1
|
Jang E, Jung S, Sohng W, Choi D, Hwang GS, Chung H. Screening of gall bladder cancer through infrared analysis of bile and examination of varied bile constituent composition by the disease. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:122030. [PMID: 36323093 DOI: 10.1016/j.saa.2022.122030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
To demonstrate the infrared (IR)-based bile analysis as a reliable screening tool for gall bladder (GB) cancer, we analyzed a sample set of 37 diverse bile samples (five normal, 18 GB polyp, six hepatocellular carcinoma (HCC), and eight GB cancer subjects). Bile samples of normal subjects (control) and HCC patients were newly included to examine if IR-based bile analysis could be expanded to identify HCC. Concentrations of three bile acids and eight bile salts in the aqueous phase samples were determined in parallel and lipidomic analysis of nine lipid classes in the organic phase samples was performed using liquid chromatography-mass spectrometry. Concentrations of bile salts were lower and relative abundances of bile salts were dissimilar between GB cancer samples and remained group samples. Also, the levels of lipids such as phosphatidylcholines and phosphatidylethanolamines were again lower and their relative abundances in the organic phase of GB cancer samples were different from those of other samples. IR spectral features of the aqueous, organic, and amphiphilic aggregate phases were individually characteristic, while not descriptive enough for the thorough identification of GB cancer. Nonetheless, since they were mutually complementary to represent different metabolites in bile, the use of three phase-merged spectra was synergetic to yield the superior discrimination of GB cancer.
Collapse
Affiliation(s)
- Eunjin Jang
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Sunhee Jung
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea
| | - Woosuk Sohng
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Dongho Choi
- Department of Surgery, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Geum-Sook Hwang
- Integrated Metabolomics Research Group, Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Republic of Korea.
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
2
|
Mondal A, Mondal A, Sen K, Debnath P, Mondal NK. Synthesis, characterization and optimization of chicken bile-mediated silver nanoparticles: a mechanistic insight into antibacterial and antibiofilm activity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:16525-16538. [PMID: 36190628 DOI: 10.1007/s11356-022-23401-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The fast-growing urbanization and slow progress in the field of waste management have led to the accumulation of large quantities of animal wastes. The present work focused on the synthesis of low-cost and eco-friendly chicken bile juice-mediated silver nanoparticles (BJ-AgNP). Results reveal that bile juices have enough potentiality towards the synthesis of almost uniform sizes (average size < 50 nm) of BJ-AgNPs which remains stable for more than 6 months. Response surface methodology (RSM) successfully demonstrated the optimised condition of BJ-AgNP synthesis. Factors like concentration of salt and bile extract and temperature are significantly responsible for nanoparticle synthesis. The synthesis of nanoparticle was further characterized using UV-Vis, TEM, FESEM, XRD, FTIR, TGA, and EDS. The synthesised nanoparticle showed excellent bactericidal activity against both Gram positive and Gram negative bacteria with MIC and MBC of 40 and 50 μg/mL for Bacillus subtilis (MTCC-441) and 60 and 60 μg/mL for Eschecheria coli (MTCC-1687) respectively. The synthesised nanoparticle also exhibited as an antibiofilm activity against B. subtilis, with ~89% biofilm inhibition efficacy at 4 X MIC, having optimal bacterial concentration of 106 CFU/mL. Therefore, the present findings clearly demonstrated that an absolute animal waste could be a valuable ingredient in the field of therapeutic nanoscience.
Collapse
Affiliation(s)
- Anupam Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Arghadip Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Kamalesh Sen
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Priyanka Debnath
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India
| | - Naba Kumar Mondal
- Environmental Chemistry Laboratory, Department of Environmental Science, The University of Burdwan, West Bengal, 713104, India.
| |
Collapse
|
3
|
Vu TD, Sohng W, Jang E, Choi D, Chung H. Feasibility of discrimination of gall bladder (GB) stone and GB polyp using voltage-applied SERS measurement of bile juice samples in conjunction with two-trace two-dimensional (2T2D) correlation analysis. Analyst 2021; 146:1091-1098. [PMID: 33350409 DOI: 10.1039/d0an02115f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Voltage-applied SERS measurement of bile juice in conjunction with two-trace two-dimensional (2T2D) correlation analysis was demonstrated as a potential tool to enhance discrimination of gall bladder (GB) stone and GB polyp. When SERS spectra of the aqueous phases extracted from raw bile juice samples were measured with applying external voltage from -300 to +300 mV (100 mV intervals), subsequent spectral variations of the adsorbed components (bilirubin-containing compounds) on the SERS substrate were minute, and discrimination of the two GB diseases in a principal component score domain was difficult. Therefore, 2T2D correlation analysis, effectively identifying asynchronous (dissimilar) spectral behaviors in the voltage-induced SERS spectra, was used to improve the discrimination. When two spectra of a sample collected with application of +100 and +300 mV were adopted, the features of subsequent 2T2D slice spectra were characteristic, and discrimination of GB stone and GB polyp substantially improved. External voltage application and recognition of the voltage-induced spectral features by 2T2D correlation analysis were key factors for the improvement. Since the demonstrated method relied on only a few SERS-active compounds, infrared (IR) spectroscopy featuring all the present components in the samples was also evaluated for comparison. However, the IR-based discrimination was inferior because the metabolite compositions in the samples between the GB diseases were not noticeably different.
Collapse
Affiliation(s)
- Tung Duy Vu
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | | | | | | | | |
Collapse
|
4
|
Vu TD, Jang E, Lee J, Choi D, Chang J, Chung H. Feasibility of Voltage-Applied SERS Measurement of Bile Juice as an Effective Analytical Scheme to Enhance Discrimination between Gall Bladder (GB) Polyp and GB Cancer. Anal Chem 2020; 92:8159-8169. [PMID: 32402193 DOI: 10.1021/acs.analchem.0c00275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A unique surface-enhanced Raman scattering (SERS) measurement scheme to discriminate gall bladder (GB) polyp and GB cancer by analysis of bile juice is proposed. Along with the high sensitivity of SERS, external voltage application during SERS measurement was incorporated to improve sample discriminability. For this purpose, Au nanodendrites were constructed on a screen-printed electrode (referred to as AuND@SPE), and Raman spectra of extracted aqueous phases from raw bile juice samples were acquired using the AuND@SPE at voltages from -300 to 300 mV. The sample spectra resembled that of bilirubin, possessing an open chain tetrapyrrole, showing that bilirubin derivatives in bile juice were mainly responsible for the observed peaks. Discrimination of GB polyp and GB cancer using just the normal SERS spectra was not achieved but became apparent when the spectra were acquired at a voltage of -100 mV. When voltage-applied SERS spectra of bilirubin and urobilinogen (one of bilirubin's derivatives) were examined, a sudden intensity elevation occurring at -100 mV was observed for urobilinogen but not bilirubin. Based on examination of corresponding cyclic voltammograms, the potential-driven strong adsorption of urobilinogen (no faradaic charge transfer) on AuND occurring at -100 mV induced a substantial increase in SERS intensity. It was presumed that the content of urobilinogen in the bile juice of a GB cancer patient would be higher than that of a GB polyp patient, and the contained urobilinogen was sensitively highlighted by applying -100 mV during SERS measurement, allowing clear discrimination of GB cancer against GB polyp.
Collapse
Affiliation(s)
- Tung Duy Vu
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Eunjin Jang
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Jihye Lee
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Dongho Choi
- Department of Surgery, College of Medicine, Hanyang University, Seoul 04763, Republic of Korea
| | - Jinho Chang
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| | - Hoeil Chung
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
5
|
Jang E, Vu TD, Choi D, Jung YK, Lee KG, Chung H. Feasibility study for rapid near-infrared spectroscopic identification of different gallbladder diseases by direct analysis of bile juice. Analyst 2019; 144:7236-7241. [PMID: 31674603 DOI: 10.1039/c9an01591d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A whole-sample-covering near-infrared (NIR) spectroscopy scheme has been adopted for the simple drop-and-dry measurement of raw bile juice for the identification of gallbladder (GB) diseases of stone, polyp, and cancer. For reproducible measurement, a non-NIR absorbing polytetrafluoroethylene (PTFE) providing a hydrophobic surface was chosen as a substrate to form bile juice droplets of a consistent shape. To ensure representative spectroscopic sampling, NIR radiation illuminated the whole area of the dried sample for spectral acquisition. The NIR band shapes and relative band intensities of GB cancer differed moderately from those of GB stone and GB polyp. The composition of GB cancer samples was presumed to be dissimilar from other sample compositions. Differentiation between GB polyp and GB stone, however, was less facile; nevertheless, in the case of GB polyp samples, the obtained NIR features were informative in the identification of various pathological conditions such as adenomyomatosis (abnormal growth of epidermal tissue) and hepatitis B. To elucidate the NIR features of bile juice samples, separate NIR spectra of major bile constituents such as conjugated bile salts, lecithin, cholesterol, and albumin were analyzed. The demonstrated NIR spectroscopy scheme requiring no sample pretreatment or separation of bile juice could be useful for fast bile juice-based screening of GB diseases, especially the identification of early GB cancer.
Collapse
Affiliation(s)
- Eunjin Jang
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea.
| | | | | | | | | | | |
Collapse
|