1
|
Zhang J, Li W, Zhang B, Zhang G, Liu C. Screening of angiotensin converting enzyme inhibitors from natural products via origami microfluidic paper-based analytical devices with colorimetric detection. J Pharm Biomed Anal 2024; 238:115833. [PMID: 37926038 DOI: 10.1016/j.jpba.2023.115833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
We report the screening of angiotensin converting enzyme (ACE) inhibitors on an origami microfluidic paper-based analytical device (μPAD) using colorimetric detection. The hydrolysis product reacts with ninhydrin, resulting in a purple color at the detection zones. Images of the μPADs are captured using a common cell phone and analyzed with Photoshop software. This platform allows six independent colorimetric reactions to take place simultaneously, and the IC50 values can be obtained in a single run within 22 min. The relative standard deviations of inhibition efficiencies are generally lower than 4.0 % (n = 5). The IC50 values of captopril and five products from natural plants were obtained and corresponded well with UV methods. The relative deviations between the two methods are within the range of -5 % to +5 %. This work is a proof-of-concept successfully demonstrating the use of μPADs technology to screen enzyme inhibitors from natural products.
Collapse
Affiliation(s)
- Jian Zhang
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China
| | - Wenjing Li
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China
| | - Bo Zhang
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China
| | - Guangju Zhang
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China
| | - Chunye Liu
- School of Pharmacy, Xi' an Medical University, Xi'an 710021, China; Institute of Medicine, Xi' an Medical University, Xi'an 710021, China.
| |
Collapse
|
2
|
Zhou B, Wang B, Bai M, Dong M, Tang X. Fluorescent probe for highly selective detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 294:122523. [PMID: 36868018 DOI: 10.1016/j.saa.2023.122523] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Cys play an important physiological role in the human body. Abnormal Cys concentration can cause many diseases. Therefore, it is of great significance to detect Cys with high selectivity and sensitivity in vivo. Because homocysteine (Hcy) and glutathione (GSH) have similar reactivity and structure to cysteine, few fluorescent probes have been reported to be specific and efficient for cysteine. In this study, we designed and synthesized an organic small molecule fluorescent probe ZHJ-X based on cyanobiphenyl, which can be used to specifically recognize cysteine. The probe ZHJ-X exhibits specific selectivity for cysteine, high sensitivity, short reaction response time, good anti-interference ability, and has a low detection limit of 3.8 × 10-6 M. The probe ZHJ-X was successfully applied to the visualization of Cys in living cells and had great application prospects in cell imaging and detection.
Collapse
Affiliation(s)
- Boxin Zhou
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Beibei Wang
- Sinopec Research Institute of Petroleum Processing, Beijing 100083, China
| | - Mengqi Bai
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Mingdong Dong
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu university, Zhenjiang, Jiangsu 212013, China
| | - Xu Tang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu university, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
3
|
Liu G, Li Y, Lu Y, Jia Y, Shan J, Liu Q. Label-Free Sensing of Cysteine through Cadmium Ion Coordination: Smartphone-Based Electrochemical Detection. Chempluschem 2022; 87:e202200040. [PMID: 35319831 DOI: 10.1002/cplu.202200040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Indexed: 11/09/2022]
Abstract
The detection of biologically important compounds such as cysteine remains a challenge for monitoring body metabolism. This work proposes a transition metal ion coordination-based label-free cysteine sensor with smartphone-based square wave voltammetry sensing system for the point-of-care testing (POCT). In the sensing system, potential excitation and current measurements were accomplished by a miniaturized and integrated circuit board with a smartphone to wirelessly control the system via Bluetooth. The electrochemical currents changed with the cysteine concentrations ranging from 0 μM to 200 μM with a linearity correlation coefficient of 0.9915. The limit of detection was as low as 0.0149 μM for cysteine. The smartphone-based system provides an effective strategy for cysteine detection, and it can also serve as a promising portable sensing platform for the analysis of other small molecules.
Collapse
Affiliation(s)
- Guang Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yaru Li
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yanli Lu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yixuan Jia
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jianzhen Shan
- Department of Medical oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Qingjun Liu
- Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
- Department of Medical oncology, The First Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| |
Collapse
|
4
|
Qiao L, Yang Y, Cai J, Lv X, Hao J, Li Y. Long wavelength emission fluorescent probe for highly selective detection of cysteine in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120247. [PMID: 34399295 DOI: 10.1016/j.saa.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/09/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
We developed a fluorescent probe, named 2-(4-(acryloyloxy) phenyl)-4-(2-carboxyphenyl)-7-(diethylamino) chromenylium (PA-A), for detecting Cys using the -OH protection/deprotection strategy, which can react with Cys to form a red-emitting anthocyanidin derivative fluorophore. The probe has high selectivity to Cys over Hcy and GSH in phosphate buffer solution (PBS, 10 mM, pH = 7.4), high sensitivity, a low detection limit of 4.48 × 10-8 mol/L, and it can be recognized with the naked eye. Fluorescence imaging experiment of Cys with PA-A at the cellular successfully showed excellent tissue penetration.
Collapse
Affiliation(s)
- Liuqi Qiao
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Yongxing Yang
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China.
| | - Jianhua Cai
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Xin Lv
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Junsheng Hao
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China
| | - Yaping Li
- School of Chemistry and Chemical Engineering, Shanxi University, Wucheng Road 92, Taiyuan 030006, PR China.
| |
Collapse
|
5
|
Selvakumar B, Kathiravan A. Sensory materials for microfluidic paper based analytical devices - A review. Talanta 2021; 235:122733. [PMID: 34517601 DOI: 10.1016/j.talanta.2021.122733] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/18/2021] [Accepted: 07/23/2021] [Indexed: 11/17/2022]
Abstract
The microfluidic paper-based analytical devices (μPADs) have grown-up swiftly over the decade due to its low cost, simple fabrication procedure, resource-limitedness, non-toxicity and their environmentally benign nature. The μPADs, also identified as point-of-care devices or health care devices have successfully applied in several fields such as diagnostics, biological, food safety, environmental, electrochemical and most importantly colorimetric/fluorimetric sensors, owing to the attractive passive motions of analyte without any external forces. In recent years, a large number of colorimetric and fluorimetric probes have been reported that can selectively recognize the analytes in μPADs. However, there is no organized review on its structure-activity relationship. In this review, we have focused to summarize the colorimetric and fluorimetric probes utilized in μPADs. This review discuss about the relationships between the structure and functions of various probes as signaling units of the efficient μPADs. The probes including nanomaterials, nanozymes, polymers and organic molecules, their structural activity with regard to sensing performances along with their limit of detection are also discussed. This review is expected to assist readers for better understanding of the sensing mechanisms of various chemo and bio-probes utilized in μPADs, as well as promote their advancement in the field. On the other hand, this review also helps the researchers for enhancement of μPADs and paves way for synergistic application of existing molecular probes as an effective diagnostic tool for the worldwide pandemic novel corona virus COVID-19.
Collapse
Affiliation(s)
- Bhavadharini Selvakumar
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, 600 062, Tamil Nadu, India
| | - Arunkumar Kathiravan
- Department of Chemistry, Vel Tech Rangarajan Dr Sagunthala R & D Institute of Science and Technology, Avadi, Chennai, 600 062, Tamil Nadu, India.
| |
Collapse
|
6
|
Jiang C, Huang H, Kang X, Yang L, Xi Z, Sun H, Pluth MD, Yi L. NBD-based synthetic probes for sensing small molecules and proteins: design, sensing mechanisms and biological applications. Chem Soc Rev 2021; 50:7436-7495. [PMID: 34075930 PMCID: PMC8763210 DOI: 10.1039/d0cs01096k] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Compounds with a nitrobenzoxadiazole (NBD) skeleton exhibit prominent useful properties including environmental sensitivity, high reactivity toward amines and biothiols (including H2S) accompanied by distinct colorimetric and fluorescent changes, fluorescence-quenching ability, and small size, all of which facilitate biomolecular sensing and self-assembly. Amines are important biological nucleophiles, and the unique activity of NBD ethers with amines has allowed for site-specific protein labelling and for the detection of enzyme activities. Both H2S and biothiols are involved in a wide range of physiological processes in mammals, and misregulation of these small molecules is associated with numerous diseases including cancers. In this review, we focus on NBD-based synthetic probes as advanced chemical tools for biomolecular sensing. Specifically, we discuss the sensing mechanisms and selectivity of the probes, the design strategies for multi-reactable multi-quenching probes, and the associated biological applications of these important constructs. We also highlight self-assembled NBD-based probes and outline future directions for NBD-based chemosensors. We hope that this comprehensive review will facilitate the development of future probes for investigating and understanding different biological processes and aid the development of potential theranostic agents.
Collapse
Affiliation(s)
- Chenyang Jiang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Haojie Huang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Xueying Kang
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| | - Liu Yang
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China.
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, National Pesticide Engineering Research Center, Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Hongyan Sun
- Department of Chemistry and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China. and Key Laboratory of Biochip Technology, Biotech and Health Centre, Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Michael D Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
| | - Long Yi
- State Key Laboratory of Organic-Inorganic Composites and Beijing Key Lab of Bioprocess, Beijing University of Chemical Technology (BUCT), Beijing 100029, China.
| |
Collapse
|
7
|
Pan MM, Wang YF, Wang L, Yu X, Xu L. Recent advances in visual detection for cancer biomarkers and infectious pathogens. J Mater Chem B 2021; 9:35-52. [PMID: 33225338 DOI: 10.1039/d0tb01883j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is an urgency to detect infectious pathogens or cancer biomarkers using rapid, simple, convenient and cost-effective methods in complex biological samples. Many existing approaches (traditional virus culture, ELISA or PCR) for the pathogen and biomarker assays face several challenges in the clinical applications that require lengthy time, sophisticated sample pre-treatment and expensive instruments. Due to the simple and rapid detection manner as well as no requirement of expensive equipment, many visual detection methods have been considered to resolve the aforementioned problems. Meanwhile, various new materials and colorimetric/fluorescent methods have been tried to construct new biosensors for infectious pathogens and biomarkers. However, the recent progress of these aspects is rarely reviewed, especially in terms of integration of new materials, microdevice and detection mechanism into the visual detection systems. Herein, we provide a broad field of view to discuss the recent progress in the visual detection of infectious pathogens and cancer biomarkers along with the detection mechanism, new materials, novel detection methods, special targets as well as multi-functional microdevices and systems. The novel visual approaches for the infectious pathogens and biomarkers, such as bioluminescence resonance energy transfer (BRET), metal-induced metallization and clustered regularly interspaced short palindromic repeats (CRISPR)-based biosensors, are discussed. Additionally, recent advancements in visual assays utilizing various new materials for proteins, nucleic acids, viruses, exosomes and small molecules are comprehensively reviewed. Future perspectives on the visual sensing systems for infectious pathogens and cancers are also proposed.
Collapse
Affiliation(s)
- Meng-Meng Pan
- Tongji School of Pharmacy, HuaZhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | |
Collapse
|