1
|
Zhuang L, Gong J, Zhang P, Zhang D, Zhao Y, Yang J, Liu G, Zhang Y, Shen Q. Research progress of loop-mediated isothermal amplification in the detection of Salmonella for food safety applications. DISCOVER NANO 2024; 19:124. [PMID: 39105889 PMCID: PMC11303641 DOI: 10.1186/s11671-024-04075-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Salmonella, the prevailing zoonotic pathogen within the Enterobacteriaceae family, holds the foremost position in global bacterial poisoning incidents, thereby signifying its paramount importance in public health. Consequently, the imperative for expeditious and uncomplicated detection techniques for Salmonella in food is underscored. After more than two decades of development, loop-mediated isothermal amplification (LAMP) has emerged as a potent adjunct to the polymerase chain reaction, demonstrating significant advantages in the realm of isothermal amplification. Its growing prominence is evident in the increasing number of reports on its application in the rapid detection of Salmonella. This paper provides a systematic exposition of the technical principles and characteristics of LAMP, along with an overview of the research progress made in the rapid detection of Salmonella using LAMP and its derivatives. Additionally, the target genes reported in various levels, including Salmonella genus, species, serogroup, and serotype, are summarized, aiming to offer a valuable reference for the advancement of LAMP application in Salmonella detection. Finally, we look forward to the development direction of LAMP and expect more competitive methods to provide strong support for food safety applications.
Collapse
Affiliation(s)
- Linlin Zhuang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, 225125, People's Republic of China
| | - Ying Zhao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China
| | - Jianbo Yang
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Guofang Liu
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China
| | - Yu Zhang
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering and Basic Medicine Research and Innovation Center of Ministry of Education, Zhongda Hospital, Southeast University, Nanjing, 211102, People's Republic of China.
| | - Qiuping Shen
- School of Animal Husbandry and Veterinary Medicine, Jiangsu Vocational College of Agriculture and Forestry, Jurong, 212400, People's Republic of China.
| |
Collapse
|
2
|
Okamoto S, Nagai M, Shibata T, Ukita Y. Automatic microdispenser-integrated multiplex enzyme-linked immunosorbent assay device with autonomously driven centrifugal microfluidic system. RSC Adv 2024; 14:13827-13836. [PMID: 38681832 PMCID: PMC11047056 DOI: 10.1039/d4ra02656j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
In this study, we established the control and design theory of an autonomously driven dispenser at a steady rotation speed and proposed a dispenser-integrated multiplex enzyme-linked immunosorbent assay (ELISA) device. In establishing the theory of the dispenser, we estimated the flow rate in the dispenser and the applied pressure onto the passive valves, so that the suitable burst pressure of the valves and flow rate could be designed. The dispenser-integrated multiplex ELISA device has the potential to perform flow control for executing an ELISA of 6 samples/standards per chip or 18 samples/standards per compact disk by just steadily rotating a chip. In the immunoassay evaluation of the device using mouse IgG detection, it was confirmed that the device could assay 5 μL of several standards in just 30 min without nonspecific reactions, and although this system has a high limit of detection (LOD, 63.4-164 pg mL-1) it is equal to that of manual assay with a titer plate. The device can be fabricated by transferring the microchannel pattern from a mold without complex assembly or alignment, and it can control the liquid operation by just steadily rotating. Thus, the device system developed will contribute to reducing the cost of fabricating chips and control equipment for ELISA systems. Consequently, a compact, portable, and low-cost ELISA system for point-of-care testing is expected to be realized.
Collapse
Affiliation(s)
- Shunya Okamoto
- Toyohashi University of Technology, Department of Mechanical Engineering Japan
| | - Moeto Nagai
- Toyohashi University of Technology, Department of Mechanical Engineering Japan
- Toyohashi University of Technology, Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2) Japan
| | - Takayuki Shibata
- Toyohashi University of Technology, Department of Mechanical Engineering Japan
| | - Yoshiaki Ukita
- University of Yamanashi, Graduate Faculty of Interdisciplinary Research Japan
| |
Collapse
|
3
|
Xing Y, Wang Y, Li X, Pang S. Digital microfluidics methods for nucleic acid detection: A mini review. BIOMICROFLUIDICS 2024; 18:021501. [PMID: 38456173 PMCID: PMC10917463 DOI: 10.1063/5.0180125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024]
Abstract
Many serious infectious diseases have occurred throughout human history. Rapid and accurate detection as well as the isolation of infected individuals, through nucleic acid testing, are effective means of containing the spread of these viruses. However, traditional nucleic acid testing methods rely on complex machines and specialized personnel, making it difficult to achieve large-scale, high-throughput, and rapid detection. In recent years, digital microfluidics has emerged as a promising technology that integrates various fields, including electrokinetics, acoustics, optics, magnetism, and mechanics. By leveraging the advantages of these different technologies, digital microfluidic chips offer several benefits, such as high detection throughput, integration of multiple functions, low reagent consumption, and portability. This rapid and efficient testing is crucial in the timely detection and isolation of infected individuals to prevent the virus spread. Another advantage is the low reagent consumption of digital microfluidic chips. Compared to traditional methods, these chips require smaller volumes of reagents, resulting in cost savings and reduced waste. Furthermore, digital microfluidic chips are portable and can be easily integrated into point-of-care testing devices. This enables testing to be conducted in remote or resource-limited areas, where access to complex laboratory equipment may be limited. Onsite testing reduces the time and cost associated with sample transportation. In conclusion, bioassay technologies based on digital microfluidic principles have the potential to significantly improve infectious disease detection and control. By enabling rapid, high-throughput, and portable testing, these technologies enhance our ability to contain the spread of infectious diseases and effectively manage public health outbreaks.
Collapse
Affiliation(s)
- Youqiang Xing
- School of Mechanical Engineering, Southeast University, Nanjing 211189, Jiangsu Province, People’s Republic of China
| | - Yan Wang
- Clinical Laboratory, Yantai Yuhuangding Hospital, Yantai 264000, Shandong Province, People’s Republic of China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong 518000, Shenzhen, People’s Republic of China
| | - Shangran Pang
- Jinzhong Normal Junior College, 189 Guang'an Street, Yuci District, Jinzhong 030600, Shanxi Province, People’s Republic of China
| |
Collapse
|
4
|
Geissler M, Brassard D, Adam N, Nasheri N, Pilar AVC, Tapp K, Clime L, Miville-Godin C, Mounier M, Nassif C, Lukic L, Malic L, Corneau N, Veres T. Centrifugal microfluidic system for colorimetric sample-to-answer detection of viral pathogens. LAB ON A CHIP 2024; 24:668-679. [PMID: 38226743 DOI: 10.1039/d3lc00904a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per μL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.
Collapse
Affiliation(s)
- Matthias Geissler
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Daniel Brassard
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nadine Adam
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Neda Nasheri
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Ana Victoria C Pilar
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Kyle Tapp
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Liviu Clime
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Caroline Miville-Godin
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Maxence Mounier
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Christina Nassif
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Ljuboje Lukic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Lidija Malic
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| | - Nathalie Corneau
- Bureau of Microbial Hazards, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| | - Teodor Veres
- Life Sciences Division, National Research Council of Canada, 75 de Mortagne Boulevard, Boucherville, QC, J4B 6Y4, Canada.
| |
Collapse
|
5
|
Xie M, Chen T, Cai Z, Lei B, Dong C. An All-in-One Platform for On-Site Multiplex Foodborne Pathogen Detection Based on Channel-Digital Hybrid Microfluidics. BIOSENSORS 2024; 14:50. [PMID: 38248427 PMCID: PMC10813315 DOI: 10.3390/bios14010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Recently, significant progress has been made in the development of microdevices for point-of-care infectious disease detection. However, most microdevices only allow limited steps, such as DNA amplification on the chip, while sample preparation, such as lysis and DNA extraction, is conducted off the chip using the traditional method. In this study, an all-in-one platform was developed, which incorporated all necessary procedures for nucleic acid detection. Our on-chip DNA extraction method utilized the magnetic bead-based technology on a hybrid channel-digital microfluidics (C-DMF) microdevice. It yielded high recovery rates, varying from 88.43% to 95.83%, with pathogen concentrations of 103-106 CFU/mL. In particular, the on-chip method exhibited significantly higher efficacy compared to the traditional off-chip manual method, for the DNA extraction of E. coli and S. aureus, representing Gram-negative and Gram-positive bacteria, respectively, at a sample concentration of 103 CFU/mL. To address the need for rapid and accessible diagnostics, colorimetric LAMP amplification was integrated into the proposed microdevice. The results were visually detectable with the naked eye, making it user-friendly for non-specialists. In addition, this platform demonstrated impressive sensitivity in simultaneously detecting common foodborne pathogens in spiked meat samples, achieving the LOD of 102-103 CFU/mL. The entire process, from sampling to result, was fully automated and only required approximately 60 min, offering promising applicability in resource-limited and on-site testing scenarios.
Collapse
Affiliation(s)
- Mei Xie
- Department of Life Sciences, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China;
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | | | - Zongwei Cai
- Department of Chemistry, Hong Kong Baptist University, Hong Kong SAR, China
| | - Bo Lei
- Department of Life Sciences, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519000, China;
| | - Cheng Dong
- School of Intelligent Systems Science and Engineering, Jinan University, Zhuhai 519000, China
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Suarez GD, Bayer S, Tang YYK, Suarez DA, Cheung PPH, Nagl S. Rapid microfluidics prototyping through variotherm desktop injection molding for multiplex diagnostics. LAB ON A CHIP 2023; 23:3850-3861. [PMID: 37534874 DOI: 10.1039/d3lc00391d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
In this work, we demonstrate an inexpensive method of prototyping microfluidics using a desktop injection molding machine. A centrifugal microfluidic device with a novel central filling mechanism was developed to demonstrate the technique. We overcame the limitations of desktop machines in replicating microfluidic features by variotherm heating and cooling the mold between 50 °C and 110 °C within two minutes. Variotherm heating enabled good replication of microfeatures, with a coefficient of variation averaging only 3.6% attained for the measured widths of 100 μm wide molded channels. Using this methodology, we produced functional polystyrene centrifugal microfluidic chips, capable of aliquoting fluids into 5.0 μL reaction chambers with 97.5% accuracy. We performed allele-specific loop-mediated isothermal amplification (AS-LAMP) reactions for genotyping CYP2C19 alleles on these chips. Readouts were generated using optical pH sensors integrated onto chips, by drop-casting sensor precursor solutions into reaction chambers before final chip assembly. Positive reactions could be discerned by decreases in pH sensor fluorescence, thresholded against negative control reactions lacking the primers for nucleic acid amplification and with time-to-results averaging 38 minutes. Variotherm desktop injection molding can enable researchers to prototype microfluidic devices more cost-effectively, in an iterative fashion, due to reduced costs of smaller, in-house molds. Designs prototyped this way can be directly translated to mass production, enhancing their commercialization potential and positive impacts.
Collapse
Affiliation(s)
- Gianmarco D Suarez
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Steevanson Bayer
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | - Yuki Yu Kiu Tang
- Quommni Technologies Limited, Tsuen Wan, New Territories, Hong Kong
| | | | - Peter Pak-Hang Cheung
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong.
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| |
Collapse
|
7
|
A Comparative Study on Visual Detection of Mycobacterium tuberculosis by Closed Tube Loop-Mediated Isothermal Amplification: Shedding Light on the Use of Eriochrome Black T. Diagnostics (Basel) 2023; 13:diagnostics13010155. [PMID: 36611447 PMCID: PMC9818645 DOI: 10.3390/diagnostics13010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Loop-mediated isothermal amplification is a promising candidate for the rapid detection of Mycobacterium tuberculosis. However, the high potential for carry-over contamination is the main obstacle to its routine use. Here, a closed tube LAMP was intended for the visual detection of Mtb to compare turbidimetric and two more favorable colorimetric methods using calcein and hydroxy naphthol blue (HNB). Additionally, a less studied dye (i.e., eriochrome black T (EBT)) was optimized in detail in the reaction for the first time. Mtb purified DNA and 30 clinical specimens were used to respectively determine the analytical and diagnostic sensitivities of each method. The turbidimetric method resulted in the best analytical sensitivity (100 fg DNA/reaction), diagnostic sensitivity and specificity (100%), and time-to-positivity of the test (15 min). However, this method is highly prone to subjective error in reading the results. Moreover, HNB-, calcein-, and EBT-LAMP could respectively detect 100 fg, 1 pg, and 1 pg DNA/reaction (the analytical sensitivities) in 30, 15, and 30 min, while the diagnostic sensitivity and specificity were respectively 93.3% and 100% for them all. Interestingly, EBT-LAMP showed the lowest potential for subjective error in reading the results. This report helps judiciously choose the most appropriate visual method, taking a step forward toward the field applicability of LAMP for the detection of Mtb, particularly in resource-limited settings.
Collapse
|
8
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Chen A. Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Xu X, Jia Y, Li R, Wen Y, Liang Y, Lao G, Liu X, Zhou W, Liu H, Xie J, Wang X, Xu W, Sun Q. Rapid and simultaneous detection of multiple pathogens in the lower reproductive tract during pregnancy based on loop-mediated isothermal amplification-microfluidic chip. BMC Microbiol 2022; 22:260. [PMID: 36309654 PMCID: PMC9616700 DOI: 10.1186/s12866-022-02657-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Background Female reproductive tract infection (RTI) is the common source of varied diseases, especially as an important risk factor for pregnancy outcomes, therefore the rapid, accurate and simultaneous detection of multiple pathogens is in urgent need for assisting the diagnosis and treatment of RTI in pregnant women. Streptococcus agalactiae (S. agalactiae), Enterococcus faecalis (E. faecalis), Gardnerella vaginalis (G. vaginalis), Candida albicans (C. albicans) and Chlamydia trachomatis (C. trachomatis) are five main pathogens in lower genital tract with high risk, serious consequences and clinical demands. The combination of loop-mediated isothermal amplification (LAMP) and microfluidic technology was used to develop the LAMP-microfluidic chip for rapid, simple, sensitive and simultaneous detection of the five target pathogens above. Results Standard strains and clinical isolates were used for the establishment of the novel LAMP method in tube and LAMP-microfluidic chip, followed by the chip detection on 103 clinical samples and PCR verification partially. The sensitivities of LAMP of S. agalactiae, E. faecalis, G. vaginalis, and C. albicans in tube were 22.0, 76.0, 13.2, 1.11 CFU/μL, respectively, and C. trachomatis was 41.3 copies/μL; on LAMP-microfluidic chip they were 260, 154, 3.9 and 7.53 CFU/μL, respectively, and C. trachomatis was 120 copies/μL. The positive coincidence rates of clinical stains in tube and on chip experiments were 100%. Compared with the classic culture method performed in hospitals, the positive coincidence rate of the 103 clinical samples detected by LAMP-microfluidic chip were 100%. For the six inconsistent ones, including four G. vaginalis and two C. albicans positive samples tested by LAMP-microfluidic chip and verified by PCR were negative by culturing method in hospitals, indicating the lack of efficient detection by the classic culturing method. Conclusion Our study suggested that the LAMP-microfluidic chips could simultaneously, efficiently, and accurately detect multiple main pathogens, including S. agalactiae, E. faecalis, G. vaginalis, C. albicans and C. trachomatis, in clinical samples of female RTI to give a great clinical value. Accordingly, this novel method has the potential to provide a valuable reference for female RTI screening and early diagnosis during pregnancy. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02657-0.
Collapse
|
10
|
A microfluidic genoserotyping strategy for fast and objective identification of common Salmonella serotypes isolated from retail food samples in China. Anal Chim Acta 2022; 1201:339657. [DOI: 10.1016/j.aca.2022.339657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/14/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
|
11
|
Gowda HN, Kido H, Wu X, Shoval O, Lee A, Lorenzana A, Madou M, Hoffmann M, Jiang SC. Development of a proof-of-concept microfluidic portable pathogen analysis system for water quality monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152556. [PMID: 34952082 PMCID: PMC8837627 DOI: 10.1016/j.scitotenv.2021.152556] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 05/03/2023]
Abstract
Waterborne diseases cause millions of deaths worldwide, especially in developing communities. The monitoring and rapid detection of microbial pathogens in water is critical for public health protection. This study reports the development of a proof-of-concept portable pathogen analysis system (PPAS) that can detect bacteria in water with the potential application in a point-of-sample collection setting. A centrifugal microfluidic platform is adopted to integrate bacterial cell lysis in water samples, nucleic acid extraction, and reagent mixing with a droplet digital loop mediated isothermal amplification assay for bacteria quantification onto a single centrifugal disc (CD). Coupled with a portable "CD Driver" capable of automating the assay steps, the CD functions as a single step bacterial detection "lab" without the need to transfer samples from vial-to-vial as in a traditional laboratory. The prototype system can detect Enterococcus faecalis, a common fecal indicator bacterium, in water samples with a single touch of a start button within 1 h and having total hands-on-time being less than 5 min. An add-on bacterial concentration cup prefilled with absorbent polymer beads was designed to integrate with the pathogen CD to improve the downstream quantification sensitivity. All reagents and amplified products are contained within the single-use disc, reducing the opportunity of cross contamination of other samples by the amplification products. This proof-of-concept PPAS lays the foundation for field testing devices in areas needing more accessible water quality monitoring tools and are at higher risk for being exposed to contaminated waters.
Collapse
Affiliation(s)
- Hamsa N Gowda
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Horacio Kido
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Xunyi Wu
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Oren Shoval
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Adrienne Lee
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Albert Lorenzana
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Marc Madou
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA
| | - Michael Hoffmann
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sunny C Jiang
- Samueli School of Engineering, University of California, Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
12
|
Kotsiri Z, Vidic J, Vantarakis A. Applications of biosensors for bacteria and virus detection in food and water-A systematic review. J Environ Sci (China) 2022; 111:367-379. [PMID: 34949365 DOI: 10.1016/j.jes.2021.04.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 05/09/2023]
Abstract
Biosensors for sensitive and specific detection of foodborne and waterborne pathogens are particularly valued for their portability, usability, relatively low cost, and real-time or near real-time response. Their application is widespread in several domains, including environmental monitoring. The main limitation of currently developed biosensors is a lack of sensitivity and specificity in complex matrices. Due to increased interest in biosensor development, we conducted a systematic review, complying with the PRISMA guidelines, covering the period from January 2010 to December 2019. The review is focused on biosensor applications in the identification of foodborne and waterborne microorganisms based on research articles identified in the Pubmed, ScienceDirect, and Scopus search engines. Efforts are still in progress to overcome detection limitations and to provide a rapid detection system which will safeguard water and food quality. The use of biosensors is an essential tool with applicability in the evaluation and monitoring of the environment and food, with great impact in public health.
Collapse
Affiliation(s)
- Zoi Kotsiri
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece
| | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, University of Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Apostolos Vantarakis
- Environmental and Microbiology Unit, Department of Public Health, Medical School, University of Patras 26504, Greece.
| |
Collapse
|
13
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2022. [PMID: 32435872 DOI: 10.1007/10_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
- Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
- The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
14
|
Nguyen VD, Van Nguyen H, Seo JW, Lee SH, Seo TS. Prediction of acute rejection in kidney transplanted patients based on the point-of-care isothermal molecular diagnostics platform. Biosens Bioelectron 2021; 199:113877. [PMID: 34920227 DOI: 10.1016/j.bios.2021.113877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/19/2022]
Abstract
In this study, we proposed an advanced point-of-care molecular diagnostic technology to evaluate the acute rejection (AR) in kidney transplanted patients. On the contrary to the conventional PCR method, we developed a colorimetric loop mediated isothermal amplification (LAMP) for quantitative analysis of the six biomarkers related to AR (CD3ϵ, IP-10, Tim-3-HAVCR2, CXCL9, PSMB9, C1QB) with a reference gene (18S rRNA). Using urinary cDNA samples of transplanted patients, it turned out that three biomarkers among six, namely IP-10, Tim-3-HAVCR2 and C1QB, have significant discrepancy in quantity between the stable graft (STA) patient and the AR patient. The AR prediction model using these three biomarkers was established, which could estimate the immune-rejection in the patients with 93.3% of accuracy. For the point-of-care (POC) molecular diagnostics for the AR evaluation, we constructed a centrifugal microfluidic platform, in which the RNA extraction from the clinical urinary samples, the quantitative reverse-transcription (RT)-LAMP reaction, and the data analysis based on the AR prediction model could be performed in a serial order. Ten blind clinical samples were analyzed on the POC genetic analyzer, showing 100% match with the validated qPCR data. Thus, the proposed advanced molecular diagnostic platform enables us to perform the timely treatment for the transplanted patients who are suffering from the allograft failure and side effects such as infection and malignancy.
Collapse
Affiliation(s)
- Van Dan Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea
| | - Hau Van Nguyen
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea
| | - Jung Woo Seo
- Core Research Laboratory, Medical Science Institute, Kyung Hee University Hospital at Gangdong, Seoul, 05278, South Korea
| | - Sang Ho Lee
- Division of Nephrology, Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, 02447, South Korea
| | - Tae Seok Seo
- Department of Chemical Engineering (BK21 FOUR Integrated Engineering Program), Kyung Hee University, 1 Seochon-dong, Giheung-gu, Yongin-si, Gyeonggi-do, 17140, South Korea.
| |
Collapse
|
15
|
Cunha ML, da Silva SS, Stracke MC, Zanette DL, Aoki MN, Blanes L. Sample Preparation for Lab-on-a-Chip Systems in Molecular Diagnosis: A Review. Anal Chem 2021; 94:41-58. [PMID: 34870427 DOI: 10.1021/acs.analchem.1c04460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and low-cost molecular analysis is especially required for early and specific diagnostics, quick decision-making, and sparing patients from unnecessary tests and hospitals from extra costs. One way to achieve this objective is through automated molecular diagnostic devices. Thus, sample-to-answer microfluidic devices are emerging with the promise of delivering a complete molecular diagnosis system that includes nucleic acid extraction, amplification, and detection steps in a single device. The biggest issue in such equipment is the extraction process, which is normally laborious and time-consuming but extremely important for sensitive and specific detection. Therefore, this Review focuses on automated or semiautomated extraction methodologies used in lab-on-a-chip devices. More than 15 different extraction methods developed over the past 10 years have been analyzed in terms of their advantages and disadvantages to improve extraction procedures in future studies. Herein, we are able to explain the high applicability of the extraction methodologies due to the large variety of samples in which different techniques were employed, showing that their applications are not limited to medical diagnosis. Moreover, we are able to conclude that further research in the field would be beneficial because the methodologies presented can be affordable, portable, time efficient, and easily manipulated, all of which are strong qualities for point-of-care technologies.
Collapse
Affiliation(s)
- Mylena Lemes Cunha
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Stella Schuster da Silva
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Cassaboni Stracke
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010.,Paraná Institute of Molecular Biology, Professor Algacyr Munhoz Mader 3775 St., Curitiba, Paraná, Brazil 81350-010
| |
Collapse
|
16
|
|
17
|
A portable centrifugal genetic analyzer for multiplex detection of feline upper respiratory tract disease pathogens. Biosens Bioelectron 2021; 193:113546. [PMID: 34391176 DOI: 10.1016/j.bios.2021.113546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022]
Abstract
We present a portable genetic analyzer with an integrated centrifugal disc which is equipped with a glass-filter extraction column for purifying nucleic acid (NA) and multiple reaction chambers for analyzing major feline upper respiratory tract disease (FURTD) pathogens. We targeted four kinds of FURTD including Feline herpesvirus 1 (FHV), Mycoplasma felis (MPF), Bordetella bronchiseptica (BDB), and Chlamydophila felis (CDF). The portable genetic analyzer consists of a spinning motor, two pairs of Peltier heaters, two Minco heater, fluorescent optics, a touchscreen, and software for data analysis, so loop-mediated isothermal amplification (LAMP) or polymerase chain reaction (PCR) can be performed. The overall size of the genetic analyzer was 28 cm × 28 cm × 26 cm and the weight was 10 kg, which was deliverable for point-of-care testing (POCT). Owing to the sophisticated microchannel design and spinning program, the serial injection of the sample solution, the washing solution, and the elution solution was executed through a glass filter membrane for nucleic acid (NA) extraction, and then the cocktail with the purified genome was aliquoted into 9 reaction chambers for LAMP or PCR. The whole process for the LAMP reaction or the PCR was completed within 1.5 h. The fluorescence profiles by a scanning mode showed the matched results between the LAMP and the PCR.
Collapse
|
18
|
Fu X, Sun J, Liang R, Guo H, Wang L, Sun X. Application progress of microfluidics-integrated biosensing platforms in the detection of foodborne pathogens. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
19
|
Zhao X, Li X, Yang W, Peng J, Huang J, Mi S. An integrated microfluidic detection system for the automated and rapid diagnosis of high-risk human papillomavirus. Analyst 2021; 146:5102-5114. [PMID: 34264258 DOI: 10.1039/d1an00623a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Human papillomavirus (HPV) causes the prevalent sexually transmitted infection that accounts for the majority of cervical cancer incidences. Therefore, the development of a rapid, accurate, automatic and affordable nucleic acid detection strategy is urgently required for HPV tests, among which microfluidic chip is a promising diagnostic method. In this work, we developed a microfluidic detection system consisting of a microfluidic chip and the corresponding detection equipment to diagnose high-risk HPV. The proposed method integrates nucleic acid purification, isothermal amplification and real-time fluorescence detection into one device. Moreover, it demonstrates good detection performance such as high specificity of primer sets (100%) and exceptional stability (coefficient of variation <6%) among five HPV genotypes. Besides, the microfluidic loop-mediated isothermal amplification (LAMP) assay is accurate (specificity of 91.7% and sensitivity of 100%) and fast (average time threshold = 10.56 minutes) when considering the conventional qPCR assay as the gold standard. The integrated microfluidic detection system offers automated and rapid diagnosis within 40 minutes and shows broad potential to deliver point-of-care detection in resource-limited circumstances owing to its simplicity and affordability.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | | | | | | | | | | |
Collapse
|
20
|
Li X, Zhao X, Yang W, Xu F, Chen B, Peng J, Huang J, Mi S. Stretch-driven microfluidic chip for nucleic acid detection. Biotechnol Bioeng 2021; 118:3559-3568. [PMID: 34042175 DOI: 10.1002/bit.27839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 05/20/2021] [Indexed: 11/09/2022]
Abstract
Molecular diagnosis is an essential means to detect pathogens. The portable nucleic acid detection chip has excellent prospects in places where medical resources are scarce, and it is also of research interest in the field of microfluidic chips. Here, the article developed a new type of microfluidic chip for nucleic acid detection where stretching acts as the driving force. The sample entered the chip by applying capillary force. The strain valve was opened under the action of tensile force, and the spring pump generated the power to drive the fluid to flow to the detection chamber in a specific direction. The detection of coronavirus disease 2019 (COVID-19) was realized on the chip. The RT-LAMP amplification system was adopted to observe the liquid color in the detection chamber to decide whether the sample tested positive or negative qualitatively.
Collapse
Affiliation(s)
- Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Weihao Yang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Fei Xu
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Bailiang Chen
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Jiwei Peng
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Guangdong, Shenzhen, China
| |
Collapse
|
21
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
22
|
Nguyen HV, Nguyen VD, Liu F, Seo TS. An Integrated Smartphone-Based Genetic Analyzer for Qualitative and Quantitative Pathogen Detection. ACS OMEGA 2020; 5:22208-22214. [PMID: 32923778 PMCID: PMC7482303 DOI: 10.1021/acsomega.0c02317] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/16/2020] [Indexed: 05/04/2023]
Abstract
The use of the smartphone is an ideal platform to realize the future point-of-care (POC) diagnostic system. Herein, we propose an integrated smartphone-based genetic analyzer. It consists of a smartphone and an integrated genetic analysis unit (i-Gene), in which the power of the smartphone was utilized for heating the gene amplification reaction, and the camera function was used for imaging the colorimetric change of the reaction for quantitative and multiplex foodborne pathogens. The housing of i-Gene was fabricated by using a 3D printer, which was equipped with a macro lens, white LEDs, a disposable microfluidic chip for loop-mediated isothermal amplification (LAMP), a thin-film heater, and a power booster. The i-Gene was installed on the iPhone in alignment with a camera. The LAMP mixture for Eriochrome Black T (EBT) colorimetric detection was injected into the LAMP chip to identify Escherichia coli O157:H7, Salmonella typhimurium, and Vibrio parahaemolyticus. The proportional-integral-derivative controller-embedded film heater was powered by a 5.0 V power bank to maintain 63 °C for the LAMP reaction. When the LAMP proceeded, the color was changed from violet to blue, which was real-time monitored by the smartphone complementary metal oxide semiconductor camera. The images were transported to the desktop computer via Wi-Fi. The quantitative LAMP profiles were obtained by plotting the ratio of green/red intensity versus the reaction time. We could identify E. coli O157:H7 with a limit of detection of 101 copies/μL within 60 min. Our proposed smartphone-based genetic analyzer offers a portable, simple, rapid, and cost-effective POC platform for future diagnostic markets.
Collapse
Affiliation(s)
- Hau Van Nguyen
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| | - Van Dan Nguyen
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| | - Fei Liu
- School
of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Xueyugn Road #270, Wenzhou, Zhejiang 325035, P.R. China
| | - Tae Seok Seo
- Kyung
Hee University - Global Campus, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
23
|
Arshavsky-Graham S, Segal E. Lab-on-a-Chip Devices for Point-of-Care Medical Diagnostics. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2020; 179:247-265. [PMID: 32435872 DOI: 10.1007/10_2020_127] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent coronavirus (COVID-19) pandemic has underscored the need to move from traditional lab-centralized diagnostics to point-of-care (PoC) settings. Lab-on-a-chip (LoC) platforms facilitate the translation to PoC settings via the miniaturization, portability, integration, and automation of multiple assay functions onto a single chip. For this purpose, paper-based assays and microfluidic platforms are currently being extensively studied, and much focus is being directed towards simplifying their design while simultaneously improving multiplexing and automation capabilities. Signal amplification strategies are being applied to improve the performance of assays with respect to both sensitivity and selectivity, while smartphones are being integrated to expand the analytical power of the technology and promote its accessibility. In this chapter, we review the main technologies in the field of LoC platforms for PoC medical diagnostics and survey recent approaches for improving these assays.
Collapse
Affiliation(s)
- Sofia Arshavsky-Graham
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.,Institute of Technical Chemistry, Leibniz University Hannover, Hanover, Germany
| | - Ester Segal
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel. .,The Russell Berrie Nanotechnology Institute, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|