1
|
Tortajada-Genaro LA, Quintero-Campos P, Juárez MJ, Ibañez-Echevarria E, Chiriac AM, Fernández E, Morais S, Maquieira Á. Development and validation study of compact biophotonic platform for detection of serum biomarkers. Talanta 2024; 278:126511. [PMID: 38986307 DOI: 10.1016/j.talanta.2024.126511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
The application of advances in personalized medicine requires the support of in vitro diagnostic techniques aimed at the accurate, fast, sensitive, and precise determination of selected biomarkers. Herein, a novel optical centrifugal microfluidic device is developed for clinical analysis and point-of-care diagnostics. Based on compact disc technology, the integrated biophotonic system enables multiple immunoassays in miniaturized mode. The disposable microfluidic discs are made in cyclic olefin copolymer (COP), containing arrays of immobilized probes. In the developed approach, up to six patient samples can each be tested simultaneously. A portable instrument (<2 kg) controls the assay and the high-sensitive reproducible optical detection in transmission mode. Also, the instrument incorporates specific functionalities for personalized telemedicine. The device (analytical method, disc platform, reader, and software) has been validated to diagnose IgE-mediated drug allergies, such as amoxicillin and penicillin G. The total and specific IgE to β-lactam antibiotics were determined in human serum from patients (25 μL). The excellent analytical performances (detection limit 0.24 ng/mL, standard deviation 7-20 %) demonstrated that the developed system could have the potential for a broader impact beyond the allergy field, as it applies to other IVD tests.
Collapse
Affiliation(s)
- Luis Antonio Tortajada-Genaro
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain.
| | - Pedro Quintero-Campos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María José Juárez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Ethel Ibañez-Echevarria
- Hospital Universitari i Politènic La Fe, Servicio de Alergología, Avinguda de Fernando Abril Martorell, 106, 46026, Valencia, Spain
| | - Anca Mirela Chiriac
- Division of Allergy, Department of Pulmonology, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France
| | - Estrella Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Sergi Morais
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain
| | - Ángel Maquieira
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Camino de Vera s/n, 46022, Valencia, Spain; Departamento de Química, Universitat Politècnica de València, Valencia, Spain; Unidad Mixta UPV-La Fe, Nanomedicine and Sensors, Valencia, Spain
| |
Collapse
|
2
|
Kemp JA, Kwon YJ. Cancer nanotechnology: current status and perspectives. NANO CONVERGENCE 2021; 8:34. [PMID: 34727233 PMCID: PMC8560887 DOI: 10.1186/s40580-021-00282-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/05/2021] [Indexed: 05/09/2023]
Abstract
Modern medicine has been waging a war on cancer for nearly a century with no tangible end in sight. Cancer treatments have significantly progressed, but the need to increase specificity and decrease systemic toxicities remains. Early diagnosis holds a key to improving prognostic outlook and patient quality of life, and diagnostic tools are on the cusp of a technological revolution. Nanotechnology has steadily expanded into the reaches of cancer chemotherapy, radiotherapy, diagnostics, and imaging, demonstrating the capacity to augment each and advance patient care. Nanomaterials provide an abundance of versatility, functionality, and applications to engineer specifically targeted cancer medicine, accurate early-detection devices, robust imaging modalities, and enhanced radiotherapy adjuvants. This review provides insights into the current clinical and pre-clinical nanotechnological applications for cancer drug therapy, diagnostics, imaging, and radiation therapy.
Collapse
Affiliation(s)
- Jessica A Kemp
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, Irvine, CA, 92697, USA.
- Department of Chemical and Biomolecular Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, School of Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
3
|
Calabretta MM, Zangheri M, Calabria D, Lopreside A, Montali L, Marchegiani E, Trozzi I, Guardigli M, Mirasoli M, Michelini E. Paper-Based Immunosensors with Bio-Chemiluminescence Detection. SENSORS (BASEL, SWITZERLAND) 2021; 21:4309. [PMID: 34202483 PMCID: PMC8271422 DOI: 10.3390/s21134309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/15/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022]
Abstract
Since the introduction of paper-based analytical devices as potential diagnostic platforms a few decades ago, huge efforts have been made in this field to develop systems suitable for meeting the requirements for the point-of-care (POC) approach. Considerable progress has been achieved in the adaptation of existing analysis methods to a paper-based format, especially considering the chemiluminescent (CL)-immunoassays-based techniques. The implementation of biospecific assays with CL detection and paper-based technology represents an ideal solution for the development of portable analytical devices for on-site applications, since the peculiarities of these features create a unique combination for fitting the POC purposes. Despite this, the scientific production is not paralleled by the diffusion of such devices into everyday life. This review aims to highlight the open issues that are responsible for this discrepancy and to find the aspects that require a focused and targeted research to make these methods really applicable in routine analysis.
Collapse
Affiliation(s)
- Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Antonia Lopreside
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Laura Montali
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 48123 Ravenna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, University of Bologna, 40126 Bologna, Italy; (M.M.C.); (M.Z.); (D.C.); (A.L.); (L.M.); (E.M.); (I.T.); (M.G.)
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy
- INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d’Oro, 00136 Rome, Italy
- Health Sciences and Technologies-Interdepartmental Center for Industrial Research (HST-ICIR), University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
4
|
Calabria D, Calabretta MM, Zangheri M, Marchegiani E, Trozzi I, Guardigli M, Michelini E, Di Nardo F, Anfossi L, Baggiani C, Mirasoli M. Recent Advancements in Enzyme-Based Lateral Flow Immunoassays. SENSORS (BASEL, SWITZERLAND) 2021; 21:3358. [PMID: 34065971 PMCID: PMC8150770 DOI: 10.3390/s21103358] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/20/2022]
Abstract
Paper-based lateral-flow immunoassays (LFIAs) have achieved considerable commercial success and their impact in diagnostics is continuously growing. LFIA results are often obtained by visualizing by the naked eye color changes in given areas, providing a qualitative information about the presence/absence of the target analyte in the sample. However, this platform has the potential to provide ultrasensitive quantitative analysis for several applications. Indeed, LFIA is based on well-established immunological techniques, which have known in the last year great advances due to the combination of highly sensitive tracers, innovative signal amplification strategies and last-generation instrumental detectors. All these available progresses can be applied also to the LFIA platform by adapting them to a portable and miniaturized format. This possibility opens countless strategies for definitively turning the LFIA technique into an ultrasensitive quantitative method. Among the different proposals for achieving this goal, the use of enzyme-based immunoassay is very well known and widespread for routine analysis and it can represent a valid approach for improving LFIA performances. Several examples have been recently reported in literature exploiting enzymes properties and features for obtaining significative advances in this field. In this review, we aim to provide a critical overview of the recent progresses in highly sensitive LFIA detection technologies, involving the exploitation of enzyme-based amplification strategies. The features and applications of the technologies, along with future developments and challenges, are also discussed.
Collapse
Affiliation(s)
- Donato Calabria
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Maria Maddalena Calabretta
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Martina Zangheri
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Elisa Marchegiani
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Ilaria Trozzi
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Massimo Guardigli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Elisa Michelini
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| | - Fabio Di Nardo
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Laura Anfossi
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Claudio Baggiani
- Department of Chemistry, University of Turin, Via P. Giuria 5, 10125 Turin, Italy; (F.D.N.); (L.A.); (C.B.)
| | - Mara Mirasoli
- Department of Chemistry “Giacomo Ciamician”, Alma Mater Studiorum-University of Bologna, Via Selmi 2, 40126 Bologna, Italy; (D.C.); (M.M.C.); (M.Z.); (E.M.); (I.T.); (M.G.); (E.M.)
| |
Collapse
|
5
|
Advani D, Sharma S, Kumari S, Ambasta RK, Kumar P. Precision Oncology, Signaling and Anticancer Agents in Cancer Therapeutics. Anticancer Agents Med Chem 2021; 22:433-468. [PMID: 33687887 DOI: 10.2174/1871520621666210308101029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The global alliance for genomics and healthcare facilities provides innovational solutions to expedite research and clinical practices for complex and incurable health conditions. Precision oncology is an emerging field explicitly tailored to facilitate cancer diagnosis, prevention and treatment based on patients' genetic profile. Advancements in "omics" techniques, next-generation sequencing, artificial intelligence and clinical trial designs provide a platform for assessing the efficacy and safety of combination therapies and diagnostic procedures. METHOD Data were collected from Pubmed and Google scholar using keywords: "Precision medicine", "precision medicine and cancer", "anticancer agents in precision medicine" and reviewed comprehensively. RESULTS Personalized therapeutics including immunotherapy, cancer vaccines, serve as a groundbreaking solution for cancer treatment. Herein, we take a measurable view of precision therapies and novel diagnostic approaches targeting cancer treatment. The contemporary applications of precision medicine have also been described along with various hurdles identified in the successful establishment of precision therapeutics. CONCLUSION This review highlights the key breakthroughs related to immunotherapies, targeted anticancer agents, and target interventions related to cancer signaling mechanisms. The success story of this field in context to drug resistance, safety, patient survival and in improving quality of life is yet to be elucidated. We conclude that, in the near future, the field of individualized treatments may truly revolutionize the nature of cancer patient care.
Collapse
Affiliation(s)
- Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Sudhanshu Sharma
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory Shahbad Daulatpur, Bawana Road, Delhi 110042. India
| |
Collapse
|
6
|
Lopreside A, Calabretta MM, Montali L, Zangheri M, Guardigli M, Mirasoli M, Michelini E. Bioluminescence goes portable: recent advances in whole-cell and cell-free bioluminescence biosensors. LUMINESCENCE 2020; 36:278-293. [PMID: 32945075 DOI: 10.1002/bio.3948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Recent advancements in synthetic biology, organic chemistry, and computational models have allowed the application of bioluminescence in several fields, ranging from well established methods for detecting microbial contamination to in vivo imaging to track cancer and stem cells, from cell-based assays to optogenetics. Moreover, thanks to recent technological progress in miniaturized and sensitive light detectors, such as photodiodes and imaging sensors, it is possible to implement laboratory-based assays, such as cell-based and enzymatic assays, into portable analytical devices for point-of-care and on-site applications. This review highlights some recent advances in the development of whole-cell and cell-free bioluminescence biosensors with a glance on current challenges and different strategies that have been used to turn bioassays into biosensors with the required analytical performance. Critical issues and unsolved technical problems are also highlighted, to give the reader a taste of this fascinating and challenging field.
Collapse
Affiliation(s)
- Antonia Lopreside
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | | | - Laura Montali
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Martina Zangheri
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy
| | - Massimo Guardigli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy
| | - Mara Mirasoli
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,INBB, Istituto Nazionale di Biostrutture e Biosistemi, Via Medaglie d'Oro, Rome, Italy
| | - Elisa Michelini
- Department of Chemistry 'Giacomo Ciamician', University of Bologna, Via Selmi 2, Bologna, Italy.,Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum - University of Bologna, Via Sant'Alberto 163, Ravenna, Italy.,Health Sciences and Technologies-Interdepartmental Centre for Industrial Research (HST-ICIR), University of Bologna, via Tolara di Sopra 41/E 40064, Ozzano dell'Emilia, Bologna, Italy
| |
Collapse
|