1
|
Yadavalli HC, Kim Y, Jung IL, Park S, Kim TH, Shin JY, Nagda R, Thulstrup PW, Bjerrum MJ, Bhang YJ, Lee PH, Yang WH, Shah P, Yang SW. Energy Transfer Between i-Motif DNA Encapsulated Silver Nanoclusters and Fluorescein Amidite Efficiently Visualizes the Redox State of Live Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401629. [PMID: 38824675 DOI: 10.1002/smll.202401629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/21/2024] [Indexed: 06/04/2024]
Abstract
The redox regulation, maintaining a balance between oxidation and reduction in living cells, is vital for cellular homeostasis, intricate signaling networks, and appropriate responses to physiological and environmental cues. Here, a novel redox sensor, based on DNA-encapsulated silver nanoclusters (DNA/AgNCs) and well-defined chemical fluorophores, effectively illustrating cellular redox states in live cells is introduced. Among various i-motif DNAs, the photophysical property of poly-cytosines (C20)-encapsulated AgNCs that sense reactive oxygen species (ROS) is adopted. However, the sensitivity of C20/AgNCs is insufficient for evaluating ROS levels in live cells. To overcome this drawback, the ROS sensing mechanism of C20/AgNCs through gel electrophoresis, mass spectrometry, and small-angle X-ray scattering is primarily defined. Then, by tethering fluorescein amidite (FAM) and Cyanine 5 (Cy5) dyes to each end of the C20/AgNCs sensor, an Energy Transfer (ET) between AgNCs and FAM is achieved, resulting in intensified green fluorescence upon ROS detection. Taken together, the FAM-C20/AgNCs-Cy5 redox sensor enables dynamic visualization of intracellular redox states, yielding insights into oxidative stress-related processes in live cells.
Collapse
Affiliation(s)
- Hari Chandana Yadavalli
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeolhoe Kim
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Il Lae Jung
- Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, Daejeon, 34057, Republic of Korea
| | - Sooyeon Park
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Tae-Hwan Kim
- Department of Quantum System Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jin Young Shin
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Riddhi Nagda
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, 2100, Denmark
| | - Yong Joo Bhang
- Xenohelix Research Institute, BT Centre 305, 56 Songdogwahak-ro Yeonsugu, Incheon, 21984, Republic of Korea
| | - Phil Hyu Lee
- Department of Neurology, College of Medicine, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Won Ho Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Pratik Shah
- Department of Science and Environment, Roskilde University, Roskilde, 4000, Denmark
| | - Seong Wook Yang
- Department of Systems Biology, Institute of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
2
|
Wang T, Tan HS, Wang AJ, Li SS, Feng JJ. Fluorescent metal nanoclusters: From luminescence mechanism to applications in enzyme activity assays. Biosens Bioelectron 2024; 257:116323. [PMID: 38669842 DOI: 10.1016/j.bios.2024.116323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/09/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Metal nanoclusters (MNCs) have outstanding fluorescence property and biocompatibility, which show widespread applications in biological analysis. Particularly, evaluation of enzyme activity with the fluorescent MNCs has been developed rapidly within the past several years. In this review, we first introduced the fluorescent mechanism of mono- and bi-metallic nanoclusters, respectively, whose interesting luminescence properties are mainly resulted from electron transfer between the lowest unoccupied molecular orbital (LUMO) and highest occupied molecular orbital (HOMO) energy levels. Meanwhile, the charge migration within the structure occurs through ligand-metal charge transfer (LMCT) or ligand-metal-metal charge transfer (LMMCT). On such foundation, diverse enzyme activities were rigorously evaluated, including three transferases and nine hydrolases, in turn harvesting rapid research progresses within past 5 years. Finally, we summarized the design strategies for evaluating enzyme activity with the MNCs, presented the major issues and challenges remained in the relevant research, coupled by showing some improvement measures. This review will attract researchers dedicated to the studies of the MNCs and provide some constructive insights for their further applications in enzyme analysis.
Collapse
Affiliation(s)
- Tong Wang
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Hong-Sheng Tan
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Shan-Shan Li
- Institute for Chemical Biology & Biosensing, College of Life Sciences, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China.
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
3
|
Li K, Kang D, Li Y, Zhu W, Zhu L, Zhang J, Xu C, Wei B, Wang H. A fluorescent sensing platform based on collagen peptides-protected Au/Ag nanoclusters and WS 2 for determining collagen triple helix integrity. Anal Chim Acta 2023; 1247:340900. [PMID: 36781253 DOI: 10.1016/j.aca.2023.340900] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
The unique triple helix structure of collagen plays an important role in its biological properties, and the triple helix integrity is closely correlated with its molecular behavior and biological functions. Nevertheless, there is still a lack of convenient, accurate and practical methods for quantitatively determining collagen triple helix integrity. Herein, we first prepared bovine skin collagen peptide (BSCP)-protected Au/Ag nanoclusters (Au/AgNCs@BSCP) with excellent optical properties, high stability and good biocompatibility, which could adsorb on WS2 surface leading to fluorescence quenching. Upon the addition of collagen, the interaction of collagen and Au/AgNCs@BSCP led to the detachment of Au/AgNCs@BSCP from the WS2 surface, causing an increase in the fluorescence signal. Using the difference in the fluorescence recovery of the different samples, we achieved the quantitative determination of collagen triple helix integrity. This developed strategy exhibited excellent accuracy, selectivity, and practicality, thus showing promising potentials in biomedical applications.
Collapse
Affiliation(s)
- Ke Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Delai Kang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Yu Li
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Weizhe Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Lian Zhu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Juntao Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Chengzhi Xu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China
| | - Benmei Wei
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China.
| | - Haibo Wang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan, 430023, PR China.
| |
Collapse
|
4
|
Zhu CT, Huang KY, Zhou QL, Zhang XP, Wu GW, Peng HP, Deng HH, Chen W, Noreldeen HAA. Multi-excitation wavelength of gold nanocluster-based fluorescence sensor array for sulfonamides discrimination. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 288:122138. [PMID: 36442343 DOI: 10.1016/j.saa.2022.122138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/11/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Sulfonamides (SAs) are widely used in many fields because of their advantages, including low price, wide antibacterial spectrum, and high stability. However, their accumulation in the human body leads to a variety of serious diseases. Therefore, it is necessary to design a convenient, effective, and sensitive method to detect SAs. Moreover, the fluorescence excitation spectrum has rich information characteristics, especially for the interaction between fluorophore and quencher via various mechanisms. However, the excitation wavelength-guided sensor array construction does not draw proper attention. To address these issues, we used BSA-AuNCs as a single probe to construct a sensor array for the detection of five SAs. The selected SAs showed different quenching effects on the fluorescence intensities of BSA-AuNCs. The changes in the fluorescence intensity at different excitation wavelengths (λ = 230, 250, and 280 nm) have been applied to construct our sensor array and address the distinguishability between the selected SAs. With helping of pattern recognition methods, five different SAs have been identified at three different concentrations. Additionally, qualitative analysis at different moral ratios and quantitative analysis at nanogram concentrations have been considered. Moreover, the proposed sensor array was successfully used to distinguish between different SAs in commercial milk with an accuracy of 100 %. This study provides a simple and powerful approach to SAs detection. Also, it shows a broad application prospect in the field of food and drug monitoring.
Collapse
Affiliation(s)
- Chen-Ting Zhu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Qing-Lin Zhou
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Xiang-Ping Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; National Institute of Oceanography and Fisheries, NIOF, Cairo, Egypt.
| |
Collapse
|
5
|
Zhang H, Yang DN, Li Y, Yang FQ. Enzyme-Regulated In Situ Formation of Copper Hexacyanoferrate Nanoparticles with Oxidase-Mimetic Behaviour for Colorimetric Detection of Ascorbate Oxidase. BIOSENSORS 2023; 13:344. [PMID: 36979556 PMCID: PMC10046506 DOI: 10.3390/bios13030344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
In this study, a copper hexacyanoferrate nanoparticle with excellent oxidase-mimetic behaviour has been synthesized through a simple precipitation method. The synthesized copper hexacyanoferrate nanoparticle has intrinsic oxidase-like activity, which can catalyze the chromogenic reaction of 2,2'-azinobis-(3-ethylbenzthiazoline-6-sulphonate) through an O2•- reactive oxygen-species-participated process. On the other hand, K3[Fe(CN)6] can be reduced by ascorbic acid (AA) to produce K4[Fe(CN)6], thereby inhibiting the formation of the copper hexacyanoferrate nanoparticles. Furthermore, ascorbate oxidase (AAO) can catalyze the oxidation of AA to produce dehydroascorbic acid, which cannot reduce K3[Fe(CN)6]. Thus, a system for an AAO-regulated in situ formation of copper hexacyanoferrate nanoparticles was constructed by coupling a prepared copper hexacyanoferrate nanozyme with AA for the detection of AAO activity. This colorimetric sensing assay shows high sensitivity and selectivity for the detection of AAO activity (the limit of detection is 0.52 U/L) with a linear range of 1.1-35.7 U/L. Finally, the developed method was applied to detect the activity of AAO in normal human serum with a satisfactory sample spiked recovery (87.4-108.8%). In short, this study provides a good strategy for the construction of nanozyme-based multi-enzyme cascade-signal amplification assay.
Collapse
Affiliation(s)
- Hao Zhang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Dan-Ni Yang
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Yan Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery System, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
6
|
Kateshiya MR, Desai ML, Malek NI, Kailasa SK. Advances in Ultra-small Fluorescence Nanoprobes for Detection of Metal Ions, Drugs, Pesticides and Biomarkers. J Fluoresc 2022; 33:775-798. [PMID: 36538145 DOI: 10.1007/s10895-022-03115-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Identification of trace level chemical species (drugs, pesticides, metal ions and biomarkers) plays key role in environmental monitoring. Recently, fluorescence assay has shown significant advances in detecting of trace level drugs, pesticides, metal ions and biomarkers in real samples. Ultra-small nanostructure materials (metal nanoclusters (NCs), quantum dots (QDs) and carbon dots (CDs)) have been integrated with fluorescence spectrometer for sensitive and selective analysis of trace level target analytes in various samples including environmental and biological samples. This review summarizes the properties of metal NCs and ligand chemistry for the fabrication of metal NCs. We also briefly summarized the synthetic routes for the preparation of QDs and CDs. Advances of ultra-small fluorescent nanosensors (NCs, QDs and CDs) for sensing of metal ions, drugs, pesticides and biomarkers in various sample matrices are briefly discussed. Additionally, we discuss the recent challenges and future perspectives of ultra-small materials as fluorescent sensors for assaying of wide variety of target analytes in real samples.
Collapse
|
7
|
Noreldeen HAA, Huang KY, Wu GW, Zhang Q, Peng HP, Deng HH, Chen W. Feature Selection Assists BLSTM for the Ultrasensitive Detection of Bioflavonoids in Different Biological Matrices Based on the 3D Fluorescence Spectra of Gold Nanoclusters. Anal Chem 2022; 94:17533-17540. [PMID: 36473730 DOI: 10.1021/acs.analchem.2c03814] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Rapid and on-site qualitative and quantitative analysis of small molecules (including bioflavonoids) in biofluids are of great importance in biomedical applications. Herein, we have developed two deep learning models based on the 3D fluorescence spectra of gold nanoclusters as a single probe for rapid qualitative and quantitative analysis of eight bioflavonoids in serum. The results proved the efficiency and stability of the random forest-bidirectional long short-term memory (RF-BLSTM) model, which was used only with the most important features after deleting the unimportant features that might hinder the performance of the model in identifying the selected bioflavonoids in serum at very low concentrations. The optimized model achieves excellent overall accuracy (98-100%) in the qualitative analysis of the selected bioflavonoids. Next, the optimized model was transferred to quantify the selected bioflavonoids in serum at nanoscale concentrations. The transferred model achieved excellent accuracy, and the overall determination coefficient (R2) value range was 99-100%. Furthermore, the optimized model achieved excellent accuracies in other applications, including multiplex detection in serum and model applicability in urine. Also, LOD in serum at nanoscale concentration was considered. Therefore, this approach opens the window for qualitative and quantitative analysis of small molecules in biofluids at nanoscale concentrations, which may help in the rapid inclusion of sensor arrays in biomedical and other applications.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,National Institute of Oceanography and Fisheries, NIOF, Cairo 4262110, Egypt
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Qi Zhang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
8
|
Chen GY, Yin SJ, Chen L, Zhou X, Yang FQ. Nanoporous ZIF-8 Microparticles as Acetylcholinesterase and Alkaline Phosphatase Mimics for the Selective and Sensitive Detection of Ascorbic Acid Oxidase and Copper Ions. BIOSENSORS 2022; 12:1049. [PMID: 36421167 PMCID: PMC9688755 DOI: 10.3390/bios12111049] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this study, the alkaline phosphatase (ALP)-like activity of zeolitic-imidazolate framework-8 (ZIF-8) is reported for the first time. Then, colorimetric sensors for the ascorbic acid oxidase (AAO) and copper ion (Cu2+) detection were developed based on the acetylcholinesterase (AChE)- and ALP-like activities of ZIF-8. The ZIF-8 has good mimetic enzyme activity and exhibits high affinity to the substrates. Its AChE- and ALP-like activities also have good reusability and storage stability. Good linear dependences are obtained in the range of 1.3-250.0 μM (AChE-like activity-based) and 4.5-454.5 μM (ALP-like activity based) for Cu2+ detection. Furthermore, good linear dependence is also obtained based on the ALP-like activity of ZIF-8 for AAO detection in the range of 2.3-454.5 U/L. Their limits of detection (LODs) are calculated to be 0.7 µM, 2.8 µM, and 1.8 U/L, respectively. Finally, the sample spiked recoveries of Cu2+ in tap water, Cu2+, and AAO in human serum and rabbit plasma were measured, and the results are in the range of 80.0-119.3%. In short, the preparation of ZIF-8 is simple, environmentally friendly, and harmless, and can realize highly selective detection of AAO and Cu2+ in an efficient and fast process.
Collapse
Affiliation(s)
- Guo-Ying Chen
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Shi-Jun Yin
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Li Chen
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Xi Zhou
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Feng-Qing Yang
- Department of Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| |
Collapse
|
9
|
Yao C, Zhang G, Guan Y, Yang T, Hu R, Yang Y. Modulation of inner filter effect between persistent luminescent particles and 2, 3-diaminophenazine for ratiometric fluorescent assay of ascorbic acid and ascorbate oxidase activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 280:121564. [PMID: 35797885 DOI: 10.1016/j.saa.2022.121564] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/04/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
Ascorbate oxidase (AAO) and ascorbic acid (AA) play an important role in delaying lives senescence and metabolism. In this study, a sensitive ratiometric fluorescence sensing system based on the inner filter effect (IFE) between persistent luminescent particles (PLPs) and 2, 3-diaminophenazine (DAP), was designed for the detection of AA and AAO activity. Wherein, PLPs emit blue fluorescence at 475 nm with an excitation wavelength of 370 nm. CoOOH nanosheets with oxidase-like activity can oxidize o-phenylenediamine (OPD) to produce 2, 3-diaminophenazine (DAP) with orange fluorescence at 558 nm. The generated DAP quenched the fluorescence of PLPs by an inner filter effect (IFE). When AA was introduced to the system, CoOOH nanosheets were destroyed and reduced to Co2+, thereby inhibiting the oxidization of OPD and effectively preserving the blue fluorescence of PLPs at 475 nm. Besides, AAO can catalyse AA to produce the oxided dehydroascorbic acid (DHA). The dissipative AA can recover orange fluorescence of DAP with weakening the blue fluorescence of PLPs. Therefore, a sensitive ratio fluorescence sensing strategy was established by using PLPs as the reference signal and DAP as a reported signal for the detection of AA and AAO activity. Under optimal conditions, the obtained linear ranges were 1-45 μM and 1-20 mU/mL, and detection limits were 0.2 μM and 0.25 mU/mL, respectively. Finally, this proposed ratiometric fluorescent analytical strategy was used to detect AA in real samples (lemon, orange, tomato), which exhibited satisfactory results comparing with commercial kit.
Collapse
Affiliation(s)
- Chao Yao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Guiqun Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Yan Guan
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| | - Tong Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China.
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan 650500, PR China
| |
Collapse
|
10
|
Noreldeen HAA, Huang KY, Wu GW, Peng HP, Deng HH, Chen W. Deep Learning-Based Sensor Array: 3D Fluorescence Spectra of Gold Nanoclusters for Qualitative and Quantitative Analysis of Vitamin B 6 Derivatives. Anal Chem 2022; 94:9287-9296. [PMID: 35723526 DOI: 10.1021/acs.analchem.2c00655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Vitamin B6 derivatives (VB6Ds) are of great importance for all living organisms to complete their physiological processes. However, their excess in the body can cause serious problems. What is more, the qualitative and quantitative analysis of different VB6Ds may present significant challenges due to the high similarity of their chemical structures. Also, the transfer of deep learning model from one task to a similar task needs to be present more in the fluorescence-based biosensor. Therefore, to address these problems, two deep learning models based on the intrinsic fingerprint of 3D fluorescence spectra have been developed to identify five VB6Ds. The accuracy ranges of a deep neural network (DNN) and a convolutional neural network (CNN) were 94.44-97.77% and 97.77-100%, respectively. After that, the developed models were transferred for quantitative analysis of the selected VB6Ds at a broad concentration range (1-100 μM). The determination coefficient (R2) values of the test set for DNN and CNN were 93.28 and 97.01%, respectively, which also represents the outperformance of CNN over DNN. Therefore, our approach opens new avenues for qualitative and quantitative sensing of small molecules, which will enrich fields related to deep learning, analytical chemistry, and especially sensor array chemistry.
Collapse
Affiliation(s)
- Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.,National Institute of Oceanography and Fisheries, NIOF, Cairo 4262110, Egypt
| | - Kai-Yuan Huang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Gang-Wei Wu
- Department of Pharmacy, Fujian Provincial Hospital, Fuzhou 350001, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
11
|
Khan IM, Niazi S, Yue L, Zhang Y, Pasha I, Iqbal Khan MK, Akhtar W, Mohsin A, Chughati MFJ, Wang Z. Research update of emergent gold nanoclusters: A reinforced approach towards evolution, synthesis mechanism and application. Talanta 2022; 241:123228. [DOI: 10.1016/j.talanta.2022.123228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023]
|
12
|
A sensitive photothermometric biosensor based on redox reaction-controlled nanoprobe conversion from Prussian blue to Prussian white. Anal Bioanal Chem 2021; 413:6627-6637. [PMID: 34476525 DOI: 10.1007/s00216-021-03629-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/19/2023]
Abstract
As a new low-cost photothermal nanoprobe, Prussian blue nanoparticles (PB NPs) have been demonstrated to have more potential in photothermometric-based point-of-care testing (POCT) application. However, most of the existing PB NP-based photothermometric sensors were constructed mainly relying on in situ generation of PB NPs or their combination with antigens and antibodies, therefore usually suffering from the inherent defects like complicated preparation and cumbersome surface process as well as high-cost modification. To break this limitation of PB NP-based photothermometric POCT, we proposed an ingenious redox reaction-controlled nanoprobe conversion strategy and successfully applied to photothermometric detection of ascorbate oxidase (AAO). In this design, the heat of PB NP photothermal system under 808-nm laser irradiation dramatically decreased with the addition of AA, due to a unique AA-induced Prussian blue to Prussian white (PB-to-PW) conversion. Upon AAO addition, the heat of reaction system increased because of the enzymatic catalytic reaction between AAO and AA, which led to a significant reduction of AA and resultantly inhibited PB-to-PW conversion. Such target-mediated nanoprobe conversion resulted in an obvious temperature change that could be easily detected by a common thermometer and exhibited good linear ranges from 0.25 to 14 mU/mL with a detection limit as low as 0.21 mU/mL for POCT analysis of AAO. This facile, convenient, and portable photothermometric sensing platform provides an innovative route for the design of PB NP nanoprobe-based photothermometric detection methods. A sensitive photothermometric AAO sensor based on a redox reaction-controlled nanoprobe conversion strategy from Prussian blue to Prussian white.
Collapse
|
13
|
Pu L, Xia M, Sun P, Zhang Y. Ratiometric fluorescence determination of alkaline phosphatase activity based on dual emission of bovine serum albumin-stabilized gold nanoclusters and the inner filter effect. Analyst 2021; 146:943-948. [PMID: 33242047 DOI: 10.1039/d0an01978j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A novel and convenient method for the ratiometric fluorescence detection of alkaline phosphatase (ALP) activity was proposed based on dual emission of bovine serum albumin-templated gold nanoclusters (BSA-AuNCs) and the mechanism of the inner filter effect between BSA-AuNCs and p-nitrophenol (PNP). First, ALP catalyzed the hydrolysis of the substrate p-nitrophenyl phosphate (PNPP) to produce PNP. PNP effectively quenched the emission peak of BSA-AuNCs at 410 nm because of the overlap in absorbance feature of PNP and the fluorescence spectrum of BSA-AuNCs, and the peak at 650 nm was almost unaffected. Thus, a sensitive ratiometric method for detection of ALP activity was developed using the fluorescence intensity of BSA-AuNCs at 650 nm as a reference signal. ALP activity versus the ratio of fluorescence intensities at 410 and 650 nm showed good linearity between 0.2 and 5 mU mL-1 (R2 = 0.9931) and high sensitivity with a detection limit of 0.03 mU mL-1 (S/N = 3). The developed sensing method was successfully applied to investigate ALP inhibitors and detect ALP in serum samples.
Collapse
Affiliation(s)
- Li Pu
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, China
| | | | | | | |
Collapse
|
14
|
Li N, Zhang F, Sun W, Zhang L, Su X. Redox reaction-modulated fluorescence biosensor for ascorbic acid oxidase assay by using MoS2 quantum dots as fluorescence probe. Talanta 2021; 222:121522. [DOI: 10.1016/j.talanta.2020.121522] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022]
|
15
|
Cui L, Li C, Chen B, Huang H, Xia Q, Li X, Shen Z, Ge Z, Wang Y. Surface functionalized red fluorescent dual-metallic Au/Ag nanoclusters for endoplasmic reticulum imaging. Mikrochim Acta 2020; 187:606. [PMID: 33052480 DOI: 10.1007/s00604-020-04585-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/01/2020] [Indexed: 11/30/2022]
Abstract
An efficient method is reported to prepare endoplasmic reticulum-targetable dual-metallic gold-silver nanoclusters, denoted as ER-Au/Ag nanoclusters (NCs), by virtue of a rationally designed molecular ligand. The prepared ER-Au/Ag NCs possesses red-emitting fluorescence with a strong emission at 622 nm and a high fluorescence quantum yield of 5.1%, which could avoid the influence of biological auto-fluorescence. Further investigation results showed that ER-Au/Ag NCs exhibited superior photostability, minimal cytotoxicity, and ER-targeting capability. Enabled by these meritorious features, ER-Au/Ag NCs have been successfully employed for long-term bioimaging of ER in living cells.Graphical abstract A sensitive non-enzymatic fluorescent glucose probe-based ZnO nanorod decorated with Au nanoparticles.
Collapse
Affiliation(s)
- Lifeng Cui
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chengyun Li
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Biyun Chen
- Nanhu College, Jiaxing University, Jiaxing, 314001, China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| | - Qineng Xia
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Xi Li
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhangfeng Shen
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Zhigang Ge
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China
| | - Yangang Wang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, China.
| |
Collapse
|
16
|
Recent advances in metallic nanobiosensors development: Colorimetric, dynamic light scattering and fluorescence detection. SENSORS INTERNATIONAL 2020. [DOI: 10.1016/j.sintl.2020.100049] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|