensitivity and high signal-to-noise ratio, making it possible to deeply understand the pathogenesis of PD through these bioactive molecules. Currently, fluorescent probes targeting PD biomarkers are widely developed and applied. This article categorizes and summarizes fluorescent probes based on different PD biomarkers, systematically introduces their applications in the pathological process of PD, and finally briefly elaborates on the challenges and prospects of these probes. We hope that this review will provide in-depth reference insights for designing fluorescent probes, and contribute to study of the pathogenesis and clinical treatment of PD.
Collapse
Affiliation(s)
- Xiaoqian Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Qingqing Jiang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Yu Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Jiali Su
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Wenqu Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China
| | - Juanjuan Lv
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Fengtang Yang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| | - Wei Shu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255000, PR China.
| |
Collapse
|
2
|
Wen J, Hua Q, Ding S, Sun A, Xia Y. Recent Advances in Fluorescent Probes for Zinc Ions Based on Various Response Mechanisms. Crit Rev Anal Chem 2023:1-32. [PMID: 37486769 DOI: 10.1080/10408347.2023.2238078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Zinc is a vital metal element with extensive applications in various fields such as industry, metallurgy, agriculture, food, and healthcare. For living organisms, zinc ions are indispensable, and their deficiency can lead to physiological and metabolic abnormalities that cause multiple diseases. Hence, there is a significant need for selective recognition and effective detection of free zinc ions. As a probe method with high sensitivity, high selectivity, real-time monitoring, safety, harmlessness and ease of operation, fluorescent probes have been widely used in metal ion identification studies, and many convenient, low-cost and easy-to-operate fluorescent probes for Zn2+ detection have been developed. This article reviews the latest research advances in fluorescent chemosensors for Zn2+ detection from 2019 to 2023. In particular, sensors working through photo-induced electron transfer (PET), excited state intramolecular proton transfer (ESIPT), intramolecular charge transfer (ICT), fluorescence resonance energy transfer (FRET), chelation-enhanced fluorescence (CHEF), and aggregation-induced emission (AIE) mechanisms are described. We discuss the use of various recognition mechanisms in detecting zinc ions through specific cases, some of which have been validated through theoretical calculations.
Collapse
Affiliation(s)
- Jinrong Wen
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Qianying Hua
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Sha Ding
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Aokui Sun
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
| | - Yong Xia
- School of Packaging and Materials Engineering, Hunan University of Technology, Zhuzhou, China
- College of Chemistry and Chemical Engineering, Central South University, Changsha, China
| |
Collapse
|
3
|
Tian G, Han YZ, Yang Q. 1, 10-phenanthroline Derivative as Colorimetric and Ratiometric Fluorescence Probe for Zn2+ and Cd2+. RESULTS IN CHEMISTRY 2023. [DOI: 10.1016/j.rechem.2023.100899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
|
4
|
Tupaeva IO, Demidov OP, Vetrova EV, Gusakov EA, Krasnikova TA, Popov LD, Zubenko AA, Fetisov LN, Sayapin YA, Metelitsa AV, Minkin VI. Synthesis, molecular structure and biological activity of Niii complexes based on substituted 2-(2-hydroxyphenyl)benzoxazole. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Patawanich P, Petdum A, Sirirak J, Chatree K, Charoenpanich A, Panchan W, Setthakarn K, Kamkaew A, Sooksimuang T, Maitarad P, Wanichacheva N. Highly selective zinc(II) triggered “Turn-ON” [5]helicene-based fluorescence sensor: its application in liver and brain cells imaging. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Ghosh P, Pramanik K, Paul S, Dey D, Kumar Chandra S, Kanti Mukhopadhyay S, Chandra Murmu N, Banerjee P. Zn
2+
Recognition for Pathogenesis of
Pick's Disease
via a Luminescent Test Kit. ChemistrySelect 2021. [DOI: 10.1002/slct.202100908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Pritam Ghosh
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
| | - Koushik Pramanik
- Department of Chemistry Visva-Bharati University Santiniketan 731235 India
| | - Suparna Paul
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Debanjan Dey
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | | | | | - Naresh Chandra Murmu
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| | - Priyabrata Banerjee
- Surface Engineering & Tribology Group CSIR-Central Mechanical Engineering Research Institute Mahatma Gandhi Avenue, City Center Durgapur 713209 West Bengal India
- Academy of Scientific and Innovative Research (AcSIR) AcSIR Headquarters CSIR-HRDC Campus Postal Staff College Area, Sector 19, Kamla Nehru Nagar Ghaziabad 201002 Uttar Pradesh India
| |
Collapse
|
7
|
Wu Q, Feng L, Chao JB, Wang Y, Shuang S. Ratiometric sensing of Zn 2+ with a new benzothiazole-based fluorescent sensor and living cell imaging. Analyst 2021; 146:4348-4356. [PMID: 34113936 DOI: 10.1039/d1an00749a] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A new fluorescent probe, 3-(benzo[d]thiazol-2-yl)-5-bromosalicylaldehyde-4N-phenyl thiosemicarbazone (BTT), for ratiometric sensing of Zn2+ ions in methanol/HEPES buffer solution (3 : 2, pH = 7.4) is reported in this paper. The presence of Zn2+ ions yields a significant blue shift in the maximum emission of BTT from 570 nm to 488 nm, accompanied by a clear color change from orange to green. This emission change of BTT upon binding to Zn2+ in a 1 : 1 ratio may be due to the block of excited state intramolecular proton transfer (ESIPT) as well as chelation enhanced fluorescence (CHEF) on complex formation. The limit of detection (LOD) determined for Zn2+ quantitation was down to 37.7 nM. In addition, the probe BTT displays the ability to image both exogenous Zn2+ ions loaded into HeLa cells and endogenous Zn2+ distribution in living SH-SY5Y neuroblastoma cells.
Collapse
Affiliation(s)
- Qi Wu
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Gao L, Wang W, Wang X, Yang F, Xie L, Shen J, Brimble MA, Xiao Q, Yao SQ. Fluorescent probes for bioimaging of potential biomarkers in Parkinson's disease. Chem Soc Rev 2021; 50:1219-1250. [DOI: 10.1039/d0cs00115e] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review comprehensively summarizes various types of fluorescent probes for PD and their applications for detection of various PD biomarkers.
Collapse
Affiliation(s)
- Liqian Gao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Wei Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Xuan Wang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Fen Yang
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Liuxing Xie
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
| | - Jun Shen
- Department of Radiology
- Sun Yat-Sen Memorial Hospital
- Sun Yat-Sen University
- Guangzhou
- P. R. China
| | - Margaret A. Brimble
- School of Chemical Sciences
- The University of Auckland
- Auckland 1010
- New Zealand
| | - Qicai Xiao
- School of Pharmaceutical Sciences (Shenzhen)
- Sun Yat-sen University
- Shenzhen, 518107
- P. R. China
- Department of Chemistry
| | - Shao Q. Yao
- Department of Chemistry
- National University of Singapore
- Singapore
| |
Collapse
|
10
|
Zhou J, Jangili P, Son S, Ji MS, Won M, Kim JS. Fluorescent Diagnostic Probes in Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001945. [PMID: 32902000 DOI: 10.1002/adma.202001945] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/19/2020] [Indexed: 05/22/2023]
Abstract
Neurodegenerative diseases are debilitating disorders that feature progressive and selective loss of function or structure of anatomically or physiologically associated neuronal systems. Both chronic and acute neurodegenerative diseases are associated with high morbidity and mortality along with the death of neurons in different areas of the brain; moreover, there are few or no effective curative therapy options for treating these disorders. There is an urgent need to diagnose neurodegenerative disease as early as possible, and to distinguish between different disorders with overlapping symptoms that will help to decide the best clinical treatment. Recently, in neurodegenerative disease research, fluorescent-probe-mediated biomarker visualization techniques have been gaining increasing attention for the early diagnosis of neurodegenerative diseases. A survey of fluorescent probes for sensing and imaging biomarkers of neurodegenerative diseases is provided. These imaging probes are categorized based on the different potential biomarkers of various neurodegenerative diseases, and their advantages and disadvantages are discussed. Guides to develop new sensing strategies, recognition mechanisms, as well as the ideal features to further improve neurodegenerative disease fluorescence imaging are also explored.
Collapse
Affiliation(s)
- Jin Zhou
- College of Pharmacy, Weifang Medical University, Weifang, 261053, China
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Paramesh Jangili
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Subin Son
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Myung Sun Ji
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul, 02841, South Korea
| |
Collapse
|
11
|
Selective recognition of Zn(II) ions in live cells based on chelation enhanced near-infrared fluorescent probe. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119640] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Chen X, Xu J, Suo F, Yu C, Zhang D, Chen J, Wu Q, Jing S, Li L, Huang W. A novel naphthofluorescein-based probe for ultrasensitive point-of-care testing of zinc(II) ions and its bioimaging in living cells and zebrafishes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 229:117949. [PMID: 31864152 DOI: 10.1016/j.saa.2019.117949] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 12/10/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
The combination of fluorescence method with paper-based diagnostic device is quite suitable in point-of-care testing (POCT). Herein, we designed a novel hybrid fluorescein-based probe ZN-2 and investigated its fluorescent properties thoroughly in the detection of Zn2+. In comparison with the fluorescein-based probe ZN-1, ZN-2 displayed better sensitivity, long-wavelength and faster response to Zn2+ within 20 min. Interestingly, we could achieve ultrasensitive, high-throughput and visual detection in the POCT analysis of Zn2+ by anchoring this probe ZN-2 on the paper-based device. This device with satisfied performance for Zn2+ detection was achieved in real samples including cytochylema, serum and lake water. Finally, the probe ZN-2 was further applied to visualize and monitor the level changes of Zn2+ in the living cells and zebrafishes.
Collapse
Affiliation(s)
- Xingwei Chen
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jiajia Xu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Fengtai Suo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Duoteng Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Jian Chen
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China
| | - Su Jing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China.
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing 211816, PR China; Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, PR China
| |
Collapse
|
13
|
Zhang J, Zhao Z, Shang H, Liu Q, Liu F. An easy-to-synthesize multi-photoresponse smart sensor for rapidly detecting Zn2+ and quantifying Fe3+ based on the enol/keto binding mode. NEW J CHEM 2019. [DOI: 10.1039/c9nj03635k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A readily available salicylaldazine-modified fluorene Schiff base (EASA-F) exhibits fast fluorescent OFF–ON response to Zn2+ and OFF–ON–OFF behavior to Fe3+ synchronously accompanied the diverse absorption-ratiometric and colorimetric changes.
Collapse
Affiliation(s)
- Jingzhe Zhang
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Zheng Zhao
- School of Information Engineering
- China University of Geosciences
- Beijing 100083
- China
| | - Hong Shang
- School of Science
- China University of Geosciences
- Beijing 100083
- China
| | - Qingsong Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| | - Fei Liu
- School of Water Resources and Environment
- China University of Geosciences
- Beijing 100083
- China
| |
Collapse
|