1
|
Rani A, Sultan MJ, Ren W, Bag A, Lee HJ, Lee NE, Kim TG. Bio-Inspired Photosensory Artificial Synapse Based on Functionalized Tellurium Multiropes for Neuromorphic Computing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310013. [PMID: 38477696 DOI: 10.1002/smll.202310013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/07/2024] [Indexed: 03/14/2024]
Abstract
Nanomaterials like graphene and transition metal dichalcogenides are being explored for developing artificial photosensory synapses with low-power optical plasticity and high retention time for practical nervous system implementation. However, few studies are conducted on Tellurium (Te)-based nanomaterials due to their direct and small bandgaps. This paper reports the superior photo-synaptic properties of covalently bonded Tellurium sulfur oxide (TeSOx) and Tellurium selenium oxide (TeSeOx)nanomaterials, which are fabricated by incorporating S and Se atoms on the surface of Te multiropes using vapor deposition. Unlike pure Te multiropes, the TeSOx and TeSeOx multiropes exhibit controllable temporal dynamics under optical stimulation. For example, the TeSOx multirope-based transistor displays a photosensory synaptic response to UV light (λ = 365 nm). Furthermore, the TeSeOx multirope-based transistor exhibits photosensory synaptic responses to UV-vis light (λ = 365, 565, and 660 nm), reliable electrical performance, and a combination of both photodetector and optical artificial synaptic properties with a maximum responsivity of 1500 AW-1 to 365 nm UV light. This result is among the highest reported for Te-heterostructure-based devices, enabling optical artificial synaptic applications with low voltage spikes (1 V) and low light intensity (21 µW cm-2), potentially useful for optical neuromorphic computing.
Collapse
Affiliation(s)
- Adila Rani
- Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - M Junaid Sultan
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Wanqi Ren
- Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Atanu Bag
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Ho Jin Lee
- Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Tae Geun Kim
- Electrical Engineering, Korea University, Anam-ro 145, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
2
|
He Y, Takei T, Moroder L, Hojo H. Unexpected diselenide metathesis in selenocysteine-substituted biologically active peptides. Org Biomol Chem 2024. [PMID: 39028035 DOI: 10.1039/d4ob00921e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Substitution of disulfide bonds with a diselenide bonds in peptides and proteins is an often-used strategy to increase the stability of naturally occurring peptides and proteins. In this paper, diselenide metathesis between model diselenide dimer peptides, as well as that in diselenide(s)-substituted biologically active peptides, were analyzed. Surprisingly, depending on the tertiary structure of the peptides, we observed that the metathesis reaction occurs under physiological conditions even in the absence of reducing agents, light and heating.
Collapse
Affiliation(s)
- Ying He
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Toshiki Takei
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| | - Luis Moroder
- Max-Planck-Institute of Biochemistry, Martinsried 82152, Germany
| | - Hironobu Hojo
- Institute for Protein Research, Osaka University, Osaka 565-0871, Japan.
| |
Collapse
|
3
|
Waliczek M, Gancarz W, Pochwała P, Pehlivan Ö, Stefanowicz P. Visible Light-Induced Templated Metathesis of Peptide-Nucleic Acid Conjugates with a Diselenide Bridge. Biomolecules 2023; 13:1676. [PMID: 38002358 PMCID: PMC10669671 DOI: 10.3390/biom13111676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
The use of template molecules as chemical scaffolds that significantly influence the course of the reaction has recently been intensively studied. Peptide nucleic acids (PNA) are molecules that mimic natural nucleic acids. They are a promising matrix in such reactions because they possess high affinity and specificity in their interactions. The manner of PNA interaction is predictable based on sequence complementarity. Recently, we report the visible light-induced metathesis reaction in peptides containing a diselenide bond. Herein, we present an efficient and straightforward method of the visible light-driven diselenide-based metathesis of peptide-nucleic acid conjugates. Compared to a similar photochemical transformation in peptides, a significant increase in the metathesis efficiency was obtained due to the template effect.
Collapse
Affiliation(s)
- Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| | | | | | | | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
4
|
Jiang R, Zheng X, Zhu S, Li W, Zhang H, Liu Z, Zhou X. Recent Advances in Functional Polyurethane Chemistry: From Structural Design to Applications. ChemistrySelect 2023. [DOI: 10.1002/slct.202204132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Rijia Jiang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xiangyu Zheng
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Shanshan Zhu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Wenyao Li
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Haiwei Zhang
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Zhihao Liu
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| | - Xing Zhou
- School of Chemistry and Life Sciences Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
5
|
Shi L, Jin Y, Bai L, Shang X, Li Y, Zhou R. Ultrasensitive
redox‐responsive ditelluride‐containing
fluorinated Gemini micelles for controlled drug release. J Appl Polym Sci 2023. [DOI: 10.1002/app.53719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Liangjie Shi
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yong Jin
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Long Bai
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Xiang Shang
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Yupeng Li
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| | - Rong Zhou
- Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, National Engineering Research Center of Clean Technology in Leather Industry Sichuan University Chengdu People's Republic of China
| |
Collapse
|
6
|
Pahar S, Kundu G, George CP, Gonnade RG, Sen SS. Substitution at a Coordinatively Saturated Aluminum Center Stabilized by Imidazolidin-2-imine. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Sanjukta Pahar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Gargi Kundu
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Christy P. George
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Liang H, Zhang S, Liu Y, Yang Y, Zhang Y, Wu Y, Xu H, Wei Y, Ji Y. Merging the Interfaces of Different Shape-Shifting Polymers Using Hybrid Exchange Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2202462. [PMID: 36325655 DOI: 10.1002/adma.202202462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Sophisticated shape-shifting structures and integration of advanced functions often call for different-chemistry-based polymers (such as epoxy and polyurethane) in a unified system. However, permanent cross-links pose crucial obstacles to be seamless. Here, merging interfaces via hybrid exchange reactions among different dynamic covalent bonds (including ester, urethane, thiourethane, boronic-ester, and oxime-ester linkages) is proposed, breaking the long-lasting restriction that these widely used bonds only undergo self-exchange reactions. Model compound studies are conducted to verify that hybrid exchange reactions occur. As demonstrations, different liquid crystal elastomers are tenaciously joined into coherent assemblies, with the desired biomimetic structures (e.g., flying fish containing stiff and flexible parts) and rare deformation modes (e.g., flower blooming upon both heating and cooling). Besides connecting polymers, hybrid exchange reactions also facilitate the creation of new materials through cross-fusion of different polymers. In addition to the polymers used in this work, hybrid exchange reactions can be adapted to other polymers based on similar mechanisms and beyond. Besides shape-shifting-related areas (e.g., soft robots, flexible electronics, and biomedical devices), it may also foster innovation in other fields involving general polymers, as well as promote deeper understanding of dynamic covalent chemistry.
Collapse
Affiliation(s)
- Huan Liang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yawen Liu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yang Yang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Yubai Zhang
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yahe Wu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hongtu Xu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Department of Chemistry, Center for Nanotechnology and Institute of Biomedical Technology, Chung-Yuan Christian University, Chung-Li, Taiwan, 32023, China
| | - Yan Ji
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Han Y, Cao Y, Lei H. Dynamic Covalent Hydrogels: Strong yet Dynamic. Gels 2022; 8:577. [PMID: 36135289 PMCID: PMC9498565 DOI: 10.3390/gels8090577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/06/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
Hydrogels are crosslinked polymer networks with time-dependent mechanical response. The overall mechanical properties are correlated with the dynamics of the crosslinks. Generally, hydrogels crosslinked by permanent chemical crosslinks are strong but static, while hydrogels crosslinked by physical interactions are weak but dynamic. It is highly desirable to create synthetic hydrogels that possess strong mechanical stability yet remain dynamic for various applications, such as drug delivery cargos, tissue engineering scaffolds, and shape-memory materials. Recently, with the introduction of dynamic covalent chemistry, the seemingly conflicting mechanical properties, i.e., stability and dynamics, have been successfully combined in the same hydrogels. Dynamic covalent bonds are mechanically stable yet still capable of exchanging, dissociating, or switching in response to external stimuli, empowering the hydrogels with self-healing properties, injectability and suitability for postprocessing and additive manufacturing. Here in this review, we first summarize the common dynamic covalent bonds used in hydrogel networks based on various chemical reaction mechanisms and the mechanical strength of these bonds at the single molecule level. Next, we discuss how dynamic covalent chemistry makes hydrogel materials more dynamic from the materials perspective. Furthermore, we highlight the challenges and future perspectives of dynamic covalent hydrogels.
Collapse
Affiliation(s)
- Yueying Han
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Hai Lei
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
9
|
Xu J, Zhu L, Nie Y, Li Y, Wei S, Chen X, Zhao W, Yan S. Advances and Challenges of Self-Healing Elastomers: A Mini Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5993. [PMID: 36079373 PMCID: PMC9457332 DOI: 10.3390/ma15175993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
In the last few decades, self-healing polymeric materials have been widely investigated because they can heal the damages spontaneously and thereby prolong their service lifetime. Many ingenious synthetic procedures have been developed for fabricating self-healing polymers with high performance. This mini review provides an impressive summary of the self-healing polymers with fast self-healing speed, which exhibits an irreplaceable role in many intriguing applications, such as flexible electronics. After a brief introduction to the development of self-healing polymers, we divide the development of self-healing polymers into five stages through the perspective of their research priorities at different periods. Subsequently, we elaborated the underlying healing mechanism of polymers, including the self-healing origins, the influencing factors, and direct evidence of healing at nanoscopic level. Following this, recent advance in realizing the fast self-healing speed of polymers through physical and chemical approaches is extensively overviewed. In particular, the methodology for balancing the mechanical strength and healing ability in fast self-healing elastomers is summarized. We hope that it could afford useful information for research people in promoting the further technical development of new strategies and technologies to prepare the high performance self-healing elastomers for advanced applications.
Collapse
Affiliation(s)
- Jun Xu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Lei Zhu
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yongjia Nie
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Yuan Li
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shicheng Wei
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Xu Chen
- School of Chemical Engineering, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Wenpeng Zhao
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| | - Shouke Yan
- Key Laboratory of Rubber-Plastics, Qingdao University of Science & Technology, Qingdao 266042, China
| |
Collapse
|
10
|
Li Y, Jin Y, Fan W, Zhou R. A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethanes have been widely used in many fields due to their remarkable features such as excellent mechanical strength, good abrasion resistance, toughness, low temperature flexibility, etc. In recent years, room-temperature self-healing polyurethanes have been attracting broad and growing interest because under mild conditions, room-temperature self-healing polyurethanes can repair damages, thereby extending their lifetimes and reducing maintenance costs. In this paper, the recent advances of room-temperature self-healing polyurethanes based on dynamic covalent bonds, noncovalent bonds and combined dual or triple dynamic bonds are reviewed, focusing on their synthesis methods and self-healing mechanisms, and their mechanical properties, healing efficiency and healing time are also described in detial. In addition, the latest applications of room-temperature self-healing polyurethanes in the fields of leather coatings, photoluminescence materials, flexible electronics and biomaterials are summarized. Finally, the current challenges and future development directions of the room-temprature self-healing polyurethanes are highlighted. Overall, this review is expected to provide a valuable reference for the prosperous development of room-temperature self-healing polyurethanes.
Graphical abstract
Collapse
|
11
|
Zha J, Wang Z, Liu B, Tan Q, Xu B. Multicomponent Reaction of Isocyanide, Ditelluride, and Mn(III) Carboxylate: Synthesis of N-Acyl Tellurocarbamate. Org Lett 2022; 24:2863-2867. [PMID: 35420436 DOI: 10.1021/acs.orglett.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of isocyanides, ditellurides and manganese(III) carboxylates under mild reaction conditions leads to the synthesis of various N-acyl tellurocarbamates. This method demonstrates good functional tolerance and broad substrate scope and, as a result, is especially suitable for the postfunctionalization of complicated molecules such as drugs. The given method can be further extended to the synthesis of selenocarbamates.
Collapse
Affiliation(s)
- Jianjian Zha
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Zhuoer Wang
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bingxin Liu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Qitao Tan
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China
| | - Bin Xu
- Department of Chemistry, Innovative Drug Research Center, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai 200444, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
12
|
Zhang L, Dai Y, Pan S, Tan Y, Sun C, Cao M, Xu H. Copper-Selenocysteine Quantum Dots for NIR-II Photothermally Enhanced Chemodynamic Therapy. ACS APPLIED BIO MATERIALS 2022; 5:1794-1803. [PMID: 35389206 DOI: 10.1021/acsabm.2c00150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chemodynamic therapy has been appealing for effective cancer treatment. Particularly, Fenton-like reactions catalyzed by Cu2+-based nanoparticles showed promising prospects. Herein, we fabricated copper-selenocysteine quantum dots (Cu-Sec QDs) with the majority of Cu+ by a facile and robust thermal titration process. No high temperature or pressure is needed for this synthetic route of QDs. The selenocysteine functioned as the reducing agent as well as the stabilizer, circumventing the poor water solubility and stability, leading to enhanced biocompatibility. The existence of Cu+ endowed the QDs the ability to catalyze the Fenton-like reaction without an extra reduction reaction of Cu2+ to Cu+. Moreover, the strong absorption in the near-infrared-II region (1000-1300 nm) of the final Cu-Sec QDs is in great favor of the chemodynamic therapy via the photothermally enhanced Fenton-like reaction. And the Cu-Sec QDs exhibited obvious cytotoxicity to various cancer cell lines. We believe that this facile and robust synthetic approach could open up another method for the fabrication of quantum dots toward the potential Fenton-like reaction-based applications in biological fields.
Collapse
Affiliation(s)
- Luo Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, 100084, China
| | - Yiheng Dai
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Shuojiong Pan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenxing Sun
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Muqing Cao
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
13
|
Branfoot C, Pringle PG, Pridmore NE, Young T, Wass D. Heterometathesis of diphosphanes (R 2P–PR 2) with dichalcogenides (R'E–ER', E = O, S, Se, Te). Dalton Trans 2022; 51:8906-8913. [DOI: 10.1039/d2dt01093c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactions of R2P–PR2 with R'E–ER', (where E = Se, S, O, Te) to give R2P–ER' have been explored experimentally and computationally. The reaction of Ph2P–PPh2 with PhSe–SePh gives Ph2P–SePh...
Collapse
|
14
|
Mathuri A, Pramanik M, Parida A, Mal P. Disulfide metathesis via sulfur⋯iodine interaction and photoswitchability. Org Biomol Chem 2021; 19:8539-8543. [PMID: 34546277 DOI: 10.1039/d1ob01581h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The idea of constitutional dynamic chemistry (CDC) and dynamic combinatorial chemistry (DCC) is widespread in the literature using the chemistry of disulfides. The synthesis of unsymmetrical diaryl disulfides is challenging due to the presence of a weak S-S bond. We report herein the synthesis of unsymmetrical diaryl disulfides from two symmetrical disulfides via a cross-metathesis reaction which was controlled by a weak sulfur⋯iodine (S⋯I) interaction. The unsymmetrical disulfides were stable in acetonitrile solution in the presence of N-iodosuccinimide (NIS), and found to be reversibly photoswitchable to the symmetrical disulfides under visible light irradiation.
Collapse
Affiliation(s)
- Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Amarchand Parida
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), HBNI, Bhubaneswar, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India.
| |
Collapse
|
15
|
Birhan YS, Tsai HC. Recent developments in selenium-containing polymeric micelles: prospective stimuli, drug-release behaviors, and intrinsic anticancer activity. J Mater Chem B 2021; 9:6770-6801. [PMID: 34350452 DOI: 10.1039/d1tb01253c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Selenium is capable of forming a dynamic covalent bond with itself and other elements and can undergo metathesis and regeneration reactions under optimum conditions. Its dynamic nature endows selenium-containing polymers with striking sensitivity towards some environmental alterations. In the past decade, several selenium-containing polymers were synthesized and used for the preparation of oxidation-, reduction-, and radiation-responsive nanocarriers. Recently, thioredoxin reductase, sonication, and osmotic pressure triggered the cleavage of Se-Se bonds and swelling or disassembly of nanostructures. Moreover, some selenium-containing nanocarriers form oxidation products such as seleninic acids and acrylates with inherent anticancer activities. Thus, selenium-containing polymers hold promise for the fabrication of ultrasensitive and multifunctional nanocarriers of radiotherapeutic, chemotherapeutic, and immunotherapeutic significance. Herein, we discuss the most recent developments in selenium-containing polymeric micelles in light of their architecture, multiple stimuli-responsive properties, emerging immunomodulatory activities, and future perspectives in the delivery and controlled release of anticancer agents.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Department of Chemistry, College of Natural and Computational Sciences, Debre Markos University, P.O. Box 269, Debre Markos, Ethiopia
| | | |
Collapse
|
16
|
Lapcinska S, Dimitrijevs P, Lapcinskis L, Arsenyan P. Visible Light‐Mediated Functionalization of Selenocystine‐Containing Peptides. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100373] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Sindija Lapcinska
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Pavels Dimitrijevs
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| | - Linards Lapcinskis
- Research Laboratory of Functional Materials Technologies Faculty of Materials Science and Applied Chemistry Riga Technical University P. Valdena 3/7 LV-1048 Riga Latvia
| | - Pavel Arsenyan
- Latvian Institute of Organic Synthesis Aizkraukles 21 LV-1006 Riga Latvia
| |
Collapse
|
17
|
|
18
|
Branfoot C, Young TA, Wass DF, Pringle PG. Radical-initiated P,P-metathesis reactions of diphosphanes: evidence from experimental and computational studies. Dalton Trans 2021; 50:7094-7104. [PMID: 33950053 DOI: 10.1039/d1dt01013a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
By combining the diphosphanes Ar2P-PAr2, where Ar = C6H5, 4-C6H4Me, 4-C6H4OMe, 3,5-C6H3(CF3)2, it has been shown that P,P-metathesis generally occurs rapidly under ambient conditions. DFT calculations have shown that the stability of unsymmetrical diphosphanes Z2P-PZ'2 is a function of the difference between the Z and Z' substituents in terms of size and electronegativity. Of the mechanisms that were calculated for the P,P-metathesis, the most likely was considered to be one involving Ar2P˙ radicals. The observations that photolysis increases the rate of the P,P-metatheses and TEMPO inhibits it, are consistent with a radical chain process. The P,P-metathesis reactions that involve (o-Tol)2P-P(o-Tol)2 are anomalously slow and, in the absence of photolysis, were only observed to take place in CHCl3 and CH2Cl2. The role of the chlorinated solvent is ascribed to the formation of Ar2PCl which catalyses the P,P-metathesis. The slow kinetics observed with (o-Tol)2P-P(o-Tol)2 is tentatively attributed to the o-CH3 groups quenching the (o-Tol)2P˙ radicals or inhibiting the metathesis reaction sterically.
Collapse
Affiliation(s)
- Callum Branfoot
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| | - Tom A Young
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, UK
| | - Duncan F Wass
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, UK
| | - Paul G Pringle
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK.
| |
Collapse
|
19
|
Chen S, Liu M, Zhang J, Zhang Z, Zhu J, Pan X, Zhu X. Photoresponsive dynamic covalent bond based on addition–fragmentation chain transfer of allyl selenides. Polym Chem 2021. [DOI: 10.1039/d0py01730b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new dynamic covalent bond allyl selenide that can undergo a reversible addition–fragmentation chain transfer reaction under ultraviolet irradiation.
Collapse
Affiliation(s)
- Sisi Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Ming Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jiandong Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Jian Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiangqiang Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
20
|
Silva MS, Alves D, Hartwig D, Jacob RG, Perin G, Lenardão EJ. Selenium‐NMR Spectroscopy in Organic Synthesis: From Structural Characterization Toward New Investigations. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Márcio S. Silva
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Diego Alves
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Daniela Hartwig
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Raquel G. Jacob
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Gelson Perin
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| | - Eder J. Lenardão
- LASOL – CCQFA Universidade Federal de Pelotas – UFPel – P.O. Box 354 – 96010-900 Pelotas, RS Brazil
| |
Collapse
|
21
|
Liu C, Zhang Z, Fan Z, He C, Tan Y, Xu H. Adaptive Se‐Te Metathesis Controlled by Cucurbituril‐Based Host‐Guest Interaction. Chem Asian J 2020; 15:4321-4326. [DOI: 10.1002/asia.202001224] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/27/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Cheng Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zhiheng Zhang
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Zhiyuan Fan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Chaowei He
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
22
|
Birhan YS, Darge HF, Hanurry EY, Andrgie AT, Mekonnen TW, Chou HY, Lai JY, Tsai HC. Fabrication of Core Crosslinked Polymeric Micelles as Nanocarriers for Doxorubicin Delivery: Self-Assembly, In Situ Diselenide Metathesis and Redox-Responsive Drug Release. Pharmaceutics 2020; 12:E580. [PMID: 32585885 PMCID: PMC7356386 DOI: 10.3390/pharmaceutics12060580] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/09/2020] [Accepted: 06/17/2020] [Indexed: 11/23/2022] Open
Abstract
Polymeric micelles (PMs) have been used to improve the poor aqueous solubility, slow absorption and non-selective biodistribution of chemotherapeutic agents (CAs), albeit, they suffer from disassembly and premature release of payloads in the bloodstream. To alleviate the thermodynamic instability of PMs, different core crosslinking approaches were employed. Herein, we synthesized the poly(ethylene oxide)-b-poly((2-aminoethyl)diselanyl)ethyl l-aspartamide)-b-polycaprolactone (mPEG-P(LA-DSeDEA)-PCL) copolymer which self-assembled into monodispersed nanoscale, 156.57 ± 4.42 nm, core crosslinked micelles (CCMs) through visible light-induced diselenide metathesis reaction between the pendant selenocystamine moieties. The CCMs demonstrated desirable doxorubicin (DOX)-loading content (7.31%) and encapsulation efficiency (42.73%). Both blank and DOX-loaded CCMs (DOX@CCMs) established appreciable colloidal stability in the presence of bovine serum albumin (BSA). The DOX@CCMs showed redox-responsive drug releasing behavior when treated with 5 and 10 mM reduced glutathione (GSH) and 0.1% H2O2. Unlike the DOX-loaded non-crosslinked micelles (DOX@NCMs) which exhibited initial burst release, DOX@CCMs demonstrated a sustained release profile in vitro where 71.7% of the encapsulated DOX was released within 72 h. In addition, the in vitro fluorescent microscope images and flow cytometry analysis confirmed the efficient cellular internalization of DOX@CCMs. The in vitro cytotoxicity test on HaCaT, MDCK, and HeLa cell lines reiterated the cytocompatibility (≥82% cell viability) of the mPEG-P(LA-DSeDEA)-PCL copolymer and DOX@CCMs selectively inhibit the viabilities of 48.85% of HeLa cells as compared to 15.75% of HaCaT and 7.85% of MDCK cells at a maximum dose of 10 µg/mL. Overall, all these appealing attributes make CCMs desirable as nanocarriers for the delivery and controlled release of DOX in tumor cells.
Collapse
Affiliation(s)
- Yihenew Simegniew Birhan
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Endiries Yibru Hanurry
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Abegaz Tizazu Andrgie
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Tefera Worku Mekonnen
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Hsiao-Ying Chou
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan; (Y.S.B.); (H.F.D.); (E.Y.H.); (A.T.A.); (T.W.M.); (H.-Y.C.); (J.-Y.L.)
- Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan
- R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan
| |
Collapse
|
23
|
Liu C, Fan Z, Tan Y, Fan F, Xu H. Tunable Structural Color Patterns Based on the Visible-Light-Responsive Dynamic Diselenide Metathesis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907569. [PMID: 32027061 DOI: 10.1002/adma.201907569] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Structural color materials with reversible stimuli-responsiveness to external environment have been widely used in sensors, encryption, display, and other fields. Compared with other stimuli, visible light is highly controllable both temporally and spatially with less damage to materials, which is more suitable for structural color patterning. Herein, a new diselenide-containing shape memory material is prepared and used for creating patterns via visible light stimulus. In this system, the structural color originates from birefringence of stretched materials, whose shapes can be fixed while maintaining the mechanical stress. The fixed stress can be released by diselenide metathesis under visible light irradiation. By regulating the wavelength or irradiation time with a commercial projector, the pattern with tunable structural colors is realized and the structural color pattern can be erased and rewritten arbitrarily. During the patterning process, the optical signal is first stored as mechanical signal and then transformed back to optical signal. It is a new method for preparing visible-light-responsive structural color material and has great potential in display devices, anticounterfeiting labels, and data storage.
Collapse
Affiliation(s)
- Cheng Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Zhiyuan Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Fuqiang Fan
- College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Huaping Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Zhao P, Xia J, Cao M, Xu H. Wavelength-Controlled Light-Responsive Polymer Vesicle Based on Se-S Dynamic Chemistry. ACS Macro Lett 2020; 9:163-168. [PMID: 35638677 DOI: 10.1021/acsmacrolett.9b00983] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wavelength-controlled Se-S dynamic chemistry was put forward recently as a convenient way to regulate the balance of a selenide sulfide exchange reaction. In this paper, we synthesized an asymmetric polymeric amphiphile linked with a Se-S bond and then induced it to self-assemble into vesicles in water. When the visible light was applied to the assembly solution with addition of toluene, Se-S bonds containing vesicles were ruptured. Thus, the wavelength-controlled light responses of relatively stable polymer assembly were accomplished by introduction of the Se-S dynamic covalent bond, and the response mechanism of the Se-S bond in the vesicle was explored by nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and X-ray photoelectron spectroscopy (XPS). The results indicated that fracture of the Se-S bond led to the dissociation of assembly. Introduction of Se-S dynamic chemistry into the molecular assembly area enriched the light-responsive polymer systems and would bring many potential applications in the future.
Collapse
Affiliation(s)
- Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Muqing Cao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People’s Republic of China
| |
Collapse
|
25
|
Fan W, Jin Y, Shi L, Du W, Zhou R, Lai S, Shen Y, Li Y. Achieving Fast Self-Healing and Reprocessing of Supertough Water-Dispersed "Living" Supramolecular Polymers Containing Dynamic Ditelluride Bonds under Visible Light. ACS APPLIED MATERIALS & INTERFACES 2020; 12:6383-6395. [PMID: 31903744 DOI: 10.1021/acsami.9b18985] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
It is very challenging to achieve polymers that are mechanically robust and fast self-healable at ambient conditions, which are highly desirable for smart materials of the next-generation. Herein, combining dynamic ditelluride bonds and 2-ureido-4[1H]-pyrimidinone (UPy) moieties in the main chains, a novel type of visible-light-induced self-healing water-dispersed supramolecular polymers (DTe-WSPs) with outstanding healing properties were developed. The prepared DTe-WSPs emulsions showed excellent emulsion stability, and highly transparent DTe-WSPs films obtained from these emulsions exhibited much improved mechanical properties and fast recoverability after the incorporation of UPy groups, owing to the physical cross-links formed by quadruple hydrogen-bonded UPy moieties. Supertoughness (105.2 MJ m-3) and fast self-healability under visible light (healing efficiency of 85.6% within 10 min) could be achieved simultaneously with the adjustment of the ditelluride content and the UPy content, and the toughness of our polymers is higher than those of the reported ambient temperature self-healable polymers. The visible-light-induced ditelluride metathesis is a predominant factor in the healing process of DTe-WSPs, and the ditelluride metathesis triggered by photothermy and hydrogen bonding could also afford the ultimate healing result. Meanwhile, DTe-WSPs can be reprocessed using visible light, providing a facile way to process polymers at mild conditions. To our surprise, the "living" DTe-WSPs exhibited the ability to initiate the polymerization of vinyl monomers under visible light, which is first reported for water-dispersed self-healing polymers. We considered the elaborated design philosophy, based on the readily available, clean, safe, and easily manipulated visible light, which can not only provide inspiration for preparing fast ambient temperature self-healing and reprocessing polymer materials with robust mechanical properties but also develop a new macroinitiator to initiate the ambient temperature polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Wuhou Fan
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of High-Tech Organic Fibers of Sichuan Province , Sichuan Textile Scientific Research Institute , No. 2, Twelve Bridge Road , Chengdu 610072 , China
| | - Yong Jin
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Liangjie Shi
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Weining Du
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Rong Zhou
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Shuanquan Lai
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Yichao Shen
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| | - Yupeng Li
- National Engineering Laboratory for Clean Technology of Leather Manufacture , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
- The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education , Sichuan University , No. 24 South Section 1, Yihuan Road , Chengdu 610065 , China
| |
Collapse
|
26
|
Waliczek M, Pehlivan Ö, Stefanowicz P. A photochemical transformation of cyclic peptides leading to formation of selenolanthionine bridges. NEW J CHEM 2020. [DOI: 10.1039/d0nj01563f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Peptides with diselenide bridge under UV irradiation eliminate one selenium atom forming selenoether bond with good yield.
Collapse
Affiliation(s)
| | - Özge Pehlivan
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | | |
Collapse
|
27
|
Li Q, Zhang Y, Chen Z, Pan X, Zhang Z, Zhu J, Zhu X. Organoselenium chemistry-based polymer synthesis. Org Chem Front 2020. [DOI: 10.1039/d0qo00640h] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel synthesis of selenium containing polymers with pre-determined structures and applications thereof.
Collapse
Affiliation(s)
- Qilong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yuanyuan Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zijun Chen
- The Faculty of Engineering
- University of Waterloo
- Waterloo
- Canada
| | - Xiangqiang Pan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Zhengbiao Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Jian Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
28
|
Li Y, Cao Y. The molecular mechanisms underlying mussel adhesion. NANOSCALE ADVANCES 2019; 1:4246-4257. [PMID: 36134404 PMCID: PMC9418609 DOI: 10.1039/c9na00582j] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/12/2023]
Abstract
Marine mussels are able to firmly affix on various wet surfaces by the overproduction of special mussel foot proteins (mfps). Abundant fundamental studies have been conducted to understand the molecular basis of mussel adhesion, where the catecholic amino acid, l-3,4-dihydroxyphenylalanine (DOPA) has been found to play the major role. These studies continue to inspire the engineering of novel adhesives and coatings with improved underwater performances. Despite the fact that the recent advances of adhesives and coatings inspired by mussel adhesive proteins have been intensively reviewed in literature, the fundamental biochemical and biophysical studies on the origin of the strong and versatile wet adhesion have not been fully covered. In this review, we show how the force measurements at the molecular level by surface force apparatus (SFA) and single molecule atomic force microscopy (AFM) can be used to reveal the direct link between DOPA and the wet adhesion strength of mussel proteins. We highlight a few important technical details that are critical to the successful experimental design. We also summarize many new insights going beyond DOPA adhesion, such as the surface environment and protein sequence dependent synergistic and cooperative binding. We also provide a perspective on a few uncharted but outstanding questions for future studies. A comprehensive understanding on mussel adhesion will be beneficial to the design of novel synthetic wet adhesives for various biomedical applications.
Collapse
Affiliation(s)
- Yiran Li
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
| | - Yi Cao
- Shenzhen Research Institute of Nanjing University Shenzhen 518057 China
- Department of Physics, Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Soli State Microstructure, Nanjing University Nanjing 210093 China
- Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210093 China
| |
Collapse
|
29
|
Waliczek M, Pehlivan Ö, Stefanowicz P. Light-Driven Diselenide Metathesis in Peptides. ChemistryOpen 2019; 8:1199-1203. [PMID: 31523607 PMCID: PMC6735248 DOI: 10.1002/open.201900224] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/13/2019] [Indexed: 12/20/2022] Open
Abstract
Peptides containing selenocysteine moieties are susceptible to non-catalytic reactions of diselenide bonds metathesis induced by visible light. In contrast to previously reported radical metathesis of disulfide bridges in cysteine derivatives, this newly developed reaction is fast and clean, and proceeds without decomposition of peptides and without formation of side products. The diselenide bond in peptides was reported in literature to be more stable than the disulfide one and also less susceptible to metathesis induced by thiols and reducing reagents. We demonstrated that visible light induces fast metathesis of Se-Se bonds in peptides. This reaction is important for the folding of peptides containing selenocysteine residues and may find application in designing dynamic combinatorial libraries of peptides responsive to external influence.
Collapse
Affiliation(s)
- Mateusz Waliczek
- Faculty of ChemistryUniversity of WrocławJoliot-Curie 1450-383WrocławPoland
| | - Özge Pehlivan
- Faculty of ChemistryUniversity of WrocławJoliot-Curie 1450-383WrocławPoland
| | - Piotr Stefanowicz
- Faculty of ChemistryUniversity of WrocławJoliot-Curie 1450-383WrocławPoland
| |
Collapse
|