1
|
Fernandes RS, Paul S, Tydlitát J, Bureš F, Dey N. Triphenylamine-Based Push-Pull Dyes for Chromogenic Detection of HSO 4- Ion in Water: The Role of Anion in the Formation of Fluorescent Organic Nanoparticles. J Org Chem 2024; 89:17926-17933. [PMID: 39589255 DOI: 10.1021/acs.joc.4c01124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Optical detection of the HSO4- ion in pure aqueous medium is rare, owing to the very high Gibbs free energy of hydration and ambiguity to distinguish with the isostructural H2PO4- ion. Herein, a pair of triphenylamine-based push-pull dyes with different numbers of terminal pyridine fragments, connected via an acetylenic linker, were synthesized by Sonogashira cross-coupling reaction. These two dyes displayed highly selective (LOD = 15.1/8.3 ppb), dual-mode color-changing responses toward the HSO4- ion in pure aqueous medium without any interference. Despite the halochromic behavior, both compounds exhibited very distinct optical responses with the HSO4- ion. The mechanistic investigation indicated that HSO4- was engaged in a bifurcated intermolecular hydrogen bonding interaction (leading to proton transfer) with pyridine nitrogen atoms that altered the extent of intramolecular charge transfer (ICT). The self-assembly of such protonated species was found to be prominent when sulfate was present as the counteranion. The extent of self-assembly was found to be more prominent for the trisubstituted, Y-shaped quadrupolar derivative than that observed for the linear, monosubstituted one. Furthermore, the present system was utilized for the detection of HSO4- ions in commercially available samples with satisfactory responses.
Collapse
Affiliation(s)
- Rikitha S Fernandes
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Telangana 500078, India
| | - Suvendu Paul
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Telangana 500078, India
| | - Jiří Tydlitát
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ 53210, Czech Republic
| | - Filip Bureš
- Institute of Organic Chemistry and Technology, Faculty of Chemical Technology, University of Pardubice, Studentská 573, Pardubice CZ 53210, Czech Republic
| | - Nilanjan Dey
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Telangana 500078, India
| |
Collapse
|
2
|
Ghosh R, Nair RR, Ghosh S, Debnath S, Chatterjee PB. A Water-Soluble Wavy Coordination Polymer of Cu(II) as a Turn-On Luminescent Probe for Histidine and Histidine-Rich Proteins/Peptides. Inorg Chem 2024; 63:8320-8328. [PMID: 38660721 DOI: 10.1021/acs.inorgchem.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Histidine plays an essential role in most biological systems. Changes in the homeostasis of histidine and histidine-rich proteins are connected to several diseases. Herein, we report a water-soluble Cu(II) coordination polymer, labeled CuCP, for the fluorimetric detection of histidine and histidine-rich proteins and peptides. Single-crystal structure determination of CuCP revealed a two-dimensional wavy network structure in which a carboxylate group connects the individual Cu(II) dimer unit in a syn-anti conformation. The weakly luminescent and water-soluble CuCP shows turn-on blue emission in the presence of histidine and histidine-rich peptides and proteins. The polymer can also stain histidine-rich proteins via gel electrophoresis. The limits of quantifications for histidine, glycine-histidine, serine-histidine, human serum albumin (HSA), bovine serum albumin, pepsin, trypsin, and lysozyme were found to be 300, 160, 600, 300, 600, 800, 120, and 290 nM, respectively. Utilizing the fluorescence turn-on property of CuCP, we measured HSA quantitatively in the urine samples. We also validated the present urinary HSA measurement assay with existing analytical techniques. Job's plot, 1H NMR, high-resolution mass spectrometry (HRMS), electron paramagnetic resonance (EPR), fluorescence, and UV-vis studies confirmed the ligand displacement from CuCP in the presence of histidine.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratish R Nair
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shibaji Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar 364002, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Yao H, Hu YP, Yang HR, Yang BH, Wang JW, Zhang YM, Wei TB, Lin Q. Ion recognition properties of 2,2'-bibenzimidazole regulated by ammonium-modified pillar[5]arenes. Analyst 2023; 148:1221-1226. [PMID: 36762553 DOI: 10.1039/d3an00095h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
With the increasing issues of environmental degradation and health problem, the selective detection of toxic ions has attracted considerable attention from researchers. Chemical fluorescent sensors with the advantages of facile operation, high sensitivity, rapid response, and easy visualization are emerging as powerful detection tools towards ions. However, the selective recognition of ions is always hindered by the presence of other interfering substances. Herein, we show that supramolecular host-guest interaction based on a pillar[5]arene provides a new opportunity to regulate the ionic recognition properties of guest molecules. A pillar[5]arene-based host-guest complex HG was constructed through the host-guest interaction between ammonium functionalized pillar[5]arene (HAP5) and 2,2'-bibenzimidazole (G). The host-gust complex HG can realize the successive, highly selective, and sensitive detection of specific ions. It was found that only in the presence of HAP5, the sensitivity towards cations was evidently enhanced, and selective successive recognition for I- and HSO4- was achieved. Those results indicate that the introduction of HAP5 can effectively improve the ion recognition performance of 2,2'-bibenzimidazole, so it is a feasible strategy using supramolecular host-guest interaction to regulate the ionic recognition properties of guest molecules.
Collapse
Affiliation(s)
- Hong Yao
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Yin-Ping Hu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Hao-Ran Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Bao-Hong Yang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Jin-Wang Wang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - You-Ming Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Tai-Bao Wei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| | - Qi Lin
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, Gansu, 730070, P. R. China.
| |
Collapse
|
4
|
Ghosh R, Debnath S, Bhattacharya A, Chatterjee PB. Affinity Studies of Hemicyanine Derived Water Soluble Colorimetric Probes with Reactive Oxygen/Nitrogen/Sulfur Species. Chembiochem 2023; 24:e202200541. [PMID: 36598026 DOI: 10.1002/cbic.202200541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/01/2022] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Peroxynitrite (ONOO- ) is an essential endogenous reactive oxygen species (ROS) generated in mitochondria under various pathological and physiological conditions. An increase in its level in mitochondria is related to numerous diseases. Herein, we report a series of hemicyanine-derived water-soluble colorimetric probes (1-4) and the reactivity of which was studied with various reactive oxygen, nitrogen, and sulfur species. Probes 1-4 are formed by conjugating 1,2,3,3-tetramethyl-3H-indolium iodide and 4-hydroxybenzaldehyde or its derivatives through an alkene linkage formed by the Knoevenagel reaction. Oxidative cleavage of the electron-rich double bond of the conjugated hemicyanine dye revealed a discerning affinity of probe 3 towards peroxynitrite among all reactive oxygen species. The rapid change in color of 3 provides a sensitive and selective method for detecting peroxynitrite with a low detection limit of 180 nM. Notably, the water solubility of the probe displays excellent performance for the selective detection of peroxynitrite among ROS and reactive nitrogen (RNS)/sulfur species (RSS). UV-vis, 1 H NMR, and 13 C NMR spectroscopic data and results from theoretical calculations provide further information on the interaction of peroxynitrite with probe 3.
Collapse
Affiliation(s)
- Riya Ghosh
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Snehasish Debnath
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Arnab Bhattacharya
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India
| | - Pabitra B Chatterjee
- Analytical & Environmental Science Division and Centralized Instrument Facility, CSIR-CSMCRI, G. B. Marg, Bhavnagar, Gujarat, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
5
|
Ghosh R, Debnath S, Bhattacharya A, Pradhan D, Chatterjee PB. Studies on the interaction between oxido/dioxidovanadium(V) compounds and reactive oxygen species: Synthesis, characterization, and photophysical investigation. J Inorg Biochem 2022; 233:111845. [DOI: 10.1016/j.jinorgbio.2022.111845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/07/2022] [Accepted: 05/01/2022] [Indexed: 11/30/2022]
|
6
|
Jindal G, Kaur N. Fluorescent water-stable quantum dots possessing benzimidazole for the recognition of bisulfate in edible materials, soap, and medicine. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Banerjee M, Bhosle AA, Chatterjee A, Saha S. Mechanochemical Synthesis of Organic Dyes and Fluorophores. J Org Chem 2021; 86:13911-13923. [PMID: 34398612 DOI: 10.1021/acs.joc.1c01540] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The syntheses of dyes and fluorophores have significant commercial importance. In recent years, mechanochemistry has emerged as a green and sustainable alternative for the synthesis of conventional dyes, new fluorophores, and also synthetic modification of known dyes for their use as chemosensors. The dyestuffs based on BODIPYs, rhodamine, fluorescein, perylenedimides, coumarins, benzothiazoles, etc. were synthesized or derivatized by grinding or milling. The synopsis aims to pay key attention to their synthesis and the applications as chemosensors will be briefly covered.
Collapse
Affiliation(s)
- Mainak Banerjee
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Akhil A Bhosle
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Amrita Chatterjee
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| | - Soumik Saha
- Department of Chemistry, BITS- Pilani, K.K. Birla Goa Campus, NH 17B, Bypass Road, Zuarinagar, Sancoale, Goa 403726, India
| |
Collapse
|
8
|
Paul S, Majumdar T, Mallick A. Hydrogen bond regulated hydrogen sulfate ion recognition: an overview. Dalton Trans 2021; 50:1531-1549. [PMID: 33439195 DOI: 10.1039/d0dt03611k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hydrogen sulfate possesses substantial biological importance, having a colossal impact on physiological and environmental events. Therefore, several scientific groups have devoted serious effort to the development of versatile colorimetric and fluorimetric HSO4- sensors. Along with the scope, challenges, and significance, this review emphasizes the advancement of the optical recognition of HSO4- based on hydrogen bonding during the past two decades. Moreover, hydrogen-bond-driven proton transfer, ESIPT, ICT, PET, CHEF, and TBET mechanisms that allow for the optical detection of HSO4- are also discussed concisely. The foundation of this review includes the key points of the sensing process, like the nature of spectroscopic changes, selectivity and sensitivity, naked-eye color changes, the reusability of sensors, and the in vivo detection of HSO4-, if any. Special attention is focused on the correlation between the photophysical changes and the underlying interaction mechanisms that triggered the recognition aspect.
Collapse
Affiliation(s)
- Suvendu Paul
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Tapas Majumdar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal-741235, India.
| | - Arabinda Mallick
- Department of Chemistry, Kazi Nazrul University, Asansol, West Bengal-713340, India.
| |
Collapse
|
9
|
Annunziata F, Pinna C, Dallavalle S, Tamborini L, Pinto A. An Overview of Coumarin as a Versatile and Readily Accessible Scaffold with Broad-Ranging Biological Activities. Int J Mol Sci 2020; 21:E4618. [PMID: 32610556 PMCID: PMC7370201 DOI: 10.3390/ijms21134618] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022] Open
Abstract
Privileged structures have been widely used as an effective template for the research and discovery of high value chemicals. Coumarin is a simple scaffold widespread in Nature and it can be found in a considerable number of plants as well as in some fungi and bacteria. In the last years, these natural compounds have been gaining an increasing attention from the scientific community for their wide range of biological activities, mainly due to their ability to interact with diverse enzymes and receptors in living organisms. In addition, coumarin nucleus has proved to be easily synthetized and decorated, giving the possibility of designing new coumarin-based compounds and investigating their potential in the treatment of various diseases. The versatility of coumarin scaffold finds applications not only in medicinal chemistry but also in the agrochemical field as well as in the cosmetic and fragrances industry. This review is intended to be a critical overview on coumarins, comprehensive of natural sources, metabolites, biological evaluations and synthetic approaches.
Collapse
Affiliation(s)
- Francesca Annunziata
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Cecilia Pinna
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Sabrina Dallavalle
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| | - Lucia Tamborini
- Department of Pharmaceutical Science, University of Milan, via Mangiagalli 25, 20133 Milan, Italy; (F.A.); (C.P.)
| | - Andrea Pinto
- Department of Food, Environmental and Nutritional Sciences, University of Milan, via Celoria 2, 20133 Milan, Italy; (S.D.); (A.P.)
| |
Collapse
|