1
|
Bržezická T, Kohútová L, Glatz Z. Atypical applications of transverse diffusion of laminar flow profiles methodology for in-capillary reactions in capillary electrophoresis. J Sep Sci 2024; 47:e2400157. [PMID: 38982555 DOI: 10.1002/jssc.202400157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Capillary electrophoresis (CE) is a powerful separation technique offering quick and efficient analyses in various fields of bioanalytical chemistry. It is characterized by many well-known advantages, but one, which is perhaps the most important for this application field, is somewhat overlooked. It is the possibility to perform chemical and biochemical reactions at the nL scale inside the separation capillary. There are two basic formats applicable for this purpose, heterogeneous and homogeneous. In the former, one reactant is immobilized onto a particle or monolithic support or directly on the capillary wall, and the other is injected. In the latter, the reactant mixing inside a capillary is based on electromigration or diffusion. One of the diffusion-based methodologies, termed Transverse Diffusion of Laminar Flow Profiles, is the subject of this review. Since most studies utilizing in-capillary reactions in CE focus on enzymes, which are being continuously and exhaustively reviewed, this review covers the atypical applications of this methodology, but still in the bioanalytical field. As can be seen from the demonstrated applications, they are not limited to reactions, but can also be utilized for other biochemical systems.
Collapse
Affiliation(s)
- Taťána Bržezická
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Kohútová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Zdeněk Glatz
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Schairer J, Römer J, Lang D, Neusüß C. CE-MS/MS and CE-timsTOF to separate and characterize intramolecular disulfide bridges of monoclonal antibody subunits and their application for the assessment of subunit reduction protocols. Anal Bioanal Chem 2024; 416:1599-1612. [PMID: 38296860 PMCID: PMC10899284 DOI: 10.1007/s00216-024-05161-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 02/02/2024]
Abstract
Characterization at the subunit level enables detailed mass spectrometric characterization of posttranslational modifications (PTMs) of monoclonal antibodies (mAbs). The implemented reduction often leaves the intramolecular disulfide bridges intact. Here, we present a capillary electrophoretic (CE) method based on a neutral-coated capillary for the separation of immunoglobulin G-degrading enzyme of Streptococcus pyogenes (IdeS) digested and reduced mAb subunits followed by mass spectrometry (MS), MS/MS identification, and trapped ion mobility mass spectrometry (timsTOF). Our CE approach enables the separation of (i) different subunit moieties, (ii) various reduction states, and (iii) positional isomers of these partly reduced subunit moieties. The location of the remaining disulfide bridges can be determined by middle-down electron transfer higher energy collisional dissociation (EThcD) experiments. All these CE-separated variants show differences in ion mobility in the timsTOF measurements. Applying the presented CE-MS/MS method, reduction parameters such as the use of chaotropic salts were studied. For the investigated antibodies, urea improved the subunit reduction significantly, whereas guanidine hydrochloride (GuHCl) leads to multiple signals of the same subunit in the CE separation. The presented CE-MS method is a powerful tool for the disulfide-variant characterization of mAbs on the subunit level. It enables understanding disulfide bridge reduction processes in antibodies and potentially other proteins.
Collapse
Affiliation(s)
- Jasmin Schairer
- Faculty of Chemistry, Aalen University, Aalen, Germany
- Faculty of Science, University of Tübingen, Tübingen, Germany
| | | | | | | |
Collapse
|
3
|
van der Zon AAM, Verduin J, van den Hurk RS, Gargano AFG, Pirok BWJ. Sample transformation in online separations: how chemical conversion advances analytical technology. Chem Commun (Camb) 2023; 60:36-50. [PMID: 38053451 PMCID: PMC10729587 DOI: 10.1039/d3cc03599a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023]
Abstract
While the advent of modern analytical technology has allowed scientists to determine the complexity of mixtures, it also spurred the demand to understand these sophisticated mixtures better. Chemical transformation can be used to provide insights into properties of complex samples such as degradation pathways or molecular heterogeneity that are otherwise unaccessible. In this article, we explore how sample transformation is exploited across different application fields to empower analytical methods. Transformation mechanisms include molecular-weight reduction, controlled degradation, and derivatization. Both offline and online transformation methods have been explored. The covered studies show that sample transformation facilitates faster reactions (e.g. several hours to minutes), reduces sample complexity, unlocks new sample dimensions (e.g. functional groups), provides correlations between multiple sample dimensions, and improves detectability. The article highlights the state-of-the-art and future prospects, focusing in particular on the characterization of protein and nucleic-acid therapeutics, nanoparticles, synthetic polymers, and small molecules.
Collapse
Affiliation(s)
- Annika A M van der Zon
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Joshka Verduin
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
- Vrije Universiteit Amsterdam, Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Rick S van den Hurk
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Andrea F G Gargano
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Bob W J Pirok
- University of Amsterdam, van't Hoff Institute for Molecular Sciences, Analytical Chemistry Group, Science Park 904, 1098 XH Amsterdam, The Netherlands.
- Centre of Analytical Sciences Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
4
|
Krebs F, Zagst H, Stein M, Ratih R, Minkner R, Olabi M, Hartung S, Scheller C, Lapizco-Encinas BH, Sänger-van de Griend C, García CD, Wätzig H. Strategies for capillary electrophoresis: Method development and validation for pharmaceutical and biological applications-Updated and completely revised edition. Electrophoresis 2023; 44:1279-1341. [PMID: 37537327 DOI: 10.1002/elps.202300158] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/19/2023] [Indexed: 08/05/2023]
Abstract
This review is in support of the development of selective, precise, fast, and validated capillary electrophoresis (CE) methods. It follows up a similar article from 1998, Wätzig H, Degenhardt M, Kunkel A. "Strategies for capillary electrophoresis: method development and validation for pharmaceutical and biological applications," pointing out which fundamentals are still valid and at the same time showing the enormous achievements in the last 25 years. The structures of both reviews are widely similar, in order to facilitate their simultaneous use. Focusing on pharmaceutical and biological applications, the successful use of CE is now demonstrated by more than 600 carefully selected references. Many of those are recent reviews; therefore, a significant overview about the field is provided. There are extra sections about sample pretreatment related to CE and microchip CE, and a completely revised section about method development for protein analytes and biomolecules in general. The general strategies for method development are summed up with regard to selectivity, efficiency, precision, analysis time, limit of detection, sample pretreatment requirements, and validation.
Collapse
Affiliation(s)
- Finja Krebs
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Holger Zagst
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Matthias Stein
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Ratih Ratih
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Surabaya, Surabaya, East Java, Indonesia
| | - Robert Minkner
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Mais Olabi
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Sophie Hartung
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Christin Scheller
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Blanca H Lapizco-Encinas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology, Rochester, New York, USA
| | - Cari Sänger-van de Griend
- Kantisto BV, Baarn, The Netherlands
- Department of Medicinal Chemistry, Faculty of Pharmacy, Uppsala Universitet, Uppsala, Sweden
| | - Carlos D García
- Department of Chemistry, Clemson University, Clemson, South Carolina, USA
| | - Hermann Wätzig
- Institute, of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
5
|
Schlecht J, Jooß K, Moritz B, Kiessig S, Neusüß C. Two-Dimensional Capillary Zone Electrophoresis-Mass Spectrometry: Intact mAb Charge Variant Separation Followed by Peptide Level Analysis Using In-Capillary Digestion. Anal Chem 2023; 95:4059-4066. [PMID: 36800441 DOI: 10.1021/acs.analchem.2c04578] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Characterization of charge heterogeneity is an essential pillar for pharmaceutical development and quality control of therapeutic monoclonal antibodies (mAbs). The highly selective and commonly applied capillary zone electrophoresis (CZE) method containing high amounts of ε-aminocaproic acid (EACA) provides a detailed and robust charge heterogeneity profile of intact mAb variants. Nevertheless, the exact location of protein modifications within these charge profiles remains ambiguous. Electrospray ionization mass spectrometry (ESI-MS) is a promising tool for this purpose; however, EACA is incompatible with electrospray. In this context, we present a two-dimensional CZE-CZE-MS system to combine efficient charge variant separation of intact mAbs with subsequent peptide analysis after in-capillary digestion of selected charge variants. The first dimension is based on a generic CZE(EACA) method in a fused silica capillary. In the second dimension, a neutral-coated capillary is used for in-capillary reduction and digestion with Tris(2-carboxyethyl)phosphine (TCEP) and pepsin, followed by CZE separation and MS/MS-characterization of the resulting peptides. The setup is demonstrated using stressed and nonstressed mAbs where peaks of basic, main, and acidic variants were transferred in a heart-cut fashion, digested, and characterized on the peptide level. Sequence coverages of more than 90% were obtained for heavy chain (HC) and light chain (LC) for four different mAbs, including low-abundance variants (<2% of the main peak). Frequently observed modifications (deamidation, oxidation, etc.) could be detected and localized. This study demonstrates a proof-of-concept for identification and localization of protein modifications from CZE charge heterogeneity profiles and, in this way, is expected to support the development and quality control testing of protein pharmaceuticals.
Collapse
Affiliation(s)
- Johannes Schlecht
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Kevin Jooß
- Departments of Chemistry and Molecular Biosciences, the Chemistry of Life Processes Institute, and the Proteomics Center of Excellence, Northwestern University, Evanston, Illinois 60208, United States
| | - Bernd Moritz
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Steffen Kiessig
- F. Hoffmann La-Roche Ltd., Grenzacherstraße 124, 4058 Basel, Switzerland
| | - Christian Neusüß
- Department of Chemistry, Aalen University, Beethovenstrasse 1, 73430 Aalen, Germany
| |
Collapse
|
6
|
Alhazmi HA, Albratty M. Analytical Techniques for the Characterization and Quantification of Monoclonal Antibodies. Pharmaceuticals (Basel) 2023; 16:291. [PMID: 37259434 PMCID: PMC9967501 DOI: 10.3390/ph16020291] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 08/12/2023] Open
Abstract
Monoclonal antibodies (mAbs) are a fast-growing class of biopharmaceuticals. They are widely used in the identification and detection of cell makers, serum analytes, and pathogenic agents, and are remarkably used for the cure of autoimmune diseases, infectious diseases, or malignancies. The successful application of therapeutic mAbs is based on their ability to precisely interact with their appropriate target sites. The precision of mAbs rely on the isolation techniques delivering pure, consistent, stable, and safe lots that can be used for analytical, diagnostic, or therapeutic applications. During the creation of a biologic, the key quality features of a particular mAb, such as structure, post-translational modifications, and activities at the biomolecular and cellular levels, must be characterized and profiled in great detail. This implies the requirement of powerful state of the art analytical techniques for quality control and characterization of mAbs. Until now, various analytical techniques have been developed to characterize and quantify the mAbs according to the regulatory guidelines. The present review summarizes the major techniques used for the analyses of mAbs which include chromatographic, electrophoretic, spectroscopic, and electrochemical methods in addition to the modifications in these methods for improving the quality of mAbs. This compilation of major analytical techniques will help students and researchers to have an overview of the methodologies employed by the biopharmaceutical industry for structural characterization of mAbs for eventual release of therapeutics in the drug market.
Collapse
Affiliation(s)
- Hassan A. Alhazmi
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry and Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
7
|
Kašička V. Peptide mapping of proteins by capillary electromigration methods. J Sep Sci 2022; 45:4245-4279. [PMID: 36200755 DOI: 10.1002/jssc.202200664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 12/13/2022]
Abstract
This review article provides a wide overview of important developments and applications of capillary electromigration methods in the area of peptide mapping of proteins in the period 1997-mid-2022, including review articles on this topic. It deals with all major aspects of peptide mapping by capillary electromigration methods: i) precleavage sample preparation involving purification, preconcentration, denaturation, reduction and alkylation of protein(s) to be analyzed, ii) generation of peptide fragments by off-line or on-line enzymatic and/or chemical cleavage of protein(s), iii) postcleavage preparation of the generated peptide mixture for capillary electromigration separation, iv) separation of the complex peptide mixtures by one-, two- and multidimensional capillary electromigration methods coupled with mass spectrometry detection, and v) a large application of peptide mapping for variable purposes, such as qualitative analysis of monoclonal antibodies and other protein biopharmaceuticals, monitoring of posttranslational modifications, determination of primary structure and investigation of function of proteins in biochemical and clinical research, characterization of proteins of variable origin as well as for protein and peptide identification in proteomic and peptidomic studies.
Collapse
Affiliation(s)
- Václav Kašička
- Electromigration Methods, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| |
Collapse
|
8
|
Gao Z, Zhong W. Recent (2018-2020) development in capillary electrophoresis. Anal Bioanal Chem 2022; 414:115-130. [PMID: 33754195 PMCID: PMC7984737 DOI: 10.1007/s00216-021-03290-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/14/2022]
Abstract
Development of new capillary electrophoresis (CE) methodology and instrumentation, as well as application of CE to solve new problems, remains an active research area because of the attractive features of CE compared to other separation techniques. In this review, we focus on the representative works about sample preconcentration, separation media or capillary coating development, detector construction, and multidimensional separation in CE, which are judiciously selected from the papers published in 2018-2020.
Collapse
Affiliation(s)
- Ziting Gao
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA
| | - Wenwan Zhong
- Department of Chemistry, University of California-Riverside, 900 University Ave., Riverside, CA, 92521, USA.
| |
Collapse
|
9
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2019-mid 2021). Electrophoresis 2021; 43:82-108. [PMID: 34632606 DOI: 10.1002/elps.202100243] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/19/2022]
Abstract
The review provides a comprehensive overview of developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) for analysis, microscale isolation, and physicochemical characterization of peptides from 2019 up to approximately the middle of 2021. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis, such as sample preparation, sorption suppression, EOF control, and detection, are presented. New developments in the individual CE and CEC methods are demonstrated and several types of their applications are shown. They include qualitative and quantitative analysis, determination in complex biomatrices, monitoring of chemical and enzymatic reactions and physicochemical changes, amino acid, sequence, and chiral analyses, and peptide mapping of proteins. In addition, micropreparative separations and determination of significant physicochemical parameters of peptides by CE and CEC methods are described.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague 6, Czechia
| |
Collapse
|
10
|
Rozenski J, Asfaw AA, Van Schepdael A. Overview of in-capillary enzymatic reactions using capillary electrophoresis. Electrophoresis 2021; 43:57-73. [PMID: 34510496 DOI: 10.1002/elps.202100161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 12/20/2022]
Abstract
This review summarizes the research that has recently been performed on in-capillary enzymatic reactions integrated with capillary electrophoresis. The manuscript is subdivided in homogeneous and heterogeneous approaches. The main homogeneous techniques are Electrophoretically Mediated Microanalysis, At-inlet and Transverse Diffusion of Laminar Flow Profiles. The main heterogeneous ones are Immobilized MicroEnzyme Reactors with enzymes grafted on either non-magnetic or magnetic particles. The overview covers the period from 2018 to early 2021. The applications range from drug discovery over natural products to food, beverage and pesticide analysis.
Collapse
Affiliation(s)
- Jef Rozenski
- Department ofPharmaceutical and Pharmacological Sciences, Medicinal Chemistry, Rega Institute, KU Leuven-University of Leuven, Leuven, Belgium
| | - Adissu Alemayehu Asfaw
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium.,Department of Pharmaceutical Analysis and Quality Assurance, College of Health Sciences, School of Pharmacy, Mekelle University, Mekelle, Ethiopia
| | - Ann Van Schepdael
- Department of Pharmaceutical and Pharmacological Sciences, Pharmaceutical Analysis, KU Leuven- University of Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Al Hamoui Dit Banni G, Nasreddine R, Fayad S, Cao-Ngoc P, Rossi JC, Leclercq L, Cottet H, Marchal A, Nehmé R. Screening for pancreatic lipase natural modulators by capillary electrophoresis hyphenated to spectrophotometric and conductometric dual detection. Analyst 2021; 146:1386-1401. [PMID: 33404014 DOI: 10.1039/d0an02234a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The search for novel pancreatic lipase (PL) inhibitors has gained increasing attention in recent years. For the first time, a dual detection capillary electrophoresis (CE)-based homogeneous lipase assay was developed employing both the offline and online reaction modes. The hydrolysis of 4-nitrophenyl butyrate (4-NPB) catalyzed by PL into 4-nitrophenol and butyrate was monitored by spectrophotometric and conductimetric detection, respectively. The assays presented several advantages such as economy in consumption (few tens of nanoliters for online assays to few tens of microliters for offline assays), no modification of lipase, rapidity (<10 min) and versatility. Tris/MOPS (10 mM, pH 6.6) was used as the background electrolyte and the incubation buffer for enzymatic reactions. We confirmed that in the conditions of the study (small substrate 4-NPB, 37 °C, pH 6.6), the PL was active even in the absence of dipalmitoylphosphatidylcholine (DPPC) vesicles, generally used to mimic the lipid-water interface. This was confirmed by the maximum velocity (Vmax) and the Michaelis-Menten constant (Km) values that were the same order of magnitude in the absence and presence of DPPC. The developed method was used to screen crude aqueous plant extracts and purified compounds. We were able to identify the promising PL inhibition of hawthorn leaf herbal infusions at 1 mg mL-1 (37%) and PL activation by fresh and dry hawthorn flowers (∼24%). Additionally, two triterpenoids purified from extracts of oakwood were identified for the first time as potent PL inhibitors demonstrating 51 and 58% inhibition at 1 mg mL-1, respectively.
Collapse
Affiliation(s)
- Ghassan Al Hamoui Dit Banni
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| | - Rouba Nasreddine
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| | - Syntia Fayad
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France. and Université de Bordeaux, ISVV, EA 5477, Unité de recherche Œnologie, USC 1366 INRA, F-33882, Villenave d'Ornon, France
| | - Phu Cao-Ngoc
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | | | - Laurent Leclercq
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | - Hervé Cottet
- IBMM, University of Montpellier, CNRS, ENSCM, 34059 Montpellier, France
| | - Axel Marchal
- Université de Bordeaux, ISVV, EA 5477, Unité de recherche Œnologie, USC 1366 INRA, F-33882, Villenave d'Ornon, France
| | - Reine Nehmé
- Institut de Chimie Organique et Analytique (ICOA), CNRS FR 2708 - UMR 7311, Université d'Orléans, 45067 Orléans, France.
| |
Collapse
|
12
|
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Bechara C, Perrin C. In-capillary (electrophoretic) digestion-reduction-separation: A smart tool for middle-up analysis of mAb. J Chromatogr A 2021; 1648:462213. [PMID: 33991752 DOI: 10.1016/j.chroma.2021.462213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Comprehensive characterization of physicochemical properties of monoclonal antibodies (mAbs) is a critical process to ensure their quality, efficacy, and safety. For this purpose, mAb analysis at different levels (bottom-up, middle-up) is a common approach that includes rather complex multistep sample preparation (reduction, digestion). To ensure high analysis performance, the development of fully integrated methodologies is highly valuable. Capillary zone electrophoresis is a particularly well-adapted technique for the multistep implementation of analytical strategies from sample preparation to detection. This feature was employed to develop novel integrated methodologies for the analysis of mAb at the middle-up level. Multiple in-line reactions (simultaneous reduction and digestion) were performed for the first time in the separation capillary. Tris (2-carboxyethyl) phosphine hydrochloride (TCEP) was used as an effective reducing agent under a broad pH range and IdeS (Immunoglobulin degrading enzyme from Streptococcus) as a highly specific enzyme for mAb digestion. Transverse diffusion of laminar flow profile (TDLFP) was applied for reactants mixing. Both in-line sample preparation and separation parameters were optimized under non-denaturing and denaturing conditions. The developed in-line methodologies provided good reproducibility and higher peak efficiencies comparing with off-line assays. They were successfully applied to different mAbs.
Collapse
Affiliation(s)
- Meriem Dadouch
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Yoann Ladner
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Claudia Bich
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Jérôme Montels
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France
| | - Jacques Morel
- Département de Rhumatologie, Université de Montpellier, Hôpital Lapeyronie, 34295 Cedex 5, Montpellier, France
| | - Cherine Bechara
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, Montpellier, France; Institut Universitaire de France (IUF), France
| | - Catherine Perrin
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247-CNRS-UM-ENSCM, Université de Montpellier, Montpellier, France.
| |
Collapse
|
13
|
Dadouch M, Ladner Y, Bich C, Montels J, Morel J, Perrin C. Fast in-line bottom-up analysis of monoclonal antibodies: Toward an electrophoretic fingerprinting approach. Electrophoresis 2021; 42:1229-1237. [PMID: 33650106 DOI: 10.1002/elps.202000375] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
For their characterization and quality control, monoclonal antibodies are frequently analyzed at the bottom-up level to generate specific fingerprints that can be used to tackle post-translational modifications or ensure production consistency between lots. To circumvent time-consuming and labor-intensive off-line sample preparation steps, the implementation of integrated methodologies from sample preparation to separation and detection is highly valuable. In this perspective, capillary zone electrophoresis appears as a choice technique since the capillary can subsequently be used as a vessel for sample preparation and electrophoretic discrimination/detection of the reaction products. Here, a fast in-line methodology for the routine quality control of mAbs at the bottom-up level is reported. Simultaneous denaturation and reduction (pretreatment step) were conducted with RapiGest® surfactant and dithiothreitol before in-line tryptic digestion. Reactant mixing was realized by transverse diffusion of laminar flow profile under controlled temperature. In-line digestion was carried out with a resistant trypsin to autolysis. The main parameters affecting the digestion efficiency (trypsin concentration and incubation conditions) were optimized to generate mAb electrophoretic profiles free from trypsin interferences. An acidic MS-compatible BGE was used to obtain high resolution separation of released peptides and in-line surfactant cleavage. The whole methodology was performed in less than two hours with good repeatability of migration times (RSD = 0.91%, n = 5) and corrected peak areas (RSD = 9.6%, n = 5). CE-fingerprints were successfully established for different mAbs and an antibody-drug conjugate.
Collapse
Affiliation(s)
- Meriem Dadouch
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Yoann Ladner
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Claudia Bich
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jérôme Montels
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| | - Jacques Morel
- Département de Rhumatologie, Université de Montpellier, Hôpital Lapeyronie, Montpellier Cedex 5, 34295, France
| | - Catherine Perrin
- UMR 5247-CNRS-UM-ENSCM, Institut des Biomolécules Max Mousseron (IBMM), Université de Montpellier, Montpellier, France
| |
Collapse
|
14
|
Analysis of Monoclonal Antibodies by Capillary Electrophoresis: Sample Preparation, Separation, and Detection. SEPARATIONS 2021. [DOI: 10.3390/separations8010004] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are dominating the biopharmaceutical field due to the fact of their high specificity in the treatment of diverse diseases. Nevertheless, mAbs are very complex glycoproteins exhibiting several macro- and microheterogeneities that may affect their safety, quality, and efficacy. This complexity is very challenging for mAbs development, formulation, and quality control. To tackle the quality issue, a combination of multiple analytical approaches is necessary. In this perspective, capillary electrophoresis has gained considerable interest over the last decade due to the fact of its complementary features to chromatographic approaches. This review provides an overview of the strategies of mAbs and derivatives analysis by capillary electrophoresis hyphenated to ultraviolet, fluorescence, and mass spectrometry detection. The main sample preparation approaches used for mAb analytical characterization (i.e., intact, middle-up/down, and bottom-up) are detailed. The different electrophoretic modes used as well as integrated analysis approaches (sample preparation and separation) are critically discussed.
Collapse
|
15
|
AZHAR I, LIU X, HE HY, QU QS, YANG L. A Syringe-Filter-based Portable Microreactor for Size-selective Proteolysis of Low Molecular-weight Proteins. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [DOI: 10.1016/s1872-2040(20)60061-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|