1
|
Sultana R, Kamihira M. Bioengineered heparin: Advances in production technology. Biotechnol Adv 2024; 77:108456. [PMID: 39326809 DOI: 10.1016/j.biotechadv.2024.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024]
Abstract
Heparin, a highly sulfated glycosaminoglycan, is considered an indispensable anticoagulant with diverse therapeutic applications and has been a mainstay in medical practice for nearly a century. Its potential extends beyond anticoagulation, showing promise in treating inflammation, cancer, and infectious diseases such as COVID-19. However, its current sourcing from animal tissues poses challenges due to variable structures and adulterations, impacting treatment efficacy and safety. Recent advancements in metabolic engineering and synthetic biology offer alternatives through bioengineered heparin production, albeit with challenges such as controlling molecular weight and sulfonation patterns. This review offers comprehensive insight into recent advancements, encompassing: (i) the metabolic engineering strategies in prokaryotic systems for heparin production; (ii) strides made in the development of bioengineered heparin; and (iii) groundbreaking approaches driving production enhancements in eukaryotic systems. Additionally, it explores the potential of recombinant Chinese hamster ovary cells in heparin synthesis, discussing recent progress, challenges, and future prospects, thereby opening up new avenues in biomedical research.
Collapse
Affiliation(s)
- Razia Sultana
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; Department of Biotechnology and Genetic Engineering, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Masamichi Kamihira
- Department of Chemical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
2
|
Nehru G, Balakrishnan R, Swaminathan N, Tadi SRR, Sivaprakasam S. Heparosan biosynthesis in recombinant Bacillus megaterium: Influence of N-acetylglucosamine supplementation and kinetic modeling. Biotechnol Appl Biochem 2024. [PMID: 38973679 DOI: 10.1002/bab.2634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 07/09/2024]
Abstract
Heparosan, an unsulfated polysaccharide, plays a pivotal role as a primary precursor in the biosynthesis of heparin-an influential anticoagulant with diverse therapeutic applications. To enhance heparosan production, the utilization of metabolic engineering in nonpathogenic microbial strains is emerging as a secure and promising strategy. In the investigation of heparosan production by recombinant Bacillus megaterium, a kinetic modeling approach was employed to explore the impact of initial substrate concentration and the supplementation of precursor sugars. The adapted logistic model was utilized to thoroughly analyze three vital parameters: the B. megaterium growth dynamics, sucrose utilization, and heparosan formation. It was noted that at an initial sucrose concentration of 30 g L-1 (S1), it caused an inhibitory effect on both cell growth and substrate utilization. Intriguingly, the inclusion of N-acetylglucosamine (S2) resulted in a significant 1.6-fold enhancement in heparosan concentration. In addressing the complexities of the dual substrate system involving S1 and S2, a multi-substrate kinetic models, specifically the double Andrew's model was employed. This approach not only delved into the intricacies of dual substrate kinetics but also effectively described the relationships among the primary state variables. Consequently, these models not only provide a nuanced understanding of the system's behavior but also serve as a roadmap for optimizing the design and management of the heparosan production method.
Collapse
Affiliation(s)
- Ganesh Nehru
- Department of Biosciences and Bioengineering, Bioprocess Analytical Technology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Rengesh Balakrishnan
- Department of Biotechnology, K.S.Rangasamy College of Technology (Autonomous), Tiruchengode, Tamil Nadu, India
| | - Nivedhitha Swaminathan
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Biochemical Engineering, University College London, London, UK
| | - Subbi Rami Reddy Tadi
- Department of Biosciences and Bioengineering, Bioprocess Analytical Technology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Senthilkumar Sivaprakasam
- Department of Biosciences and Bioengineering, Bioprocess Analytical Technology Laboratory, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
3
|
Hu S, Zhou S, Wang Y, Chen W, Yin G, Chen J, Du G, Kang Z. Coordinated optimization of the polymerization and transportation processes to enhance the yield of exopolysaccharide heparosan. Carbohydr Polym 2024; 333:121983. [PMID: 38494235 DOI: 10.1016/j.carbpol.2024.121983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
Heparosan as the precursor for heparin biosynthesis has attracted intensive attention while Escherichia coli Nissle 1917 (EcN) has been applied as a chassis for heparosan biosynthesis. Here, after uncovering the pivotal role of KfiB in heparosan biosynthesis, we further demonstrate KfiB is involved in facilitating KpsT to translocate the nascent heparosan polysaccharide chain. As a result, an artificial expression cassette KfiACB was constructed with optimized RBS elements, resulting in 0.77 g/L heparosan in shake flask culture. Moreover, in view of the intracellular accumulation of heparosan, we further investigated the effects of overexpression of the ABC transport system proteins on heparosan biosynthesis. By co-overexpressing KfiACB with KpsTME, the heparosan production in flask cultures was increased to 1.03 g/L with an extracellular concentration of 0.96 g/L. Eventually, the engineered strain EcN/pET-kfiACB3-galU-kfiD-glmM/pCDF-kpsTME produced 12.2 g/L heparosan in 5-L fed-batch cultures while the extracellular heparosan was about 11.2 g/L. The results demonstrate the high-efficiency of the strategy for co-optimizing the polymerization and transportation for heparosan biosynthesis. Moreover, this strategy should be also available for enhancing the production of other polysaccharides.
Collapse
Affiliation(s)
- Shan Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Siyan Zhou
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wuxia Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guobin Yin
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Sheng LL, Cai YM, Li Y, Huang SL, Sheng JZ. Advancements in heparosan production through metabolic engineering and improved fermentation. Carbohydr Polym 2024; 331:121881. [PMID: 38388039 DOI: 10.1016/j.carbpol.2024.121881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/24/2024]
Abstract
Heparin is one of the most widely used natural drugs, and has been the preferred anticoagulant and antithrombotic agent in the clinical setting for nearly a century. Heparin also shows increasing therapeutic potential for treating inflammation, cancer, and microbial and viral diseases, including COVID-19. With advancements in synthetic biology, heparin production through microbial engineering of heparosan offers a cost-effective and scalable alternative to traditional extraction from animal tissues. Heparosan serves as the starting carbon backbone for the chemoenzymatic synthesis of bioengineered heparin, possessing a chain length that is critically important for the production of heparin-based therapeutics with specific molecular weight (MW) distributions. Recent advancements in metabolic engineering of microbial cell factories have resulted in high-yield heparosan production. This review systematically analyzes the key modules involved in microbial heparosan biosynthesis and the latest metabolic engineering strategies for enhancing production, regulating MW, and optimizing the fermentation scale-up of heparosan. It also discusses future studies, remaining challenges, and prospects in the field.
Collapse
Affiliation(s)
- Li-Li Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi-Min Cai
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yi Li
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Si-Ling Huang
- Bloomage BioTechnology Corp., Ltd., Jinan 250010, China
| | - Ju-Zheng Sheng
- Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; The State Key Laboratory of Microbial Technology, Shandong University, Qingdao 250100, China.
| |
Collapse
|
5
|
Coninx S, Kalot G, Godard A, Bodio E, Goze C, Sancey L, Auzély-Velty R. Tailored hyaluronic acid-based nanogels as theranostic boron delivery systems for boron neutron cancer therapy. Int J Pharm X 2022; 4:100134. [PMID: 36304136 PMCID: PMC9594117 DOI: 10.1016/j.ijpx.2022.100134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Boron-rich nanocarriers possess great potential for advanced boron neutron capture therapy (BNCT) as an effective radiation treatment for invasive malignant tumors. If additionally, they can be imaged in a non-invasive and real-time manner allowing the assessment of local boron concentration, they could serve for dose calculation and image-guided BNCT to enhance tumor treatment efficacy. To meet this challenge, this study describes the design of a theranostic nanogel, enriched in 10B and fluorescent dye, to achieve selective imaging, and sufficient accumulation of boron at the tumor site. The boron-rich and fluorescent nanogels can be easily obtained via temperature triggered-assembly of hyaluronic acid (HA) modified with a thermoresponsive terpolymer. The latter was specifically designed to enable the efficient encapsulation of the fluorescent dye – an aza‑boron-dipyrromethene (aza-BODIPY) – linked to 10B-enriched sodium borocaptate (BSH), in addition to induce nanogel formation below room temperature, and to enable their core-crosslinking by hydrazone bond formation. The HA nanogel considerably concentrates aza-BODIPY-BSH into the hydrophobic nanodomains made of the terpolymer chains. Here, we present the detailed synthesis of the HA-terpolymer conjugate, nanogel formation, and characterization in terms of size, morphology, and stability upon storage, as well as the biological behavior of the boron nanocarrier using real-time fluorescence imaging in cells and in vivo. This work suggested the potential of the theranostic HA nanogel as a boron delivery system for the implementation of BNCT in brain cancer and sarcoma.
Collapse
Affiliation(s)
- Simon Coninx
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France
| | - Ghadir Kalot
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Amélie Godard
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Ewen Bodio
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l'Université de Bourgogne, Université de Bourgogne-Franche-Comté, CNRS UMR, 6302 Dijon, France
| | - Lucie Sancey
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U 1209, CNRS UMR 5309, 38000 Grenoble, France
| | - Rachel Auzély-Velty
- Université Grenoble Alpes, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, Grenoble, France,Corresponding author.
| |
Collapse
|
6
|
Yang W, Frickenstein AN, Sheth V, Holden A, Mettenbrink EM, Wang L, Woodward AA, Joo BS, Butterfield SK, Donahue ND, Green DE, Thomas AG, Harcourt T, Young H, Tang M, Malik ZA, Harrison RG, Mukherjee P, DeAngelis PL, Wilhelm S. Controlling Nanoparticle Uptake in Innate Immune Cells with Heparosan Polysaccharides. NANO LETTERS 2022; 22:7119-7128. [PMID: 36048773 PMCID: PMC9486251 DOI: 10.1021/acs.nanolett.2c02226] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We used heparosan (HEP) polysaccharides for controlling nanoparticle delivery to innate immune cells. Our results show that HEP-coated nanoparticles were endocytosed in a time-dependent manner by innate immune cells via both clathrin-mediated and macropinocytosis pathways. Upon endocytosis, we observed HEP-coated nanoparticles in intracellular vesicles and the cytoplasm, demonstrating the potential for nanoparticle escape from intracellular vesicles. Competition with other glycosaminoglycan types inhibited the endocytosis of HEP-coated nanoparticles only partially. We further found that nanoparticle uptake into innate immune cells can be controlled by more than 3 orders of magnitude via systematically varying the HEP surface density. Our results suggest a substantial potential for HEP-coated nanoparticles to target innate immune cells for efficient intracellular delivery, including into the cytoplasm. This HEP nanoparticle surface engineering technology may be broadly used to develop efficient nanoscale devices for drug and gene delivery as well as possibly for gene editing and immuno-engineering applications.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alyssa Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Alexis A. Woodward
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Bryan S. Joo
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Sarah K. Butterfield
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Abigail G. Thomas
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Tekena Harcourt
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Hamilton Young
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Mulan Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Zain A. Malik
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Roger G. Harrison
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Priyabrata Mukherjee
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
7
|
Yang W, Wang L, Fang M, Sheth V, Zhang Y, Alyssa M. Holden, Donahue ND, Green DE, Frickenstein AN, Mettenbrink EM, Schwemley TA, Francek ER, Haddad M, Hossen MN, Mukherjee S, Wu S, DeAngelis PL, Wilhelm S. Nanoparticle Surface Engineering with Heparosan Polysaccharide Reduces Serum Protein Adsorption and Enhances Cellular Uptake. NANO LETTERS 2022; 22:2103-2111. [PMID: 35166110 PMCID: PMC9540343 DOI: 10.1021/acs.nanolett.2c00349] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Nanoparticle modification with poly(ethylene glycol) (PEG) is a widely used surface engineering strategy in nanomedicine. However, since the artificial PEG polymer may adversely impact nanomedicine safety and efficacy, alternative surface modifications are needed. Here, we explored the "self" polysaccharide heparosan (HEP) to prepare colloidally stable HEP-coated nanoparticles, including gold and silver nanoparticles and liposomes. We found that the HEP-coating reduced the nanoparticle protein corona formation as efficiently as PEG coatings upon serum incubation. Liquid chromatography-mass spectrometry revealed the protein corona profiles. Heparosan-coated nanoparticles exhibited up to 230-fold higher uptake in certain innate immune cells, but not in other tested cell types, than PEGylated nanoparticles. No noticeable cytotoxicity was observed. Serum proteins did not mediate the high cell uptake of HEP-coated nanoparticles. Our work suggests that HEP polymers may be an effective surface modification technology for nanomedicines to safely and efficiently target certain innate immune cells.
Collapse
Affiliation(s)
- Wen Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Lin Wang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Vinit Sheth
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Yushan Zhang
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Alyssa M. Holden
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Nathan D. Donahue
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Dixy E. Green
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Alex N. Frickenstein
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Evan M. Mettenbrink
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Tyler A. Schwemley
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Emmy R. Francek
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Majood Haddad
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Md Nazir Hossen
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, California Northstate University, Elk Grove, CA, 95757, USA
| | - Shirsha Mukherjee
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, 73019, USA
| | - Paul L. DeAngelis
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
| | - Stefan Wilhelm
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, Oklahoma, 73019, USA
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, 73104, USA
- Institute for Biomedical Engineering, Science, and Technology (IBEST), University of Oklahoma, Norman, Oklahoma, 73019, USA
| |
Collapse
|
8
|
Sato W, Zajkowski T, Moser F, Adamala KP. Synthetic cells in biomedical applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1761. [PMID: 34725945 PMCID: PMC8918002 DOI: 10.1002/wnan.1761] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 08/23/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Synthetic cells are engineered vesicles that can mimic one or more salient features of life. These features include directed localization, sense-and-respond behavior, gene expression, metabolism, and high stability. In nanomedicine, many of these features are desirable capabilities of drug delivery vehicles but are difficult to engineer. In this focus article, we discuss where synthetic cells offer unique advantages over nanoparticle and living cell therapies. We review progress in the engineering of the above life-like behaviors and how they are deployed in nanomedicine. Finally, we assess key challenges synthetic cells face before being deployed as drugs and suggest ways to overcome these challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Lipid-Based Structures.
Collapse
Affiliation(s)
- Wakana Sato
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| | - Tomasz Zajkowski
- Centre of New Technologies, University of Warsaw, S. Banacha 2c, 02-097 Warsaw, Poland
- USRA at NASA Ames Research Center, Mountain View, CA 94035
- Blue Marble Space Institute of Science, 600 1st Avenue, Seattle WA 98104
| | - Felix Moser
- Synlife, Inc., One Kendall Square Suite B4401, Cambridge, MA 20139
| | - Katarzyna P. Adamala
- 1 Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN US
| |
Collapse
|
9
|
Berdiaki A, Neagu M, Giatagana EM, Kuskov A, Tsatsakis AM, Tzanakakis GN, Nikitovic D. Glycosaminoglycans: Carriers and Targets for Tailored Anti-Cancer Therapy. Biomolecules 2021; 11:395. [PMID: 33800172 PMCID: PMC8001210 DOI: 10.3390/biom11030395] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment (TME) is composed of cancerous, non-cancerous, stromal, and immune cells that are surrounded by the components of the extracellular matrix (ECM). Glycosaminoglycans (GAGs), natural biomacromolecules, essential ECM, and cell membrane components are extensively altered in cancer tissues. During disease progression, the GAG fine structure changes in a manner associated with disease evolution. Thus, changes in the GAG sulfation pattern are immediately correlated to malignant transformation. Their molecular weight, distribution, composition, and fine modifications, including sulfation, exhibit distinct alterations during cancer development. GAGs and GAG-based molecules, due to their unique properties, are suggested as promising effectors for anticancer therapy. Considering their participation in tumorigenesis, their utilization in drug development has been the focus of both industry and academic research efforts. These efforts have been developing in two main directions; (i) utilizing GAGs as targets of therapeutic strategies and (ii) employing GAGs specificity and excellent physicochemical properties for targeted delivery of cancer therapeutics. This review will comprehensively discuss recent developments and the broad potential of GAG utilization for cancer therapy.
Collapse
Affiliation(s)
- Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| | - Andrey Kuskov
- Department of Technology of Chemical Pharmaceutical and Cosmetic Substances, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (A.B.); (E.-M.G.); (G.N.T.)
| |
Collapse
|
10
|
Datta P, Fu L, Brodfuerer P, Dordick JS, Linhardt RJ. High density fermentation of probiotic E. coli Nissle 1917 towards heparosan production, characterization, and modification. Appl Microbiol Biotechnol 2021; 105:1051-1062. [PMID: 33481068 DOI: 10.1007/s00253-020-11079-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/18/2020] [Accepted: 12/27/2020] [Indexed: 12/17/2022]
Abstract
Heparosan is a naturally occurring non-sulfated glycosaminoglycan. Heparosan serves as the substrate for chemoenzymatic synthesis of biopharmaceutically important heparan sulfate and heparin. Heparosan is biologically inert molecule, non-toxic, and non-immunogenic and these qualities of heparosan make it an ideal drug delivery vehicle. The critical-to-quality (CTQ) attributes for heparosan applications include composition of heparosan, absence of any unnatural moieties, and heparosan molecular weight size and unimodal distribution. Probiotic bacteria E. coli Nissle 1917 (EcN) is a natural producer of heparosan. The current work explores production of EcN heparosan and process parameters that may impact the heparosan CTQ attributes. Results show that EcN could be grown to high cell densities (OD600 160-180) in a chemically defined media. The fermentation process is successfully scaled from 5-L to 100-L bioreactor. The chemical composition of heparosan from EcN was confirmed using nuclear magnetic resonance. Results demonstrate that heparosan molecular weight distribution may be influenced by fermentation and purification conditions. Size exclusion chromatography analysis shows that the heparosan purified from fermentation broth results in bimodal distribution, and cell-free supernatant results in unimodal distribution (average molecular weight 68,000 Da). The yield of EcN-derived heparosan was 3 g/L of cell free supernatant. We further evaluated the application of Nissle 1917 heparosan for chemical modification to prepare N-sulfo heparosan (NSH), the first intermediate precursor for heparin and heparan sulfate. KEY POINTS: • High cell density fermentation, using a chemically defined fermentation media for the growth of probiotic bacteria EcN (E. coli Nissle 1917, a natural producer of heparosan) is reported. • Process parameters towards the production of monodispersed heparosan using probiotic bacteria EcN (Nissle 1917) has been explored and discussed. • The media composition and the protocol (SOPs and batch records) have been successfully transferred to contract manufacturing facilities and industrial partners.
Collapse
Affiliation(s)
- Payel Datta
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Li Fu
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Paul Brodfuerer
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA. .,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
11
|
Datta P, Yan L, Awofiranye A, Dordick JS, Linhardt RJ. Heparosan Chain Characterization: Sequential Depolymerization of E. Coli K5 Heparosan by a Bacterial Eliminase Heparin Lyase III and a Bacterial Hydrolase Heparanase Bp to Prepare Defined Oligomers. Biotechnol J 2020; 16:e2000336. [PMID: 33006278 DOI: 10.1002/biot.202000336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/22/2020] [Indexed: 11/08/2022]
Abstract
Heparosan is a non-sulfated polysaccharide and potential applications include, chemoenzymatic synthesis of heparin and heparan sulfates. Heparosan is produced using microbial cells (natural producers or engineered cells). The characterization of heparosan isolated from both natural producers and engineered-cells are critical steps towards the potential applications of heparosan. Heparosan is characterized using 1) analysis of intact chain size and polydispersity, and 2) disaccharide composition. The current paper describes a novel method for heparosan chain characterization, using heparin lyase III (Hep-3, an eliminase from Flavobacterium heparinum) and heparanase Bp (Hep-Bp, a hydrolase from Burkholderia pseudomallei). The partial digestion of E. coli K5 heparosan with purified His-tagged Hep-3 results in oligomers of defined sizes. The oligomers (degree of polymerization from 2 to 8, DP2-DP8) are completely digested with purified GST-tagged Hep-Bp and analyzed using gel permeation chromatography. Hep-Bp specifically cleaves the linkage between d-glucuronic acid (GlcA) and N-acetyl-d-glucosamine (GlcNAc) but not the linkage between 4-deoxy-α-L-threo-hex-4-enopyranosyluronic acid (deltaUA) and GlcNAc, and results in the presence of a minor resistant trisaccharide (GlcNAc-GlcA-GlcNAc). This method successfully demonstrated the substrate selectivity of Hep-BP on heparosan oligomers. This analytical tool could be applied towards heparosan chain mapping and analysis of unnatural sugar moieties in the heparosan chain.
Collapse
Affiliation(s)
- Payel Datta
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - LuFeng Yan
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Adeola Awofiranye
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan S Dordick
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.,Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
12
|
Production and characterization of low molecular weight heparosan in Bacillus megaterium using Escherichia coli K5 glycosyltransferases. Int J Biol Macromol 2020; 160:69-76. [DOI: 10.1016/j.ijbiomac.2020.05.159] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 01/31/2023]
|
13
|
Ji P, Wang L, Wang S, Zhang Y, Qi X, Tao J, Wu Z. Hyaluronic acid-coated metal-organic frameworks benefit the ROS-mediated apoptosis and amplified anticancer activity of artesunate. J Drug Target 2020; 28:1096-1109. [PMID: 32552125 DOI: 10.1080/1061186x.2020.1781136] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Artesunate (AS), as an effective new tumour treatment drug, induces cancer cell death based on high intracellular reactive oxygen species (ROS) produced by interacting with ferrous ions. However, the relatively low intracellular ferrous iron ion concentrations and the low efficiency of ROS generation limit its clinical application. Herein, we developed a metal-organic framework-Fe2+ (MOF), and AS was loaded in the MOF and then coated with hyaluronic acid (HA) on the surface of the MOF (HA@MOF-AS) for targeted and enhanced cancer treatment. HA@MOF-AS has high loading efficiency, good monodispersity, biocompatibility, strong cell uptake capacity and high intracellular ROS production, and it can target tumour tissues. In addition, in vivo anticancer studies have shown that HA@MOF-AS not only has high accumulation in tumours but also significantly inhibits tumour growth without significant damage to major organs. Therefore, HA@MOF-AS has excellent potential and may open a new approach for targeted cancer treatment.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Le Wang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Siqi Wang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Yongxin Zhang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| | - Juan Tao
- Department of Pharmacy and Traditional Chinese Pharmacy, Jiangsu College of Nursing, Huaian, PR China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing, PR China
| |
Collapse
|
14
|
Zhang J, Yu H, Harris B, Zheng Y, Celik U, Na L, Faller R, Chen X, Haudenschild DR, Liu GY. New Means to Control Molecular Assembly. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2020; 124:6405-6412. [PMID: 33569091 PMCID: PMC7869855 DOI: 10.1021/acs.jpcc.9b11377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While self-assembly of molecules is relatively well-known and frequently utilized in chemical synthesis and material science, controlled assembly of molecules represents a new concept and approach. The present work demonstrates the concept of controlled molecular assembly using a non-spherical biomolecule, heparosan tetrasaccharide (MW = 1.099 kD). The key to controlled assembly is the fact that ultra-small solution droplets exhibit different evaporation dynamics from those of larger ones. Using an independently controlled microfluidic probe in an atomic force microscope, sub-femtoliter aqueous droplets containing designed molecules produce well-defined features with dimensions as small as tens of nanometers. The initial shape of the droplet and the concentration of solute within the droplet dictate the final assembly of molecules due to the ultrafast evaporation rate and dynamic spatial confinement of the droplets. The level of control demonstrated in this work brings us closer to programmable synthesis for chemistry and materials science which can be used to develop vehicles for drug delivery three-dimensional nanoprinting in additive manufacturing.
Collapse
Affiliation(s)
- Jiali Zhang
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Hai Yu
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Bradley Harris
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Yunbo Zheng
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Umit Celik
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Lan Na
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Roland Faller
- Department of Chemical Engineering, University of California, Davis, California, 95616, United States
| | - Xi Chen
- Department of Chemistry, University of California, Davis, California, 95616, United States
| | - Dominik R Haudenschild
- Department of Orthopaedic Surgery, University of California, Davis Medical Center, Sacramento, California, 95817, United States
| | - Gang-yu Liu
- Department of Chemistry, University of California, Davis, California, 95616, United States
| |
Collapse
|
15
|
Rippe M, Cosenza V, Auzély-Velty R. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics 2019; 11:E338. [PMID: 31311150 PMCID: PMC6681414 DOI: 10.3390/pharmaceutics11070338] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/09/2019] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
The rapid advancement in medicine requires the search for new drugs, but also for new carrier systems for more efficient and targeted delivery of the bioactive molecules. Among the latter, polymeric nanocarriers have an increasingly growing potential for clinical applications due to their unique physical and chemical characteristics. In this regard, nanosystems based on hyaluronic acid (HA), a polysaccharide which is ubiquitous in the body, have attracted particular interest because of the biocompatibility, biodegradability and nonimmunogenic property provided by HA. Furthermore, the fact that hyaluronic acid can be recognized by cell surface receptors in tumor cells, makes it an ideal candidate for the targeted delivery of anticancer drugs. In this review, we compile a comprehensive overview of the different types of soft nanocarriers based on HA conjugated or complexed with another polymer: micelles, nanoparticles, nanogels and polymersomes. Emphasis is made on the properties of the polymers used as well as the synthetic approaches for obtaining the different HA-polymer systems. Fabrication, characterization and potential biomedical applications of the nanocarriers will also be described.
Collapse
Affiliation(s)
- Marlène Rippe
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Vanina Cosenza
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France
| | - Rachel Auzély-Velty
- Grenoble Alpes University, Centre de Recherches sur les Macromolécules Végétales (CERMAV)-CNRS, 601, rue de la Chimie, BP 53, CEDEX 9, 38041 Grenoble, France.
| |
Collapse
|
16
|
Dokhaee Z, Maghsoudi A, Ghiaci P, Ghiaci M. Investigation of the blends of chitosan and tragacanth as potential drug carriers for the delivery of ibuprofen in the intestine. NEW J CHEM 2019. [DOI: 10.1039/c9nj03617b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
This study provides a new potential hydrogel for the intestinal delivery of ibuprofen.
Collapse
Affiliation(s)
- Zohre Dokhaee
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| | - Ali Maghsoudi
- Department of Physical Chemistry
- Faculty of Chemistry
- University of Tehran
- Tehran
- Iran
| | - Payam Ghiaci
- Department of Chemistry and Molecular Biology
- University of Gothenburg
- Gothenburg
- Sweden
| | - Mehran Ghiaci
- Department of Chemistry
- Isfahan University of Technology
- Isfahan
- Iran
| |
Collapse
|