1
|
Huang X, Yan Y, Zhang L, Yuan L, Tang Y, Jiang X, Zhu W, Yuan Y, Nie J, Zhang Y. Simple, sensitive, colorimetric detection of pyrophosphate via the analyte-triggered decomposition of metal-organic frameworks regulating their adaptive multi-color Tyndall effect. Anal Bioanal Chem 2024; 416:1821-1832. [PMID: 38363308 DOI: 10.1007/s00216-024-05200-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/24/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
This paper describes initially the application of the Tyndall effect (TE) of metal-organic framework (MOF) materials as a colorimetric signaling strategy for the sensitive detection of pyrophosphate ion (PPi). The used MOF NH2-MIL-101(Fe) was prepared with Fe3+ ions and fluorescent ligands of 2-amino terephthalic acid (NH2-BDC). The fluorescence of NH2-BDC in MOF is quenched due to the ligand-to-metal charge transfer effect, while the NH2-MIL-101(Fe) suspension shows a strong TE. In the presence of PPi analyte, the MOFs will undergo decomposition because of the competitive binding of Fe3+ by PPi over NH2-BDC, resulting in a significant decrease in the TE signal and fluorescence restoration from the released ligands. The results demonstrate that the new method only requires a laser pointer pen (for TE creation) and a smartphone (for portable quantitative readout) to detect PPi in a linear concentration range of 1.25-800 μM, with a detection limit of ~210 nM (3σ) which is ~38 times lower than that obtained from traditional fluorescence with a spectrophotometer (linear concentration range, 50-800 µM; detection limit, 8.15 µM). Moreover, the acceptable recovery of PPi in several real samples (i.e., pond water, black tea, and human serum and urine) ranges from 97.66 to 119.15%.
Collapse
Affiliation(s)
- Xueer Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yongkang Yan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Lang Zhang
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Nanchong, 637000, People's Republic of China
| | - Lili Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yiyue Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Xinqing Jiang
- Translational Medicine Research Center, North Sichuan Medical College, 234 Fujiang Road, Nanchong, 637000, People's Republic of China
| | - Wenli Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| |
Collapse
|
2
|
Mahmoud AM, Abu-Alrub SS, Al-Qarni AO, El-Wekil MM, Shahin RY. A reliable and selective ratiometric sensing probe for fluorometric determination of P 2O 74- based on AIE of GSH@CuNCs-assisted by Al-N@CQDs. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 310:123850. [PMID: 38219614 DOI: 10.1016/j.saa.2024.123850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/16/2024]
Abstract
In this study, a novel composite material was developed for the ratiometric detection of pyrophosphate anion (P2O74-). This composite consisted of Al and nitrogen co-doped carbon dots (Al-N@CQDs) and glutathione-capped copper nanoclusters (GSH@CuNCs). The Al-N@CQDs component, with its high reserved coordination capacity of Al3+, induced the non-luminescent behavior of GSH@CuNCs, resulting in an aggregation-induced emission (AIE) effect. The hybrid material (Al-N@CQDs/GSH@CuNCs) exhibited dual-emission signals at 620 nm and 450 nm after integrating the two independent materials utilizing the AIE effect and the fluorescence resonance energy transfer (FRET) approach. This approach represents the first utilization of this composite for ratiometric detection. Nevertheless, upon the addition of P2O74-, the AIE and FRET processes were hindered due to the higher coordination interaction of Al3+ towards P2O74- compared to the amino/carboxyl groups on Al-N@CQDs. This successful interference of the AIE and FRET processes allowed for the effective estimation of P2O74-. The response ratio (F450/F620) increased with increasing the concentration of P2O74- in the range of 0.035-160 µM, with an impressive detection limit of 0.012 µM. This innovative approach of utilizing hybrid CQDs/thiolate-capped nanoclusters as a ratiometric fluorescent sensor for analytical applications introduces new possibilities in the field. The as-fabricated system was successfully applied to detect P2O74- in different real samples such as water, serum, and urine samples with acceptable results.
Collapse
Affiliation(s)
- Ashraf M Mahmoud
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Samer S Abu-Alrub
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Ali O Al-Qarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Najran University, Najran, Saudi Arabia
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt.
| | - Reem Y Shahin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sphinx University, New Assiut City, Assiut, Egypt
| |
Collapse
|
3
|
Jin L, Zhao C, Wang X, Zhang Q, Jiang Y, Shen J. Metal-free auxiliary pyrophosphate detection based on near-infrared carbon dots. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122580. [PMID: 36905739 DOI: 10.1016/j.saa.2023.122580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
The excessive use of pyrophosphate (PPi) anions as additives poses a serious threat to human health and the environment. Considering the current status of PPi probes, the development of metal-free auxiliary PPi probes has important applications. In this study, a novel near-infrared nitrogen and sulfur co-doped carbon dots (N,S-CDs) were prepared. The average particle size of N,S-CDs was 2.25 ± 0.32 nm with average height was 3.05 nm. The probe N,S-CDs showed a special response to PPi, and a good linear relationship was obtained with PPi concentrations ranging from 0 to 1 μM, with the limit of detection being 0.22 nM. Tap water and milk were used for practical inspection, and ideal experimental results were acquired. In addition, the probe N,S-CDs also showed good results in biological systems, such as cell and zebrafish experiments.
Collapse
Affiliation(s)
- Liying Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China
| | - Chuanfeng Zhao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China
| | - Xiaosong Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China
| | - Qian Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China
| | - Yuliang Jiang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, Jiangsu, Peoples R China.
| |
Collapse
|
4
|
Oladipo AA, Derakhshan Oskouei S, Gazi M. Metal-organic framework-based nanomaterials as opto-electrochemical sensors for the detection of antibiotics and hormones: A review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2023; 14:631-673. [PMID: 37284550 PMCID: PMC10241095 DOI: 10.3762/bjnano.14.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/09/2023] [Indexed: 06/08/2023]
Abstract
Increasing trace levels of antibiotics and hormones in the environment and food samples are concerning and pose a threat. Opto-electrochemical sensors have received attention due to their low cost, portability, sensitivity, analytical performance, and ease of deployment in the field as compared to conventional expensive technologies that are time-consuming and require experienced professionals. Metal-organic frameworks (MOFs) with variable porosity, active functional sites, and fluorescence capacity are attractive materials for developing opto-electrochemical sensors. Herein, the insights into the capabilities of electrochemical and luminescent MOF sensors for detection and monitoring of antibiotics and hormones from various samples are critically reviewed. The detailed sensing mechanisms and detection limits of MOF sensors are addressed. The challenges, recent advances, and future directions for the development of stable, high-performance MOFs as commercially viable next-generation opto-electrochemical sensor materials for the detection and monitoring of diverse analytes are discussed.
Collapse
Affiliation(s)
- Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Saba Derakhshan Oskouei
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta, via Mersin 10, Türkiye
| |
Collapse
|
5
|
A copper ion-mediated on-off-on gold nanocluster for pyrophosphate sensing and bioimaging in cells. Anal Chim Acta 2023; 1249:340923. [PMID: 36868766 DOI: 10.1016/j.aca.2023.340923] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Herein, gold nanoclusters (AuNCs@EW@Lzm, AuEL) with the bright red fluorescence at 650 nm were prepared by egg white and lysozyme as double protein ligands, which exhibited good stability and high biocompatibility. The probe displayed highly selective detected pyrophosphate (PPi) based on Cu2+-mediated AuEL fluorescence quenching. Specifically, the fluorescence of AuEL was quenched once the Cu2+/Fe3+/Hg2+ is added to chelate with amino acids on the AuEL surface, respectively. Interestingly, the fluorescence of quenched AuEL-Cu2+ was significantly recovered by PPi, but not the other two. This phenomenon was attributed to the stronger bond between PPi and Cu2+ than that of Cu2+ with AuEL nanoclusters. The results demonstrated a good linear relationship between PPi concentration and the relative fluorescence intensity of AuEL-Cu2+ in the range of 131.00-685.40 μM with a detection limit of 2.56 μM. In addition, the quench AuEL-Cu2+ system can also be recovered in acidic environments (pH ≤ 5). And the as-synthesized AuEL showed excellent cell imaging and target the nucleus. Thus the fabrication of AuEL offers a facile strategy for efficient PPi assay and offers the potential for drug/gene delivery to the nucleus.
Collapse
|
6
|
Xue SS, Li Y, Pan W, Li N, Tang B. Multi-stimuli-responsive molecular fluorescent probes for bioapplications. Chem Commun (Camb) 2023; 59:3040-3049. [PMID: 36786045 DOI: 10.1039/d2cc07008a] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Stimuli-responsive fluorescent probes have been widely utilized in detecting the physiological and pathological states of living systems. Numerous stimuli-responsive fluorescent probes have been developed due to their advantages of good sensitivity, high resolution, and high contrast fluorescent signals. In this feature article, the progress of multi-stimuli-responsive probes, including organic molecules and metal complexes, for the detection of various biomarkers for bio-applications is summarized. The feature article focuses on the applications of organic-molecule- and metal-complex-based molecular probes in biological systems for detecting different biomarkers of cancer or other diseases. The current challenges and potential future directions of these probes for applications in biological systems are also discussed.
Collapse
Affiliation(s)
- Shan-Shan Xue
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Yuanyuan Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Centre of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan, 250014, P. R. China.
| |
Collapse
|
7
|
Fu F, Liu D, Zhao L, Li H, Bai X, Chen M, Jiang Z, Su P, Zhong W, Li Y, Liao W, He J, Wang P. Substituents make a difference: 6,6″-modified terpyridine complexes with helix configuration and enhanced emission. Dalton Trans 2023; 52:3033-3039. [PMID: 36779408 DOI: 10.1039/d2dt04006a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A series of complexes L22-M (L2: 6,6″-bis(4-methoxyphenyl)-4'-phenyl-2,2':6',2″-terpyridine, M: Mn2+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+) were synthesized by coordinating p-methoxyphenyl 6,6″-substituted terpyridine ligand with first-row transition metal ions and characterized by NMR, ESI-MS, and X-ray single crystal diffraction techniques. Single-crystal structures demonstrated that the steric hindrance of p-methoxyphenyl substituents endowed complexes L22-M with obvious longer coordination bond lengths and larger bond angles and dihedral angles compared with unmodified L12-M (L1: 4'-phenyl-2,2':6',2″-terpyridine). The chiral helix geometry was observed for L22-M, in which 2,2':6',2″-terpyridine moiety dramatically twisted to a spiral form in comparison to the nearly coplanar structure of the parent L12-M, resulting in plentiful intramolecular and intermolecular π-π interactions. Also, the appealing racemic (P and M) double helix packed structure for 6,6″-modified bisterpyridine complex L22-Cu was formed in the crystal. The consequent appealing charge transfer (CT) emission for L22-Zn in the solution and solid were investigated via UV-vis and fluorescence spectroscopy techniques and time-dependent density functional theory (TD-DFT) calculations. This work afforded a new method to achieve intriguing chiral geometry and CT optical properties via the subtle design and modification of terpyridine ligands.
Collapse
Affiliation(s)
- Fan Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Die Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| | - Lili Zhao
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Huili Li
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Xinyu Bai
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Mingzhao Chen
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Zhilong Jiang
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Peiyang Su
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Wanying Zhong
- Institute of Environmental Research at Greater Bay Area, Guangzhou University, Guangdong-510006, China
| | - Yiming Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| | - Weiming Liao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Pingshan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan-410083, China
| |
Collapse
|
8
|
Das D, Sutradhar S, Gomila RM, Rissanen K, Frontera A, Ghosh BN. Synthesis, structure and application of a simple cadmium(II)-terpyridine complex as sensor material for selective detection of pyrophosphate anion. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Wang K, Yang L, Li L, Dong X, Wang Z, Tang H, Sun W, Ma Y. A water-stable zwitterionic Cd(II) coordination polymer as fluorescent sensor for the detection of oxo-anions and dimetridazole in milk. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
10
|
Ding BT, Ren L, Dong GY. Two Ag(I) organic frameworks as multi-responsive fluorescent sensors: Synthesis, structures and sensing of Cr2O72− ions, benzaldehyde and levofloxacin in water. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Hu C, Chen J, Yang P, Du L, Xia L, He J, Hou X. Monitoring nucleic acid amplification process by UiO-66-NH2-based fluorescence sensor. Chem Commun (Camb) 2022; 58:10643-10646. [DOI: 10.1039/d2cc03995h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we developed a nucleic acid amplification process monitoring scheme by use of UiO-66-NH2, in which pyrophosphate ion (PPi) released from the amplification can competitively coordinate with Zr to weaken...
Collapse
|
12
|
Su Y, Ye L, Gu J, Zhao L, Zhou Y, Peng J. Sensing and Imaging of PPi in vivo using Lanthanide-based Second Near-infrared Luminescent Probes. J Mater Chem B 2022; 10:1055-1062. [DOI: 10.1039/d1tb02579a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
pathological changes. Here, we reported a luminescent nanoprobe for the detection and imaging of PPi in vivo based on a lanthanide nanoparticle with luminescence at the second near-infrared window modified...
Collapse
|
13
|
Su B, Liao S, Zhu H, Ge S, Liu Y, Wang J, Chen H, Wang L. Fabrication of a 2D metal-organic framework (MOF) nanosheet colloidal system and investigation of its fluorescence response to pesticide molecules. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5700-5710. [PMID: 34825672 DOI: 10.1039/d1ay01837j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pesticides, as a type of toxic chemicals widely used for a long time, not only pollute the environment but also affect people's health and cause serious harm to the human body, soil and environment. Therefore, it is very necessary to exploit a portable and environmentally friendly method to detect pesticides with high sensitivity. Herein, a new luminescent metal-organic framework ([Zn(TPYBDC)·H2O]n, TPYBDC2- = 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylate) with 2D coordination layers has been designed and assembled using 4'-(pyridin-4-yl)-[2,2':6',2''-terpyridine]-4,4''-dicarboxylic acid as the ligand. The as-synthesized Zn-LMOF was exfoliated to ultrathin 2D nanosheets (4-5 nm) to form a luminescence colloidal sensor by destroying the weak interaction between the coordination layers such as H-bonding between the matrix H2O and the coordination carboxyl oxygen, and the π-π interactions among the interlayer conjugated aromatic rings. Investigation of its recognition and detection ability towards chemical pesticides shows that it can sensitively detect pesticides such as imidacloprid, nitenpyram and dinotefuran via fluorescence quenching effect with very low detection limit (LOD). Using imidacloprid as a typical case, a LOD value of 0.562 μM and recoveries for the simulated agricultural environmental samples in the range of 94-115% suggests that the as-fabricated 2D Zn-MOF nanosheet colloidal sensor (Zn-LMOF probe) is a most promising candidate for sensing chemical pesticides.
Collapse
Affiliation(s)
- Boya Su
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shengyun Liao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Haitao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Shuxian Ge
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Yan Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Jingyao Wang
- Safety and Technical of Industrial Products Center, Tianjin Customs District, Tianjin, 300308, China
| | - Hui Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, No. 391 Binshuixi Road, Tianjin, 300384, China.
| | - Lidong Wang
- Rotam CropScience Limited Company, No. 16 Huangshan Road, Modern Industrial Park, Hangu of TEDA, Tianjin, 300457, China.
| |
Collapse
|
14
|
Vinoth S, Govindasamy M, Wang SF. Solvothermal synthesis of silver tungstate integrated with carbon nitrides matrix composites for highly sensitive electrochemical nitrofuran derivative sensing in biological samples. Anal Chim Acta 2021; 1192:339355. [DOI: 10.1016/j.aca.2021.339355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
|
15
|
Nalaparaju A, Jiang J. Metal-Organic Frameworks for Liquid Phase Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003143. [PMID: 33717851 PMCID: PMC7927635 DOI: 10.1002/advs.202003143] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/19/2020] [Indexed: 05/10/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs) have attracted overwhelming attention. With readily tunable structures and functionalities, MOFs offer an unprecedentedly vast degree of design flexibility from enormous number of inorganic and organic building blocks or via postsynthetic modification to produce functional nanoporous materials. A large extent of experimental and computational studies of MOFs have been focused on gas phase applications, particularly the storage of low-carbon footprint energy carriers and the separation of CO2-containing gas mixtures. With progressive success in the synthesis of water- and solvent-resistant MOFs over the past several years, the increasingly active exploration of MOFs has been witnessed for widespread liquid phase applications such as liquid fuel purification, aromatics separation, water treatment, solvent recovery, chemical sensing, chiral separation, drug delivery, biomolecule encapsulation and separation. At this juncture, the recent experimental and computational studies are summarized herein for these multifaceted liquid phase applications to demonstrate the rapid advance in this burgeoning field. The challenges and opportunities moving from laboratory scale towards practical applications are discussed.
Collapse
Affiliation(s)
- Anjaiah Nalaparaju
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| | - Jianwen Jiang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117576Singapore
| |
Collapse
|
16
|
Fu MM, Liu C, Dong GY. Two Cd( ii)-based metal–organic frameworks for the highly effective detection of Fe 3+ ions and levofloxacin in aqueous media. CrystEngComm 2021. [DOI: 10.1039/d1ce01128f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Two new Cd(ii)-MOFs are hydrothermally synthesized and can be applied as dual-response sensors to identify Fe3+ and levofloxacin (LVX) with high selectivity, sensitivity and excellent reusability.
Collapse
Affiliation(s)
- Miao-Miao Fu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| | - Ce Liu
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| | - Gui-Ying Dong
- College of Chemical Engineering, Hebei Key Laboratory for Environment Photocatalytic and Electrocatalytic Materials, North China University of Science and Technology, No. 21 Bohai Road, Caofeidian New-City, Tangshan, Hebei, 063210, P. R. China
| |
Collapse
|
17
|
Mathivanan M, Tharmalingam B, Devaraj T, Murugan A, Lin CH, Jothi M, Murugesapandian B. A new 7-diethylamino- 4-hydroxycoumarin based reversible colorimetric/fluorometric probe for sequential detection of Al 3+/PPi and its potential use in biodetection and bioimaging applications. NEW J CHEM 2021. [DOI: 10.1039/d0nj05718e] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new 7-diethylamino-4-hydroxycoumarin appended acylhydrazone probe was prepared and utilized for the sequential detection of Al3+/PPi in a reversible off–on–off emissive manner. The various practical applications of the probe were established.
Collapse
Affiliation(s)
| | | | | | - Abinayaselvi Murugan
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | - Chia-Her Lin
- Department of Chemistry
- National Taiwan Normal University
- Taipei
- Taiwan
| | - Mathivanan Jothi
- Department of Human Genetics
- National Institute of Mental Health and Neurosciences
- Bengaluru
- India
| | | |
Collapse
|
18
|
Tharmalingam B, Mathivanan M, Murugesapandian B. C 3-symmetric triaminoguanidine based colorimetric and fluorometric chemosensor: Sequential detection of Zn 2+/PPi, its RGB performance for detection of Zn 2+ ion and construction of IMPLICATION logic gate. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 242:118749. [PMID: 32731150 DOI: 10.1016/j.saa.2020.118749] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
In this work, new ethyl(E)-2-cyano-3-(1H-pyrrol-2-yl)acrylate appended C3-symmetric star-shape triaminoguanidine based Schiff base (LH3) was designed and synthesized from simple synthons. New probe, LH3 was completely analyzed by 1H NMR, 13C NMR and mass spectrum. In the present probe LH3, effective π-conjugated ethyl(E)-2-cyano-acrylate unit was introduced on the periphery of the pyrrole-triaminoquanidine conjugates by using carefully chosen building units. The probe LH3 shows high selectivity and sensitivity towards Zn2+ ion via colorimetric and fluorometric changes. The yellowish orange color of LH3 solution turned to wine red color upon addition of Zn2+ solution, along with red shifted absorption maxima from 450 nm to 550 nm, this indicates the formation of LH3-Zn2+ species. Job's plot and mass spectrum analysis confirms the formation of 1:3 stoichiometric complex between the LH3 and Zn2+ ions. Further this ensemble shows selective detection towards PPi anion over the other anions based on displacement metal ion approach. Hence, reversible colorimetric/emission response of LH3 towards Zn2+ and PPi ions via "on-off-on" manner could allow the construction of IMPLICATION logic gate functions. The practical efficacy of the probe LH3 was established by utilization of the probe for the detection of Zn2+ ions in real water sample analysis. Further, the significant noticeable colorimetric changes of the probe LH3 upon addition of Zn2+ ion have been successfully integrated with a smartphone app RGB color value to construct a real-time analysis of Zn2+ ions.
Collapse
Affiliation(s)
| | - Moorthy Mathivanan
- Department of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | |
Collapse
|
19
|
Kummari S, Sunil Kumar V, Vengatajalabathy Gobi K. Facile Electrochemically Reduced Graphene Oxide‐Multi‐walled Carbon Nanotube Nanocomposite as Sensitive Probe for
in‐vitro
Determination of Nitrofurantoin in Biological Fluids. ELECTROANAL 2020. [DOI: 10.1002/elan.202060157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shekher Kummari
- Department of Chemistry National Institute of Technology Warangal Warangal 506004, Telangana India
| | - V. Sunil Kumar
- Department of Chemistry National Institute of Technology Warangal Warangal 506004, Telangana India
| | - K. Vengatajalabathy Gobi
- Department of Chemistry National Institute of Technology Warangal Warangal 506004, Telangana India
| |
Collapse
|
20
|
Liu W, Li SQ, Shao J, Tian JL. A dual-emission Acf@bioMOF-1 platform as fluorescence sensor for highly efficient detection of inorganic ions. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121580] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
21
|
Wei Y, Xia Y. A dual emission metal-organic framework for rapid ratiometric fluorescence detection of CO 3 2- in seawater. RSC Adv 2020; 10:24764-24771. [PMID: 35517457 PMCID: PMC9055149 DOI: 10.1039/d0ra02581j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/17/2020] [Indexed: 12/29/2022] Open
Abstract
A dual emission metal-organic framework (IRMOF-10-Eu) was prepared and used as a ratiometric fluorescent sensor for CO3 2- detection. IRMOF-10-Eu had good stability and excellent luminescence in aqueous solution. IRMOF-10-Eu showed dual fluorescence emission from the ligand and Eu3+ with single excitation. Upon treatment with CO3 2-, the fluorescence ratio (I 624/I 358) of the probe displayed significant change. The relative fluorescence intensity ratio (I 624/I 358) and CO3 2- concentration had a linear relationship in 50-300 μM range with a low detection limit of 9.58 μM. And the luminescence probe of CO3 2- showed a fast detection time. The possible mechanism was investigated. CO3 2- changed the structure of IRMOF-10-Eu and interrupted the energy transfer process. Thus, the fluorescence emission intensity of the ligand was increased and Eu3+ was decreased with the addition of CO3 2-. IRMOF-10-Eu was used to detect CO3 2- in seawater, which showed good prospect in practical application. Subsequently, a highly selective and sensitive probe, IRMOF-10-Eu, may pave an efficient way for CO3 2- detection in seawater.
Collapse
Affiliation(s)
- Yu Wei
- Research Center for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503034 +86 13602063491
| | - Yan Xia
- Research Center for Analytical Sciences, College of Chemistry, Nankai University Tianjin 300071 China +86-22-23503034 +86 13602063491.,Key Laboratory of Biosensing and Molecular Recognition China.,State Key Laboratory of Medicinal Chemical Biology China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) China
| |
Collapse
|
22
|
Guo F, Su C, Fan Y, Shi W, Zhang X. Assembly of Two Self-Interpenetrating Metal–Organic Frameworks Based on a Trigonal Ligand: Syntheses, Crystal Structures, and Properties. Inorg Chem 2020; 59:7135-7142. [DOI: 10.1021/acs.inorgchem.0c00596] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Feng Guo
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Changhua Su
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, Shandong 252059, People’s Republic of China
| | - Yuhang Fan
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Wenbing Shi
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, People’s Republic of China
| | - Xiuling Zhang
- College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, 253023, People’s Republic of China
| |
Collapse
|
23
|
Velmurugan S, Palanisamy S, C-K Yang T, Gochoo M, Chen SW. Ultrasonic assisted functionalization of MWCNT and synergistic electrocatalytic effect of nano-hydroxyapatite incorporated MWCNT-chitosan scaffolds for sensing of nitrofurantoin. ULTRASONICS SONOCHEMISTRY 2020; 62:104863. [PMID: 31806550 DOI: 10.1016/j.ultsonch.2019.104863] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
In the present work, we report the fabrication of stable composite of chitosan hydrogels (CHI) on multiwalled carbon nanotubes (MWCNT) using a simple ultrasonic-assisted method. Also, rod-like hydroxyapatite nanoparticles (HA NPs) were synthesised using a hydrothermal route and were incorporated into the highly conductive MWCNT-CHI scaffolds using an ultrasonication method. The functionalization of MWCNT and preparation of HA NPs on MWCNT-CHI nanocomposite were done using the sonication over the frequency of 37 kHz with the ultrasonic power capable of 150 W (Elmasonic Easy 60H bath sonicator). The resulting hybrid HA NPs/MWCNT-CHI nanocomposites have an excellent surface area and high surface to volume ratio, which leads to the sensitive detection of nitrofurantoin than pristine MWCNT and HA NPs. The complete elemental and morphological analyses of the HA NPs/MWCNT-CHI nanocomposites were characterised by XRD, FTIR, RAMAN, FESEM, TEM, EDX, and elemental mapping techniques. Electrochemical analysis of the HA NPs/MWCNT-CHI nanocomposites was carried out by cyclic voltammetry, electrochemical impedance spectroscopy and amperometry methods. The modified glassy carbon electrode (GCE) of HA NPs/MWCNT-CHI nanocomposites exhibit the nitrofurantoin detection activity at the linear range of 0.005-982.1 µM with the detection limit of 1.3 nM. The synergistic electrocatalytic activity of HA NPs/MWCNT-CHI nanocomposites modified GCE is correlated to the sensitivity of 0.16 µAµM-1 cm-2 with excellent precision and accuracy towards the sensing of nitrofurantoin.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
| | - Selvakumar Palanisamy
- Center of Precision Analysis and Material Research, National Taipei University of Technology, Taipei, Taiwan, ROC.
| | - Thomas C-K Yang
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC; Center of Precision Analysis and Material Research, National Taipei University of Technology, Taipei, Taiwan, ROC.
| | - Munkhjargal Gochoo
- Department of Computer Science and Software Engineering, College of Information Technology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Shih-Wen Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan, ROC
| |
Collapse
|
24
|
Zhu QQ, Zhou QS, Zhang HW, Zhang WW, Lu DQ, Guo MT, Yuan Y, Sun F, He H. Design and Construction of a Metal-Organic Framework as an Efficient Luminescent Sensor for Detecting Antibiotics. Inorg Chem 2020; 59:1323-1331. [PMID: 31920084 DOI: 10.1021/acs.inorgchem.9b03032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We first design and synthesize a dendritic aromatic 6-carboxyl linker (H6TDCPB), which is successfully assembled with Cd(II) ion to construct a porous metal-organic framework with a raw Cd6 cluster, {[Cd3(TDCPB)·2DMAc]·DMAc·4H2O}n (namely, complex 1). More interestingly, six adjacent linkers are packed together by π-π-stacking interactions to form an amazing six-molecule accumulation in the crystal structure. By virtue of high stability and luminescent properties, the as-synthesized sample not merely owns an excellent detectable ability but also possesses an outstanding selectivity for nitrofurans with remarkable recursitivity.
Collapse
Affiliation(s)
- Qian-Qian Zhu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Qiao-Shu Zhou
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Han-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Wen-Wen Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Di-Qiu Lu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Mei-Tong Guo
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| | - Ye Yuan
- Faculty of Chemistry , Northeast Normal University , Changchun 130024 , People's Republic of China
| | - Fuxing Sun
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry , Jilin University , Changchun 130012 , People's Republic of China
| | - Hongming He
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry, College of Chemistry , Tianjin Normal University , Tianjin 300387 , People's Republic of China
| |
Collapse
|
25
|
Tian X, Qi W, Zhao M, Lai J, Wu D, Hu L, Zhang Y. One-pot synthesis of luminol–gallium nanoassemblies and their peroxidase-mimetic activity for colorimetric detection of pyrophosphate. NEW J CHEM 2020. [DOI: 10.1039/d0nj02628j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Luminol–Ga nanoassemblies exhibit peroxidase-mimetic activity. Colorimetric detection of PPi is developed owing to the formation of a complex between PPi and Ga3+.
Collapse
Affiliation(s)
- Xue Tian
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Wenjing Qi
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Maoyu Zhao
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Jianping Lai
- Key Laboratory of Eco-Chemical Engineering
- Taishan Scholar Advantage and Characteristic Discipline Team of Eco-Chemical Process and Technology
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Di Wu
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| | - Yan Zhang
- Chongqing Key Laboratory of Green Synthesis and Applications
- College of Chemistry
- Chongqing Normal University
- Chongqing 401331
- P. R. China
| |
Collapse
|
26
|
Dong ZP, Zhao F, Zhang L, Liu ZL, Wang YQ. A white-light-emitting lanthanide metal–organic framework for luminescence turn-off sensing of MnO4− and turn-on sensing of folic acid and construction of a “turn-on plus” system. NEW J CHEM 2020. [DOI: 10.1039/d0nj02145h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A white-light-emitting lanthanide MOF shows recyclable and dual-responsive sensing for MnO4− and folic acid in an aqueous system with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Zhen-Peng Dong
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Fei Zhao
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Lei Zhang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Zhi-Liang Liu
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| | - Yan-Qin Wang
- Inner Mongolia Key Laboratory of Chemistry and Physics of Rare Earth Materials
- College of Chemistry and Chemical Engineering
- Inner Mongolia University
- Huhhot
- China
| |
Collapse
|
27
|
Huo P, Li Z, Fan C, Pu S. Amino-functionalized copper-based metal–organic frameworks for highly selective and sensitive detection of hypochlorite. NEW J CHEM 2020. [DOI: 10.1039/d0nj04256k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, we have developed amino-functionalized copper-based metal–organic frameworks (NH2-Cu-MOFs) for the detection of hypochlorite (ClO−).
Collapse
Affiliation(s)
- Panpan Huo
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Zhijian Li
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention
| | - Congbin Fan
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
| | - Shouzhi Pu
- Jiangxi Key Laboratory of Organic Chemistry
- Jiangxi Science and Technology Normal University
- Nanchang 330013
- P. R. China
- YuZhang Normal University
| |
Collapse
|