1
|
Lin ZI, Tsai HL, Liu GL, Lu XH, Cheng PW, Chi PL, Wang CK, Tsai TH, Wang CC, Yang JHC, Ko BT, Chen CK. Preparation of CO 2 -based Cationic Polycarbonate/Polyacrylonitrile Nanofibers with an Optimal Fibrous Microstructure for Antibacterial Applications. Macromol Biosci 2022; 22:e2200178. [PMID: 35902381 DOI: 10.1002/mabi.202200178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/24/2022] [Indexed: 11/12/2022]
Abstract
Utilizing CO2 as one of the monomer resource, poly(vinylcyclohexene carbonates) (PVCHCs) are used as the precursor for preparing cationic PVCHCs (CPVCHCs) via thiol-ene click functionalization. Through the functionalization, CPVCHC-43 with a tertiary amine density of 43% relative to the backbone is able to display a significantly antibacterial ability against Staphylococcus aureus (S. aureus). Blending CPVCHC-43 with polyacrylonitrile (PAN), CPVCHC/PAN nanofiber meshes (NFMs) have been successfully prepared by electrospinning. More importantly, two crucial fibrous structural factors including CPVCHC/PAN weight ratio and fiber diameter have been systematically investigated for the effects on the antibacterial performance of the NFMs. Sequentially, a quaternization treatment has been employed on the NFMs with an optimal fibrous structure to enhance the antibacterial ability. The resulting quaternized NFMs have demonstrated the great biocidal effects against Gram-positive and Gram-negative bacteria. Moreover, the excellent biocompatibility of the quaternized NFMs have also been thoroughly evaluated and verified. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zheng-Ian Lin
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Han-Lin Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Guan-Lin Liu
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Xie-Hong Lu
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Pei-Wen Cheng
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan.,Department of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| | - Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 81362, Taiwan
| | - Chih-Kuang Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Tzu-Hsien Tsai
- Division of Cardiology and Department of Internal Medicine, Ditmanson Medical Foundation Chiayi Christian Hospital, Chiayi, 60002, Taiwan
| | - Chih-Chia Wang
- Department of Chemical and Materials Engineering, Chung Cheng Institute of Technology, National Defense University, Taoyuan, 33509, Taiwan.,System Engineering and Technology Program, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jason Hsiao Chun Yang
- Department of Fiber and Composite Materials, Feng Chia University, Taichung, 40724, Taiwan
| | - Bao-Tsan Ko
- Department of Chemistry, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chih-Kuang Chen
- Polymeric Biomaterials Laboratory, Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
2
|
Tan J, Zhao Y, Hedrick JL, Yang YY. Effects of Hydrophobicity on Antimicrobial Activity, Selectivity, and Functional Mechanism of Guanidinium-Functionalized Polymers. Adv Healthc Mater 2022; 11:e2100482. [PMID: 33987953 DOI: 10.1002/adhm.202100482] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/21/2021] [Indexed: 11/06/2022]
Abstract
In this study, a series of guanidinium-functionalized polycarbonate random co-polymers is prepared from organocatalytic ring-opening polymerization to investigate the effect of the hydrophobic side chain (ethyl, propyl, isopropyl, benzyl, and hexyl) on their antimicrobial activity and selectivity. Although the polymers exhibit similar minimum inhibitory concentrations, the more hydrophobic polymers exhibit a faster rate of bacteria elimination. At higher percentage content (20 mol%), polymers with more hydrophobic side chains suffer from poor selectivity due to their high hemolytic activity. The highly hydrophobic co-polymer, containing the hydrophobic hexyl-functionalized cyclic carbonate, kills bacteria via a membrane-disruptive mechanism. Micelle formation leads to a lower extent of membrane disruption. This study unravels the effects of hydrophobic side chains on the activities of the polymers and their killing mechanism, providing insights into the design of new antimicrobial polymers.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - James L. Hedrick
- IBM Almaden Research Center 650 Harry Road San Jose CA 95120 USA
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging 31 Biopolis Way Singapore 138669 Singapore
| |
Collapse
|
3
|
Li X, Wang X, Subramaniyan S, Liu Y, Rao J, Zhang B. Hyperbranched Polyesters Based on Indole- and Lignin-Derived Monomeric Aromatic Aldehydes as Effective Nonionic Antimicrobial Coatings with Excellent Biocompatibility. Biomacromolecules 2022; 23:150-162. [PMID: 34932316 PMCID: PMC8753607 DOI: 10.1021/acs.biomac.1c01186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Indexed: 11/28/2022]
Abstract
This research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB2 monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses. These HBPs were conveniently spin-coated on a silicon substrate, which exhibited significant antibacterial effect against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The presence of methoxy substituents enhanced the antimicrobial effect, and the resulting polymers showed negligible leakage in water. Finally, the polymers with the methoxy functionality exhibited excellent biocompatibility according to the results of hemolysis and MTT assay, which may facilitate their biomedical applications.
Collapse
Affiliation(s)
- Xiaoya Li
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Xiao Wang
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Centre for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic
of China
| | - Sathiyaraj Subramaniyan
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Yang Liu
- Faculty
of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 221 84 Lund, Sweden
| | - Jingyi Rao
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Centre for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, People’s Republic
of China
| | - Baozhong Zhang
- Centre
for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Li X, İlk S, Liu Y, Raina DB, Demircan D, Zhang B. Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polym Chem 2022. [DOI: 10.1039/d1py01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification.
Collapse
Affiliation(s)
- Xiaoya Li
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240, Niğde, Turkey
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, SE-10691 Stockholm, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
5
|
Leong J, Yang C, Tan J, Tan BQ, Hor S, Hedrick JL, Yang YY. Combination of guanidinium and quaternary ammonium polymers with distinctive antimicrobial mechanisms achieving a synergistic antimicrobial effect. Biomater Sci 2021; 8:6920-6929. [PMID: 32959808 DOI: 10.1039/d0bm00752h] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The increasing emergence and spread of antimicrobial resistance are urgent and important global challenges today. The clinical pipeline is lacking in innovative drugs that avoid the development of drug resistance. Macromolecular antimicrobials kill bacteria and fungi through physical disruptions to the cell membrane, which is difficult for microbes to overcome. Recently, we reported antimicrobial polycarbonates that kill microbes via two different mechanisms. Polycarbonates functionalized with quaternary ammonium disrupted the lipid bilayer membrane of the microbes, while polycarbonates functionalized with guanidinium translocated the membrane and precipitated cytosolic components. We hypothesized that the combination of these two distinct mechanisms would result in a more than additive increase in antimicrobial efficacy. Block and random copolymers containing both cationic groups had similar minimum inhibitory concentrations (MICs) as the guanidinium homopolymer on 5 representatives of the ESKAPE pathogens. Interestingly, the random copolymer killed P. aeruginosa and A. baumannii more rapidly than the block copolymer and the guanidinium homopolymer with the same number of guanidinium groups. Like quaternary ammonium homopolymer, the copolymers killed the bacteria via a membrane-disruptive mechanism. Then, we simply mixed quaternary ammonium homopolymer and guanidinium homopolymer, and studied antimicrobial activity of the combination at various concentrations. Checkerboard assay results showed that the combination of the polymers, in general, achieved a synergistic or additive effect in inhibiting the growth of bacteria. At concentrations where it exibited a synergistic or additive effect in inhibiting bacterial growth, the combination killed the bacteria effectively (99%-99.9% killing efficiency) although the individual polymers at these concentrations did not exert bactericidal activity. Therefore, it is essential to have the two functional groups on separate molecules to provide synergism. This study provides a basic understanding of polymer design with different cationic groups.
Collapse
Affiliation(s)
- Jiayu Leong
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore 138669, Singapore.
| | | | | | | | | | | | | |
Collapse
|
6
|
Liu H, Zhang X, Zhao Z, Yang F, Xue R, Yin L, Song Z, Cheng J, Luan S, Tang H. Efficient synthesis and excellent antimicrobial activity of star-shaped cationic polypeptides with improved biocompatibility. Biomater Sci 2021; 9:2721-2731. [PMID: 33617610 DOI: 10.1039/d0bm02151b] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) have been considered as a promising new tool to combat the antimicrobial resistance (AMR) crisis. However, the high toxicity and high cost of AMPs hampered their further development. Herein, a series of star poly(L-lysine) (PLL) homo- and copolymers with excellent antimicrobial activity and improved biocompatibility were prepared by the combination of ultra-fast ring opening polymerization (ROP) and side-chain modification. The amine-terminated polyamidoamine dendrimer (Gx-PAMAM) mediated ROP of Nε-tert-butyloxycarbonyl-L-lysine N-carboxyanhydride (Boc-L-Lys-NCA) and γ-benzyl-L-glutamic acid-based N-carboxyanhydride (PBLG-NCA) was able to prepare star PLL homo- and copolymers with 400 residues within 50 min. While the star PLL homopolymers exhibited low minimum inhibitory concentration (MIC = 50-200 μg mL-1) against both Gram-positive and Gram-negative bacteria (i.e., S. aureus and E. coli), they showed high toxicity against various mammalian cell lines. The star PLL copolymers with low contents of hydrophobic and hydroxyl groups showed enhanced antimicrobial activity (MIC = 25-50 μg mL-1) and improved mammalian cell viability. Both SEM and CLSM results indicated the antimicrobial mechanism of membrane disruption.
Collapse
Affiliation(s)
- Hao Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Yu W, Maynard E, Chiaradia V, Arno MC, Dove AP. Aliphatic Polycarbonates from Cyclic Carbonate Monomers and Their Application as Biomaterials. Chem Rev 2021; 121:10865-10907. [DOI: 10.1021/acs.chemrev.0c00883] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wei Yu
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Edward Maynard
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Maria C. Arno
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, B15 2TT U.K
| | - Andrew P. Dove
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT U.K
| |
Collapse
|
8
|
Jiang W, Xiao X, Wu Y, Zhang W, Cong Z, Liu J, Chen S, Zhang H, Xie J, Deng S, Chen M, Wang Y, Shao X, Dai Y, Sun Y, Fei J, Liu R. Peptide polymer displaying potent activity against clinically isolated multidrug resistant Pseudomonas aeruginosa in vitro and in vivo. Biomater Sci 2020; 8:739-745. [PMID: 31782423 DOI: 10.1039/c9bm01726g] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multidrug resistant (MDR) Pseudomonas aeruginosa has caused serious nosocomial infections owing to its high intrinsic resistance and ease of acquiring resistance to common antibiotics. There is an urgent need to develop antimicrobial agents against MDR Pseudomonas aeruginosa. Here we report a 27-mer peptide polymer 90 : 10 DLL : BLG, as a synthetic mimic of a host defense peptide, that displayed potent in vitro and in vivo activities against multiple strains of clinically isolated MDR Pseudomonas aeruginosa, performing even better than antibiotics within our study. This peptide polymer also showed negligible hemolysis and low cytotoxicity, as well as quick bacterial killing efficacy. The structural diversity of peptide polymers, their easy synthesis from lithium hexamethyldisilazide-initiated fast N-carboxyanhydride polymerization, and the excellent reproducibility of their chemical structure and biological profiles altogether suggested great potential for antimicrobial applications of peptide polymers as synthetic mimics of host defense peptides.
Collapse
Affiliation(s)
- Weinan Jiang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Tan J, Tay J, Hedrick J, Yang YY. Synthetic macromolecules as therapeutics that overcome resistance in cancer and microbial infection. Biomaterials 2020; 252:120078. [PMID: 32417653 DOI: 10.1016/j.biomaterials.2020.120078] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023]
Abstract
Synthetic macromolecular antimicrobials have shown efficacy in the treatment of multidrug resistant (MDR) pathogens. These synthetic macromolecules, inspired by Nature's antimicrobial peptides (AMPs), mitigate resistance by disrupting microbial cell membrane or targeting multiple intracellular proteins or genes. Unlike AMPs, these polymers are less prone to degradation by proteases and are easier to synthesize on a large scale. Recently, various studies have revealed that cancer cell membrane, like that of microbes, is negatively charged, and AMPs can be used as anticancer agents. Nevertheless, efforts in developing polymers as anticancer agents has remained limited. This review highlights the recent advancement in the development of synthetic biodegradable antimicrobial polymers (e.g. polycarbonates, polyesters and polypeptides) and anticancer macromolecules including peptides and polymers. Additionally, strategies to improve their in vivo bioavailability and selectivity towards bacteria and cancer cells are examined. Lastly, future perspectives, including use of artificial intelligence or machine learning, in the development of antimicrobial and anticancer macromolecules are discussed.
Collapse
Affiliation(s)
- Jason Tan
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore; Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - James Hedrick
- IBM Almaden Research Center, 650 Harry Road, San Jose, CA, 95120, United States
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Singapore, 138669, Singapore.
| |
Collapse
|
10
|
Cuervo-Rodríguez R, Muñoz-Bonilla A, López-Fabal F, Fernández-García M. Hemolytic and Antimicrobial Activities of a Series of Cationic Amphiphilic Copolymers Comprised of Same Centered Comonomers with Thiazole Moieties and Polyethylene Glycol Derivatives. Polymers (Basel) 2020; 12:E972. [PMID: 32331281 PMCID: PMC7240493 DOI: 10.3390/polym12040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/10/2020] [Accepted: 04/20/2020] [Indexed: 02/08/2023] Open
Abstract
A series of well-defined antimicrobial polymers composed of comonomers bearing thiazole ring (2-(((2-(4-methylthiazol-5-yl)ethoxy)carbonyl)oxy)ethyl methacrylate monomer (MTZ)) and non-hemotoxic poly(ethylene glycol) side chains (poly(ethylene glycol) methyl ether methacrylate (PEGMA)) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. By post-polymerization functionalization strategy, polymers were quaternized with either butyl or octyl iodides to result in cationic amphiphilic copolymers incorporating thiazolium groups, thus with variable hydrophobic/hydrophilic balance associated to the length of the alkylating agent. Likewise, the molar percentage of PEGMA was modulated in the copolymers, also affecting the amphiphilicity. The antimicrobial activities of these cationic polymers were determined against Gram-positive and Gram-negative bacteria and fungi. Minimum inhibitory concentration (MIC) was found to be dependent on both length of the alkyl hydrophobic chain and the content of PEGMA in the copolymers. More hydrophobic octylated copolymers were found to be more effective against all tested microorganisms. The incorporation of non-ionic hydrophilic units, PEGMA, reduces the hydrophobicity of the system and the activity is markedly reduced. This effect is dramatic in the case of butylated copolymers, in which the hydrophobic/hydrophilic balance is highly affected. The hemolytic properties of polymers analyzed against human red blood cells were greatly affected by the hydrophobic/hydrophilic balance of the copolymers and the content of PEGMA, which drastically reduces the hemotoxicity. The copolymers containing longer hydrophobic chain, octyl, are much more hemotoxic than their corresponding butylated copolymers.
Collapse
Affiliation(s)
- R. Cuervo-Rodríguez
- Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Avenida Complutense s/n, Ciudad Universitaria, 28040 Madrid, Spain;
| | - A. Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| | - F. López-Fabal
- Hospital Universitario de Móstoles C/ Luis Montes, s/n, 28935 Madrid, Spain;
| | - M. Fernández-García
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain;
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), 28006 Madrid, Spain
| |
Collapse
|
11
|
Tanaka M, Kobayashi S, Murakami D, Aratsu F, Kashiwazaki A, Hoshiba T, Fukushima K. Design of Polymeric Biomaterials: The “Intermediate Water Concept”. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20190274] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Masaru Tanaka
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Shingo Kobayashi
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daiki Murakami
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Fumihiro Aratsu
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Aki Kashiwazaki
- Soft Materials Chemistry, Institute for Materials Chemistry and Engineering, Kyushu University, Build. CE41, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takashi Hoshiba
- Frontier Center for Organic Materials, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| | - Kazuki Fukushima
- Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
12
|
Wu Z, Gan Z, Chen B, Chen F, Cao J, Luo X. pH/redox dual-responsive amphiphilic zwitterionic polymers with a precisely controlled structure as anti-cancer drug carriers. Biomater Sci 2019; 7:3190-3203. [PMID: 31145392 DOI: 10.1039/c9bm00407f] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Responding to the tumor microenvironment, functional polymers can serve as preeminent drug carriers for targeted cancer therapy. Stimuli-responsive polymeric drug carriers are reported with diverse anti-tumor effects for various polymer structures. Thus, three pH/redox dual-responsive amphiphilic zwitterionic polymer 'isomers' with different locations of pH/redox responsive units were prepared to understand the relationship between polymer structure and anti-tumor effect. Containing poly(ε-caprolactone) (PCL), poly(N,N-diethylaminoethyl methacrylate) (PDEA) and poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), polymers PCL-ss-P(DEA-r-MPC) (SDRM), PCL-ss-PDEA-b-PMPC (SDBM) and PCL-PDEA-ss-PMPC (DSM) with a precisely controlled structure were constructed and confirmed through NMR, FITR and EA. The formed micellar drug carriers were characterized by their morphology, loading capacity, acid/redox sensitivity, drug release, in vitro cytotoxicity and in vivo antitumor effects. Micelles with uniform spherical morphologies can effectively encapsulate anti-tumor drugs such as DOX. Among these micelles, DSM@DOX displays the most excellent drug encapsulation capacity (13.4%) with neutral surface charge (-1.02 mV) and good stability, and is different from SDRM@DOX with positive charge (+11.1 mV) and SDBM@DOX with poor stability. All micelles respond to acid and reducing environments and present fast drug release at mildly acidic pH and high concentrations of GSH, exhibiting low burst release under the physiological conditions of plasma. There is no significant difference between these micelles in tumor cell cytotoxicity against MCF-7 and 4T1 cells. Internalization of SDRM@DOX and DSM@DOX by the tumor cells is stronger than that of SDBM@DOX. Notably, DSM@DOX has longer blood circulation and more effective accumulation at the tumor site than the other two micelles. As a result, DSM@DOX shows enhanced antitumor efficacy in 4T1 tumor-bearing mice with reduced side toxicities. Overall, structures of the above polymers significantly influence the in vivo antitumor effects of the drug carriers through blood circulation and cellular uptake.
Collapse
Affiliation(s)
- Zhengzhong Wu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Ziying Gan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Bin Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Fan Chen
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China.
| | - Jun Cao
- National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu 610065, PR China
| | - Xianglin Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, PR China. and State Key Lab of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| |
Collapse
|