1
|
Liu D, Hennelly BM. Wavenumber Calibration Protocol for Raman Spectrometers Using Physical Modelling and a Fast Search Algorithm. APPLIED SPECTROSCOPY 2024; 78:790-805. [PMID: 38825581 PMCID: PMC11340246 DOI: 10.1177/00037028241254847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/15/2024] [Indexed: 06/04/2024]
Abstract
A wavenumber calibration protocol is proposed that replaces polynomial fitting to relate the detector axis and the wavenumber shift. The physical model of the Raman spectrometer is used to derive a mathematical expression relating the detector plane to the wavenumber shift, in terms of the system parameters including the spectrograph focal length, the grating angle, and the laser wavelength; the model is general to both reflection and transmission gratings. A fast search algorithm detects the set of parameters that best explains the position of spectral lines recorded on the detector for a known reference standard. Using three different reference standards, four different systems, and hundreds of spectra recorded with a rotating grating, we demonstrate the superior accuracy of the technique, especially in bands outside of the outermost reference peaks when compared with polynomial fitting. We also provide a thorough review of wavenumber calibration for Raman spectroscopy and we introduce several new evaluation metrics to this field borrowed from chemometrics, including leave-one-out and leave-half-out cross-validation.
Collapse
Affiliation(s)
- Dongyue Liu
- Department of Electronic Engineering, Maynooth University, Kildare, Ireland
| | - Bryan M. Hennelly
- Department of Electronic Engineering, Maynooth University, Kildare, Ireland
- Department of Computer Science, Maynooth University, Kildare, Ireland
| |
Collapse
|
3
|
Cutshaw G, Hassan N, Uthaman S, Wen X, Singh B, Sarkar A, Bardhan R. Monitoring Metabolic Changes in Response to Chemotherapies in Cancer with Raman Spectroscopy and Metabolomics. Anal Chem 2023; 95:13172-13184. [PMID: 37605298 PMCID: PMC10845238 DOI: 10.1021/acs.analchem.3c02073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Resistance to clinical therapies remains a major barrier in cancer management. There is a critical need for rapid and highly sensitive diagnostic tools that enable early prediction of treatment response to allow accurate clinical decisions. Here, Raman spectroscopy was employed to monitor changes in key metabolites as early predictors of response in KRAS-mutant colorectal cancer (CRC) cells, HCT116, treated with chemotherapies. We show at the single cell level that HCT116 is resistant to cetuximab (CTX), the first-line treatment in CRC, but this resistance can be overcome with pre-sensitization of cells with oxaliplatin (OX). In combination treatment of CTX + OX, sequential delivery of OX followed by CTX rather than simultaneous administration of drugs was observed to be critical for effective therapy. Our results demonstrated that metabolic changes are well aligned to cellular mechanical changes where Young's modulus decreased after effective treatment, indicating that both changes in mechanical properties and metabolism in cells are likely responsible for cancer proliferation. Raman findings were verified with mass spectrometry (MS) metabolomics, and both platforms showed changes in lipids, nucleic acids, and amino acids as predictors of resistance/response. Finally, key metabolic pathways enriched were identified when cells are resistant to CTX but downregulated with effective treatment. This study highlights that drug-induced metabolic changes both at the single cell level (Raman) and ensemble level (MS) have the potential to identify mechanisms of response to clinical cancer therapies.
Collapse
Affiliation(s)
- Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Nora Hassan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Bhuminder Singh
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Anwesha Sarkar
- Department of Electrical Engineering, Iowa State University, Ames, IA 50012, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
5
|
Cialla-May D, Krafft C, Rösch P, Deckert-Gaudig T, Frosch T, Jahn IJ, Pahlow S, Stiebing C, Meyer-Zedler T, Bocklitz T, Schie I, Deckert V, Popp J. Raman Spectroscopy and Imaging in Bioanalytics. Anal Chem 2021; 94:86-119. [PMID: 34920669 DOI: 10.1021/acs.analchem.1c03235] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dana Cialla-May
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Christoph Krafft
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Tanja Deckert-Gaudig
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Torsten Frosch
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Izabella J Jahn
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Susanne Pahlow
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| | - Clara Stiebing
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Tobias Meyer-Zedler
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Thomas Bocklitz
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Iwan Schie
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Ernst-Abbe-Hochschule Jena, University of Applied Sciences, Department of Biomedical Engineering and Biotechnology, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Volker Deckert
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany
| | - Jürgen Popp
- Leibniz-Institute of Photonic Technology, Member of the Leibniz Research Alliance - Leibniz Health Technologies, Albert-Einstein-Str. 9, 07745 Jena, Germany.,Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University, Helmholtzweg 4, 07743 Jena, Germany.,InfectoGnostics Research Campus Jena, Center of Applied Research, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
6
|
Automated Raman Micro-Spectroscopy of Epithelial Cell Nuclei for High-Throughput Classification. Cancers (Basel) 2021; 13:cancers13194767. [PMID: 34638253 PMCID: PMC8507544 DOI: 10.3390/cancers13194767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary We demonstrate an automated Raman cytology system designed for high-throughput and reproducibility. The system uses a Raman spectroscopy system integrated into a conventional microscope, all controlled electronically via and open source software, Micro-Manager. The system can automatically identify and probe epithelial cell nuclei for Raman spectroscopy. 6426 HT1197 (high-grade bladder cancer) cell spectra, and 7499 RT112 (low-grade bladdercancer) cell spectra were recorded. The data was subsequently culled and processed for denoising and artifact removal. We demonstrate, using multivariate statistical analysis, that the cells can be distinguished, using a variety of approaches with accuracy, sensitivity and specificity in excess of 95%. Abstract Raman micro-spectroscopy is a powerful technique for the identification and classification of cancer cells and tissues. In recent years, the application of Raman spectroscopy to detect bladder, cervical, and oral cytological samples has been reported to have an accuracy greater than that of standard pathology. However, despite being entirely non-invasive and relatively inexpensive, the slow recording time, and lack of reproducibility have prevented the clinical adoption of the technology. Here, we present an automated Raman cytology system that can facilitate high-throughput screening and improve reproducibility. The proposed system is designed to be integrated directly into the standard pathology clinic, taking into account their methodologies and consumables. The system employs image processing algorithms and integrated hardware/software architectures in order to achieve automation and is tested using the ThinPrep standard, including the use of glass slides, and a number of bladder cancer cell lines. The entire automation process is implemented, using the open source Micro-Manager platform and is made freely available. We believe that this code can be readily integrated into existing commercial Raman micro-spectrometers.
Collapse
|
7
|
Abramczyk H, Brozek-Pluska B, Jarota A, Surmacki J, Imiela A, Kopec M. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity. Expert Rev Mol Diagn 2020; 20:99-115. [PMID: 32013616 DOI: 10.1080/14737159.2020.1724092] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/28/2020] [Indexed: 12/14/2022]
Abstract
Introduction: Currently, intensely developing of linear and non-linear optical methods for cancer detection provides a valuable tool to improve sensitivity and specificity. One of the main reasons for insufficient progress in cancer diagnostics is related to the fact that most cancer types are not only heterogeneous in their genetic composition but also reside in varying microenvironments and interact with different cell types. Until now, no technology has been fully proven for effective detecting of invasive cancer, which infiltrating the extracellular matrix.Areas covered: This review investigates the current status of Raman spectroscopy and Raman imaging for brain and breast cancer diagnostics. Moreover, the review provides a comprehensive overview of the applicability of atomic force microscopy (AFM), linear and non-linear optics in cancer research as a gateway to tumor cell identity.Expert commentary: A combination of linear and non-linear optics, particularly Raman-driven methods, has many additional advantages to identify alterations in cancer cells that are crucial for their proliferation and that distinguish them from normal cells.
Collapse
Affiliation(s)
- Halina Abramczyk
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Arkadiusz Jarota
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Jakub Surmacki
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Anna Imiela
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| | - Monika Kopec
- Laboratory of Laser Molecular Spectroscopy, Lodz University of Technology, Lodz, Poland
| |
Collapse
|